diff --git a/main/404.html b/main/404.html index 85c5c4adf..35519f56d 100644 --- a/main/404.html +++ b/main/404.html @@ -1,4 +1,5 @@ - + + @@ -21,7 +22,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -90,80 +54,65 @@

Contributor Covenant Code of Conduct

-

Our Pledge -

+

Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

-

Our Standards -

+

Our Standards

Examples of behavior that contributes to a positive environment for our community include:

-
+
-

Enforcement Responsibilities -

+

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.

-

Scope -

+

Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.

-

Enforcement -

+

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at [INSERT CONTACT METHOD]. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

-

Enforcement Guidelines -

+

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:

-

1. Correction -

+

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.

-

2. Warning -

+

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.

-

3. Temporary Ban -

+

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.

-

4. Permanent Ban -

+

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

-

Attribution -

+

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.1, available at https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.

@@ -171,19 +120,17 @@

Attribution -

+ - + + + - - diff --git a/main/CONTRIBUTING.html b/main/CONTRIBUTING.html index 737bb1878..16286066a 100644 --- a/main/CONTRIBUTING.html +++ b/main/CONTRIBUTING.html @@ -1,19 +1,5 @@ - - - - - - -Contribution Guidelines • teal.modules.general - - - - - - - - - + +Contribution Guidelines • teal.modules.general Skip to contents @@ -21,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -92,8 +56,7 @@

Contribution Guidelines

🙏 Thank you for taking the time to contribute!

Your input is deeply valued, whether an issue, a pull request, or even feedback, regardless of size, content or scope.

-

Table of contents -

+

Table of contents

👶 Getting started

📔 Code of Conduct

🗃 License

@@ -104,47 +67,38 @@

Table of contents❓ Questions

-

Getting started -

+

Getting started

Please refer the project documentation for a brief introduction. Please also see other articles within the project documentation for additional information.

-

Code of Conduct -

+

Code of Conduct

A Code of Conduct governs this project. Participants and contributors are expected to follow the rules outlined therein.

-

License -

+

License

All your contributions will be covered by this project’s license.

-

Issues -

+

Issues

We use GitHub to track issues, feature requests, and bugs. Before submitting a new issue, please check if the issue has already been reported. If the issue already exists, please upvote the existing issue 👍.

For new feature requests, please elaborate on the context and the benefit the feature will have for users, developers, or other relevant personas.

-

Pull requests -

+

Pull requests

-

GitHub Flow -

+

GitHub Flow

This repository uses the GitHub Flow model for collaboration. To submit a pull request:

-
    -
  1. +
    1. Create a branch

      Please see the branch naming convention below. If you don’t have write access to this repository, please fork it.

    2. Make changes

      Make sure your code

      -
        -
      • passes all checks imposed by GitHub Actions
      • +
        • passes all checks imposed by GitHub Actions
        • is well documented
        • is well tested with unit tests sufficiently covering the changes introduced
        • -
        - +
    3. Create a pull request (PR)

      In the pull request description, please link the relevant issue (if any), provide a detailed description of the change, and include any assumptions.

      @@ -158,93 +112,76 @@

      GitHub Flow -

      Branch naming convention -

      +

      Branch naming convention

      Suppose your changes are related to a current issue in the current project; please name your branch as follows: <issue_id>_<short_description>. Please use underscore (_) as a delimiter for word separation. For example, 420_fix_ui_bug would be a suitable branch name if your change is resolving and UI-related bug reported in issue number 420 in the current project.

      If your change affects multiple repositories, please name your branches as follows: <issue_id>_<issue_repo>_<short description>. For example, 69_awesomeproject_fix_spelling_error would reference issue 69 reported in project awesomeproject and aims to resolve one or more spelling errors in multiple (likely related) repositories.

monorepo and staged.dependencies - -

+

Sometimes you might need to change upstream dependent package(s) to be able to submit a meaningful change. We are using staged.dependencies functionality to simulate a monorepo behavior. The dependency configuration is already specified in this project’s staged_dependencies.yaml file. You need to name the feature branches appropriately. This is the only exception from the branch naming convention described above.

Please refer to the staged.dependencies package documentation for more details.

-

Coding guidelines -

+

Coding guidelines

This repository follows some unified processes and standards adopted by its maintainers to ensure software development is carried out consistently within teams and cohesively across other repositories.

-

Style guide -

+

Style guide

This repository follows the standard tidyverse style guide and uses lintr for lint checks. Customized lint configurations are available in this repository’s .lintr file.

-

Dependency management -

+

Dependency management

Lightweight is the right weight. This repository follows tinyverse recommedations of limiting dependencies to minimum.

-

Dependency version management -

+

Dependency version management

If the code is not compatible with all (!) historical versions of a given dependenct package, it is required to specify minimal version in the DESCRIPTION file. In particular: if the development version requires (imports) the development version of another package - it is required to put abc (>= 1.2.3.9000).

- +
-

R & package versions -

+

R & package versions

We continuously test our packages against the newest R version along with the most recent dependencies from CRAN and BioConductor. We recommend that your working environment is also set up in the same way. You can find the details about the R version and packages used in the R CMD check GitHub Action execution log - there is a step that prints out the R sessionInfo().

If you discover bugs on older R versions or with an older set of dependencies, please create the relevant bug reports.

-

-pre-commit -

+

pre-commit

We highly recommend that you use the pre-commit tool combined with R hooks for pre-commit to execute some of the checks before committing and pushing your changes.

Pre-commit hooks are already available in this repository’s .pre-commit-config.yaml file.

-

Recognition model -

+

Recognition model

As mentioned previously, all contributions are deeply valued and appreciated. While all contribution data is available as part of the repository insights, to recognize a significant contribution and hence add the contributor to the package authors list, the following rules are enforced:

-

*Excluding auto-generated code, including but not limited to roxygen comments or renv.lock files.

The package maintainer also reserves the right to adjust the criteria to recognize contributions.

-

Questions -

+

Questions

If you have further questions regarding the contribution guidelines, please contact the package/repository maintainer.

- + - + + + - - diff --git a/main/LICENSE-text.html b/main/LICENSE-text.html index e54b88ac2..d3bd3deee 100644 --- a/main/LICENSE-text.html +++ b/main/LICENSE-text.html @@ -1,19 +1,5 @@ - - - - - - -License • teal.modules.general - - - - - - - - - + +License • teal.modules.general Skip to contents @@ -21,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -102,19 +66,17 @@

License

limitations under the License. - - + - + + + - - diff --git a/main/SECURITY.html b/main/SECURITY.html index 45cc779cb..d8cc9b91a 100644 --- a/main/SECURITY.html +++ b/main/SECURITY.html @@ -1,19 +1,5 @@ - - - - - - -Security Policy • teal.modules.general - - - - - - - - - + +Security Policy • teal.modules.general Skip to contents @@ -21,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -90,44 +54,38 @@

Security Policy

-

Reporting Security Issues -

+

Reporting Security Issues

If you believe you have found a security vulnerability in any of the repositories in this organization, please report it to us through coordinated disclosure.

Please do not report security vulnerabilities through public GitHub issues, discussions, or pull requests.

Instead, please send an email to vulnerability.management[@]roche.com.

Please include as much of the information listed below as you can to help us better understand and resolve the issue:

-

This information will help us triage your report more quickly.

-

Data Security Standards (DSS) -

+

Data Security Standards (DSS)

Please make sure that while reporting issues in the form a bug, feature, or pull request, all sensitive information such as PII, PHI, and PCI is completely removed from any text and attachments, including pictures and videos.

- + - + + + - - diff --git a/main/articles/index.html b/main/articles/index.html index bd1714f27..d5f50161d 100644 --- a/main/articles/index.html +++ b/main/articles/index.html @@ -1,19 +1,5 @@ - - - - - - -Articles • teal.modules.general - - - - - - - - - + +Articles • teal.modules.general Skip to contents @@ -21,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -90,52 +54,38 @@

Articles

All vignettes

-
-
Getting started with teal.modules.general
+
Getting started with teal.modules.general
-
-
Using association plot
+
Using association plot
-
-
Using bivariate plot
+
Using bivariate plot
-
-
Using cross table
+
Using cross table
-
-
Using data table
+
Using data table
-
-
Using outliers module
+
Using outliers module
-
-
Using regression plots
+
Using regression plots
-
-
Using response plot
+
Using response plot
-
-
Using scatterplot matrix
+
Using scatterplot matrix
-
-
Using scatterplot
+
Using scatterplot
-
-
- - - +
+ - + + + - - diff --git a/main/articles/teal-modules-general.html b/main/articles/teal-modules-general.html index 98f03f202..8896a0334 100644 --- a/main/articles/teal-modules-general.html +++ b/main/articles/teal-modules-general.html @@ -1,4 +1,5 @@ - + + @@ -21,7 +22,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -89,8 +53,7 @@

Authors and Citation

Authors

-
+

Citation

@@ -131,33 +93,31 @@

Citation

Kaledkowski D, Rucki P, Hallal M, Nasinski M, Pagacz K, Burkoff N (2024). teal.modules.general: General Modules for 'teal' Applications. -R package version 0.3.0.9057, +R package version 0.3.0.9058, https://github.com/insightsengineering/teal.modules.general/, https://insightsengineering.github.io/teal.modules.general/.

@Manual{,
   title = {teal.modules.general: General Modules for 'teal' Applications},
   author = {Dawid Kaledkowski and Pawel Rucki and Mahmoud Hallal and Maciej Nasinski and Konrad Pagacz and Nikolas Burkoff},
   year = {2024},
-  note = {R package version 0.3.0.9057,
+  note = {R package version 0.3.0.9058,
     https://github.com/insightsengineering/teal.modules.general/},
   url = {https://insightsengineering.github.io/teal.modules.general/},
 }
- + - + + + - - diff --git a/main/index.html b/main/index.html index 030e4a16b..87860e8c3 100644 --- a/main/index.html +++ b/main/index.html @@ -1,4 +1,5 @@ - + + @@ -23,7 +24,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -88,195 +52,132 @@

Changelog

-

teal.modules.general 0.3.0.9057 -

- -
-

Enhancements -

- -
+

teal.modules.general 0.3.0.9058

+
+

Enhancements

+
-

Bug fixes -

- -
+

Bug fixes

+
-

teal.modules.general 0.3.0 -

-

CRAN release: 2024-03-05

-
-

Enhancements -

- -
+

teal.modules.general 0.3.0

CRAN release: 2024-03-05

+
+

Enhancements

+
-

Bug fixes -

-
+
-

Miscellaneous -

-
+
-

teal.modules.general 0.2.16 -

+

teal.modules.general 0.2.16

-

Breaking changes -

-
+
-

Enhancements -

-
+
-

Bug fixes -

-
+
-

Miscellaneous -

-
+
-

teal.modules.general 0.2.15 -

+

teal.modules.general 0.2.15

-

Enhancements -

-
+
-

Bug fixes -

-
+
-

Miscellaneous -

-
+
-

teal.modules.general 0.2.14 -

+

teal.modules.general 0.2.14

-

Enhancements -

-
+
-

Bug fixes -

-
+
-

Miscellaneous -

-
+
-

teal.modules.general 0.2.13 -

+

teal.modules.general 0.2.13

-

Enhancements -

-
+
-

Miscellaneous -

-
+
-

teal.modules.general 0.2.12 -

+

teal.modules.general 0.2.12

-

Enhancements -

-
+
-

Bug fixes -

-
+
-

Miscellaneous -

-
+
-

teal.modules.general 0.2.11 -

+

teal.modules.general 0.2.11

-

New features -

-
+
-

Bug fixes -

- -
+

Bug fixes

+
-

Enhancements -

+

Enhancements

-
-tm_variable_browser -
-
+
-
-tm_outliers -
-
+
-
-tm_g_scatterplotmatrix -
-
+
-
-tm_g_association -
- -
+
tm_g_association
+
-
-tm_t_crosstable -
- -
+
tm_t_crosstable
+
-
-tm_g_scatterplot -
- -
+
tm_g_scatterplot
+
-

Miscellaneous -

-
+
-

teal.modules.general 0.2.10 -

+

teal.modules.general 0.2.10

-

Enhancements -

-
+
-

teal.modules.general 0.2.9 -

+

teal.modules.general 0.2.9

-

Enhancements -

-
+
-

Bug fixes -

-
+
-

teal.modules.general 0.2.8 -

+

teal.modules.general 0.2.8

-

New Module -

+

New Module

-
-tm_outliers -
-
    -
  • Added new module tm_outliers to analyze outliers in datasets.
  • -
-
+
tm_outliers
+
-

Enhancements -

+

Enhancements

-
-tm_g_scatterplot -
-
+
-

Bug Fixes -

-
+
-

Miscellaneous -

-
+
-

teal.modules.general 0.2.7 -

+

teal.modules.general 0.2.7

-

Enhancements -

+

Enhancements

-
-tm_variable_browser -
-
    -
  • Introduced sparklines for quick, inline variable summaries.
  • +
    tm_variable_browser
    +
    • Introduced sparklines for quick, inline variable summaries.
    • Added option to remove outliers.
    • Histograms and statistics tables are now displayed for variables of type Date, POSIXct and POSIXlt.
    • Character variable summary statistics tables are now displayed in decreasing order of occurrences instead of alphabetical.
    • @@ -515,70 +341,44 @@
    • Added ability to treat numeric variables as categorical.
    • tm_variable_browser shows from 30 up to 50 levels divided in 2 columns for character/factor variables with more than 30 unique levels.
    • -
    -
+
-
-tm_a_regression -
- -
+
tm_a_regression
+
-
-tm_g_scatterplot -
-
+
-
-tm_missing_data -
-
+
-
-tm_g_bivariate -
-
+
-
-tm_a_pca -
- -
+
tm_a_pca
+
-

Miscellaneous -

-
+
-

teal.modules.general 0.2.6 -

-
+
-

teal.modules.general 0.2.5 -

-
+
-

teal.modules.general 0.2.4 -

-
+
-

teal.modules.general 0.2.3 -

-
+
-

teal.modules.general 0.2.2 -

-
+
-

teal.modules.general 0.2.1 -

- -
+

teal.modules.general 0.2.1

+
-

teal.modules.general 0.2.0 -

-
+
-

teal.modules.general 0.1.0 -

- -
+

teal.modules.general 0.1.0

+ - + - + + + - - diff --git a/main/pkgdown.yml b/main/pkgdown.yml index 32ed72b08..383d7d92c 100644 --- a/main/pkgdown.yml +++ b/main/pkgdown.yml @@ -12,7 +12,7 @@ articles: using-response-plot: using-response-plot.html using-scatterplot-matrix: using-scatterplot-matrix.html using-scatterplot: using-scatterplot.html -last_built: 2024-12-11T13:34Z +last_built: 2024-12-12T08:21Z urls: reference: https://insightsengineering.github.io/teal.modules.general/reference article: https://insightsengineering.github.io/teal.modules.general/articles diff --git a/main/reference/add_facet_labels.html b/main/reference/add_facet_labels.html index c164968df..ceb8ce053 100644 --- a/main/reference/add_facet_labels.html +++ b/main/reference/add_facet_labels.html @@ -1,23 +1,7 @@ - - - - - - -Add labels for facets to a ggplot2 object — add_facet_labels • teal.modules.general - - - - - - - - - - - + +Add labels for facets to a ggplot2 object — add_facet_labels • teal.modules.general Skip to contents @@ -25,7 +9,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -98,44 +60,35 @@

Add labels for facets to a ggplot2 object

-

Usage -

+

Usage

add_facet_labels(p, xfacet_label = NULL, yfacet_label = NULL)
-

Arguments -

+

Arguments

-
-
p -
+
p

(ggplot2) object to which facet labels will be added.

-
xfacet_label -
+
xfacet_label

(character) Label for the facet along the x-axis. If NULL, no label is added. If a vector, labels are joined with " & ".

-
yfacet_label -
+
yfacet_label

(character) Label for the facet along the y-axis. Similar behavior to xfacet_label.

-
-
+
-

Value -

+

Value

Returns grid or grob object (to be drawn with grid.draw)

-

Examples -

+

Examples

library(ggplot2)
 library(grid)
 
@@ -164,19 +117,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/call_fun_dots.html b/main/reference/call_fun_dots.html index f4123b429..9a1fc148b 100644 --- a/main/reference/call_fun_dots.html +++ b/main/reference/call_fun_dots.html @@ -1,21 +1,5 @@ - - - - - - -Call a function with a character vector for the ... argument — call_fun_dots • teal.modules.general - - - - - - - - - - - + +Call a function with a character vector for the ... argument — call_fun_dots • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,48 +57,39 @@

Call a function with a character vector for the ... argument
-

Usage -

+

Usage

call_fun_dots(fun, str_args)
-

Arguments -

+

Arguments

-
-
fun -
+
fun

(character) Name of a function where the ... argument shall be replaced by values from str_args.

-
str_args -
+
str_args

(character) A character vector that the function shall be executed with

-
-
+
-

Value -

+

Value

Value of call to fun with arguments specified in str_args.

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/create_sparklines.html b/main/reference/create_sparklines.html index 7bd0331d0..9b9dba5ab 100644 --- a/main/reference/create_sparklines.html +++ b/main/reference/create_sparklines.html @@ -1,25 +1,9 @@ - - - - - - -S3 generic for sparkline widget HTML — create_sparklines • teal.modules.general - - - - - -S3 generic for sparkline widget HTML — create_sparklines • teal.modules.general - - - - - +Produces an empty string for variables of other types."> Skip to contents @@ -27,7 +11,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -101,8 +63,7 @@

S3 generic for sparkline widget HTML

-

Usage -

+

Usage

create_sparklines(arr, width = 150, ...)
 
 # S3 method for class 'logical'
@@ -131,58 +92,47 @@ 

Usage

-

Arguments -

+

Arguments

-
-
arr -
+
arr

vector of any type and length

-
width -
+
width

numeric the width of the sparkline widget (pixels)

-
... -
+
...

list additional options passed to bar plots of jquery.sparkline; see jquery.sparkline docs

-
bar_spacing -
+
bar_spacing

numeric the spacing between the bars (in pixels)

-
bar_width -
+
bar_width

numeric the width of the bars (in pixels)

-
-
+
-

Value -

+

Value

Character string containing HTML code of the sparkline HTML widget.

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/establish_updating_selection.html b/main/reference/establish_updating_selection.html index 7ad0769fe..5c752877f 100644 --- a/main/reference/establish_updating_selection.html +++ b/main/reference/establish_updating_selection.html @@ -1,23 +1,7 @@ - - - - - - -Creates observers updating the currently selected column — establish_updating_selection • teal.modules.general - - - - - - - - - - - + +Creates observers updating the currently selected column — establish_updating_selection • teal.modules.general Skip to contents @@ -25,7 +9,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -98,58 +60,47 @@

Creates observers updating the currently selected column

-

Usage -

+

Usage

establish_updating_selection(datanames, input, plot_var, columns_names)
-

Arguments -

+

Arguments

-
-
datanames -
+
datanames

(character) the name of the dataset

-
input -
+
input

(session$input) the shiny session input

-
plot_var -
+
plot_var

(list) the list containing the currently selected dataset (tab) and its column names

-
columns_names -
+
columns_names

(environment) the environment containing bindings for each dataset

-
-
+
-

Note -

+

Note

Creates an observer for each dataset (each tab in the tabset panel).

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/get_scatterplotmatrix_stats.html b/main/reference/get_scatterplotmatrix_stats.html index d37417a22..6b2b7e3b5 100644 --- a/main/reference/get_scatterplotmatrix_stats.html +++ b/main/reference/get_scatterplotmatrix_stats.html @@ -1,27 +1,11 @@ - - - - - - -Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats • teal.modules.general - - - - - -Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats • teal.modules.general - - - - - +Meant to be called from lattice::panel.text()."> Skip to contents @@ -29,7 +13,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -104,8 +66,7 @@

Get stats for x-y pairs in scatterplot matrix

-

Usage -

+

Usage

get_scatterplotmatrix_stats(
   x,
   y,
@@ -117,61 +78,46 @@ 

Usage

-

Arguments -

+

Arguments

-
-
x, y -
+
x, y

(numeric) vectors of data values. x and y must have the same length.

-
.f -
+
.f

(function) function that accepts x and y as formula input ~ x + y. Default stats::cor.test.

-
.f_args -
+
.f_args

(list) of arguments to be passed to .f.

-
round_stat -
+
round_stat

(integer(1)) optional, number of decimal places to use when rounding the estimate.

-
round_pval -
+
round_pval

(integer(1)) optional, number of decimal places to use when rounding the p-value.

-
-
+
-

Value -

+

Value

Character with stats. For stats::cor.test() correlation coefficient and p-value.

-

Details -

+

Details

Presently we need to use a formula input for stats::cor.test because na.fail only gets evaluated when a formula is passed (see below).

-

-
-
x = c(1,3,5,7,NA)
+

x = c(1,3,5,7,NA)
 y = c(3,6,7,8,1)
 stats::cor.test(x, y, na.action = "na.fail")
-stats::cor.test(~ x + y,  na.action = "na.fail")
-

-
+stats::cor.test(~ x + y, na.action = "na.fail")

-

Examples -

+

Examples

set.seed(1)
 x <- runif(25, 0, 1)
 y <- runif(25, 0, 1)
@@ -188,19 +134,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/include_css_files.html b/main/reference/include_css_files.html index 9f10d084d..3814d83da 100644 --- a/main/reference/include_css_files.html +++ b/main/reference/include_css_files.html @@ -1,25 +1,9 @@ - - - - - - -Include CSS files from /inst/css/ package directory to application header — include_css_files • teal.modules.general - - - - - -Include CSS files from /inst/css/ package directory to application header — include_css_files • teal.modules.general - - - - - +as needed. Thus, we do not export this method"> Skip to contents @@ -27,7 +11,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -101,43 +63,35 @@

Include CSS files from /inst/css/ package director
-

Usage -

+

Usage

include_css_files(pattern = "*")
-

Arguments -

+

Arguments

-
-
pattern -
+
pattern

(character) optional, regular expression to match the file names to be included.

-
-
+
-

Value -

+

Value

HTML code that includes CSS files.

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/index.html b/main/reference/index.html index 527e8055c..319363117 100644 --- a/main/reference/index.html +++ b/main/reference/index.html @@ -1,19 +1,5 @@ - - - - - - -Package index • teal.modules.general - - - - - - - - - + +Package index • teal.modules.general Skip to contents @@ -21,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -92,243 +56,176 @@

Package index

- -
+
-
-
+
teal.modules.general-package teal.modules.general
-
-teal.modules.general: General modules to add to a teal application
-
-
-
-

General functionality modules -

+
teal.modules.general: General modules to add to a teal application
+
+

General functionality modules

-
-
+
-
-
+
tm_data_table()
-
-teal module: Data table viewer
-
-
-
+
teal module: Data table viewer
+
tm_file_viewer()
-
-teal module: File viewer
-
-
-
+
teal module: File viewer
+
tm_front_page()
-
-teal module: Front page
-
-
-
+
teal module: Front page
+
tm_missing_data()
-
-teal module: Missing data analysis
-
-
-
+
teal module: Missing data analysis
+
tm_outliers()
-
-teal module: Outliers analysis
-
-
-
+
teal module: Outliers analysis
+
tm_variable_browser()
-
-teal module: Variable browser
-
-
-
-

Modules for tables -

+
teal module: Variable browser
+
+

Modules for tables

-
-
+
-
-
+
tm_t_crosstable()
-
-teal module: Cross-table
-
-
-
-

Modules for plots -

+
teal module: Cross-table
+
+

Modules for plots

-
-
+
-
-
+
tm_g_association()
-
-teal module: Stack plots of variables and show association with reference variable
-
-
-
+
teal module: Stack plots of variables and show association with reference variable
+
tm_g_bivariate()
-
-teal module: Univariate and bivariate visualizations
-
-
-
+
teal module: Univariate and bivariate visualizations
+
tm_g_distribution()
-
-teal module: Distribution analysis
-
-
-
+
teal module: Distribution analysis
+
tm_g_response()
-
-teal module: Response plot
-
-
-
+
teal module: Response plot
+
tm_g_scatterplot()
-
-teal module: Scatterplot
-
-
-
+
teal module: Scatterplot
+
tm_g_scatterplotmatrix()
-
-teal module: Scatterplot matrix
-
-
-
+
teal module: Scatterplot matrix
+
tm_a_pca()
-
-teal module: Principal component analysis
-
-
-
+
teal module: Principal component analysis
+
tm_a_regression()
-
-teal module: Scatterplot and regression analysis
-
-
-
-

Utilities functions -

+
teal module: Scatterplot and regression analysis
+
+

Utilities functions

-
-
+
-
-
+
add_facet_labels()
Add labels for facets to a ggplot2 object
-
-
-
+
get_scatterplotmatrix_stats()
Get stats for x-y pairs in scatterplot matrix
-
-
+ - +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/is_tab_active_js.html b/main/reference/is_tab_active_js.html index 2502db1ab..ccbb66529 100644 --- a/main/reference/is_tab_active_js.html +++ b/main/reference/is_tab_active_js.html @@ -1,21 +1,5 @@ - - - - - - -JavaScript condition to check if a specific tab is active — is_tab_active_js • teal.modules.general - - - - - - - - - - - + +JavaScript condition to check if a specific tab is active — is_tab_active_js • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,49 +57,40 @@

JavaScript condition to check if a specific tab is active

-

Usage -

+

Usage

is_tab_active_js(id, name)
-

Arguments -

+

Arguments

-
-
id -
+
id

(character(1)) the id of the tab panel with tabs.

-
name -
+
name

(character(1)) the name of the tab.

-
-
+
-

Value -

+

Value

JavaScript expression to be used in shiny::conditionalPanel() to determine if the specified tab is active.

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/normalize_decorators.html b/main/reference/normalize_decorators.html index 7850d2c78..6306dfac4 100644 --- a/main/reference/normalize_decorators.html +++ b/main/reference/normalize_decorators.html @@ -1,21 +1,5 @@ - - - - - - -Convert flat list of teal_transform_module to named lists — normalize_decorators • teal.modules.general - - - - - - - - - - - + +Convert flat list of teal_transform_module to named lists — normalize_decorators • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,43 +57,35 @@

Convert flat list of teal_transform_module to named lists

-

Usage -

+

Usage

normalize_decorators(decorators)
-

Arguments -

+

Arguments

-
-
decorators -
+
decorators

(list of teal_transform_module) to normalize.

-
-
+
-

Value -

+

Value

A named list of lists with teal_transform_module objects.

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/plot_var_summary.html b/main/reference/plot_var_summary.html index a7c54df4d..9d67ecad0 100644 --- a/main/reference/plot_var_summary.html +++ b/main/reference/plot_var_summary.html @@ -1,21 +1,5 @@ - - - - - - -Plot variable — plot_var_summary • teal.modules.general - - - - - - - - - - - + +Plot variable — plot_var_summary • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,8 +57,7 @@

Plot variable

-

Usage -

+

Usage

plot_var_summary(
   var,
   var_lab,
@@ -111,85 +72,68 @@ 

Usage

-

Arguments -

+

Arguments

-
-
var -
+
var

vector of any type to be plotted. For numeric variables it produces histogram with density line, for factors it creates frequency plot

-
var_lab -
+
var_lab

text describing selected variable to be displayed on the plot

-
wrap_character -
+
wrap_character

(numeric) number of characters at which to wrap text values of var

-
numeric_as_factor -
+
numeric_as_factor

(logical) should the numeric variable be treated as a factor

-
display_density -
+
display_density

(logical) should density estimation be displayed for numeric values

-
remove_NA_hist -
+
remove_NA_hist

(logical) should NA values be removed for histogram of factor like variables

-
outlier_definition -
+
outlier_definition

if 0 no outliers are removed, otherwise outliers (those more than outlier_definition*IQR below/above Q1/Q3 be removed)

-
records_for_factor -
+
records_for_factor

(numeric) if the number of factor levels is >= than this value then a graph of the factors isn't shown, only a list of values

-
ggplot2_args -
-
-

(ggplot2_args) object created by teal.widgets::ggplot2_args() +

ggplot2_args
+

(ggplot2_args) object created by teal.widgets::ggplot2_args() with settings for the module plot. The argument is merged with options variable teal.ggplot2_args and default module setup.

-

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets")

-
+

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets")

-
-
+
-

Value -

+

Value

plot

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/rADAE.html b/main/reference/rADAE.html index 365131a25..d4090dd86 100644 --- a/main/reference/rADAE.html +++ b/main/reference/rADAE.html @@ -1,21 +1,5 @@ - - - - - - -Random adverse events — rADAE • teal.modules.general - - - - - - - - - - - + +Random adverse events — rADAE • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,36 +57,31 @@

Random adverse events

-

Usage -

+

Usage

rADAE
-

Format -

+

Format

An object of class tbl_df (inherits from tbl, data.frame) with 1934 rows and 92 columns.

-

Source -

+

Source

internal

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/rADLB.html b/main/reference/rADLB.html index a8e0e6ae7..6875856a9 100644 --- a/main/reference/rADLB.html +++ b/main/reference/rADLB.html @@ -1,21 +1,5 @@ - - - - - - -Random lab analysis — rADLB • teal.modules.general - - - - - - - - - - - + +Random lab analysis — rADLB • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,36 +57,31 @@

Random lab analysis

-

Usage -

+

Usage

rADLB
-

Format -

+

Format

An object of class tbl_df (inherits from tbl, data.frame) with 8400 rows and 102 columns.

-

Source -

+

Source

internal

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/rADRS.html b/main/reference/rADRS.html index 6c7a20ecd..2906d3536 100644 --- a/main/reference/rADRS.html +++ b/main/reference/rADRS.html @@ -1,21 +1,5 @@ - - - - - - -Random response — rADRS • teal.modules.general - - - - - - - - - - - + +Random response — rADRS • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,36 +57,31 @@

Random response

-

Usage -

+

Usage

rADRS
-

Format -

+

Format

An object of class tbl_df (inherits from tbl, data.frame) with 3200 rows and 65 columns.

-

Source -

+

Source

internal

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/rADSL.html b/main/reference/rADSL.html index ac695699b..7fe5df837 100644 --- a/main/reference/rADSL.html +++ b/main/reference/rADSL.html @@ -1,21 +1,5 @@ - - - - - - -Random patient listing — rADSL • teal.modules.general - - - - - - - - - - - + +Random patient listing — rADSL • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,36 +57,31 @@

Random patient listing

-

Usage -

+

Usage

rADSL
-

Format -

+

Format

An object of class tbl_df (inherits from tbl, data.frame) with 400 rows and 55 columns.

-

Source -

+

Source

internal

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/rADTTE.html b/main/reference/rADTTE.html index c23b04edc..340c3ce99 100644 --- a/main/reference/rADTTE.html +++ b/main/reference/rADTTE.html @@ -1,21 +1,5 @@ - - - - - - -Random time to event analysis dataset — rADTTE • teal.modules.general - - - - - - - - - - - + +Random time to event analysis dataset — rADTTE • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,36 +57,31 @@

Random time to event analysis dataset

-

Usage -

+

Usage

rADTTE
-

Format -

+

Format

An object of class tbl_df (inherits from tbl, data.frame) with 2000 rows and 67 columns.

-

Source -

+

Source

internal

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/remove_outliers_from.html b/main/reference/remove_outliers_from.html index 245bd2d98..35ca4cdd7 100644 --- a/main/reference/remove_outliers_from.html +++ b/main/reference/remove_outliers_from.html @@ -1,21 +1,5 @@ - - - - - - -Removes the outlier observation from an array — remove_outliers_from • teal.modules.general - - - - - - - - - - - + +Removes the outlier observation from an array — remove_outliers_from • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,49 +57,40 @@

Removes the outlier observation from an array

-

Usage -

+

Usage

remove_outliers_from(var, outlier_definition)
-

Arguments -

+

Arguments

-
-
var -
+
var

(numeric) a numeric vector

-
outlier_definition -
+
outlier_definition

(numeric) if 0 then no outliers are removed, otherwise outliers (those more than outlier_definition*IQR below/above Q1/Q3) are removed

-
-
+
-

Value -

+

Value

(numeric) vector without the outlier values

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/render_single_tab.html b/main/reference/render_single_tab.html index e5de39c19..6ea39adcb 100644 --- a/main/reference/render_single_tab.html +++ b/main/reference/render_single_tab.html @@ -1,23 +1,7 @@ - - - - - - -Renders a single tab in the left-hand side tabset panel — render_single_tab • teal.modules.general - - - - - - - - - - - + +Renders a single tab in the left-hand side tabset panel — render_single_tab • teal.modules.general Skip to contents @@ -25,7 +9,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -98,8 +60,7 @@

Renders a single tab in the left-hand side tabset panel

-

Usage -

+

Usage

render_single_tab(
   dataset_name,
   parent_dataname,
@@ -112,62 +73,50 @@ 

Usage

-

Arguments -

+

Arguments

-
-
dataset_name -
+
dataset_name

(character) the name of the dataset contained in the rendered tab

-
parent_dataname -
+
parent_dataname

(character) the name of a parent dataname to filter out variables from

-
output -
+
output

(session$output) the shiny session output

-
data -
+
data

(teal_data) the object containing all datasets

-
input -
+
input

(session$input) the shiny session input

-
columns_names -
+
columns_names

(environment) the environment containing bindings for each dataset

-
plot_var -
+
plot_var

(list) the list containing the currently selected dataset (tab) and its column names

-
-
+
- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/render_tab_header.html b/main/reference/render_tab_header.html index aba4c38fe..7ee7fc6c7 100644 --- a/main/reference/render_tab_header.html +++ b/main/reference/render_tab_header.html @@ -1,21 +1,5 @@ - - - - - - -Renders the text headlining a single tab in the left-hand side tabset panel — render_tab_header • teal.modules.general - - - - - - - - - - - + +Renders the text headlining a single tab in the left-hand side tabset panel — render_tab_header • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,48 +57,39 @@

Renders the text headlining a single tab in the left-hand side tabset panel<
-

Usage -

+

Usage

render_tab_header(dataset_name, output, data)
-

Arguments -

+

Arguments

-
-
dataset_name -
+
dataset_name

(character) the name of the dataset of the tab

-
output -
+
output

(session$output) the shiny session output

-
data -
+
data

(teal_data) the object containing all datasets

-
-
+ - +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/render_tab_table.html b/main/reference/render_tab_table.html index affabedad..c8135ebcb 100644 --- a/main/reference/render_tab_table.html +++ b/main/reference/render_tab_table.html @@ -1,23 +1,7 @@ - - - - - - -Renders the table for a single dataset in the left-hand side tabset panel — render_tab_table • teal.modules.general - - - - - - - - - - - + +Renders the table for a single dataset in the left-hand side tabset panel — render_tab_table • teal.modules.general Skip to contents @@ -25,7 +9,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -98,8 +60,7 @@

Renders the table for a single dataset in the left-hand side tabset panel
-

Usage -

+

Usage

render_tab_table(
   dataset_name,
   parent_dataname,
@@ -112,62 +73,50 @@ 

Usage

-

Arguments -

+

Arguments

-
-
dataset_name -
+
dataset_name

(character) the name of the dataset

-
parent_dataname -
+
parent_dataname

(character) the name of a parent dataname to filter out variables from

-
output -
+
output

(session$output) the shiny session output

-
data -
+
data

(teal_data) the object containing all datasets

-
input -
+
input

(session$input) the shiny session input

-
columns_names -
+
columns_names

(environment) the environment containing bindings for each dataset

-
plot_var -
+
plot_var

(list) the list containing the currently selected dataset (tab) and its column names

-
-
+
- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/render_tabset_panel_content.html b/main/reference/render_tabset_panel_content.html index 2dd9831bb..15d55b205 100644 --- a/main/reference/render_tabset_panel_content.html +++ b/main/reference/render_tabset_panel_content.html @@ -1,21 +1,5 @@ - - - - - - -Renders the left-hand side tabset panel of the module — render_tabset_panel_content • teal.modules.general - - - - - - - - - - - + +Renders the left-hand side tabset panel of the module — render_tabset_panel_content • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,8 +57,7 @@

Renders the left-hand side tabset panel of the module

-

Usage -

+

Usage

render_tabset_panel_content(
   datanames,
   parent_dataname,
@@ -109,62 +70,50 @@ 

Usage

-

Arguments -

+

Arguments

-
-
datanames -
+
datanames

(character) the name of the dataset

-
parent_dataname -
+
parent_dataname

(character) the name of a parent dataname to filter out variables from

-
output -
+
output

(session$output) the shiny session output

-
data -
+
data

(teal_data) the object containing all datasets

-
input -
+
input

(session$input) the shiny session input

-
columns_names -
+
columns_names

(environment) the environment containing bindings for each dataset

-
plot_var -
+
plot_var

(list) the list containing the currently selected dataset (tab) and its column names

-
-
+
- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/select_decorators.html b/main/reference/select_decorators.html index a9f73d072..f4dcecc8b 100644 --- a/main/reference/select_decorators.html +++ b/main/reference/select_decorators.html @@ -1,23 +1,7 @@ - - - - - - -Subset decorators based on the scope — select_decorators • teal.modules.general - - - - - - - - - - - + +Subset decorators based on the scope — select_decorators • teal.modules.general Skip to contents @@ -25,7 +9,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -98,49 +60,40 @@

Subset decorators based on the scope

-

Usage -

+

Usage

select_decorators(decorators, scope)
-

Arguments -

+

Arguments

-
-
decorators -
+
decorators

(named list) of list decorators to subset.

-
scope -
+
scope

(character) a character vector of decorator names to include.

-
-
+
-

Value -

+

Value

A flat list with all decorators to include. It can be an empty list if none of the scope exists in decorators argument.

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/shared_params.html b/main/reference/shared_params.html index 6ed2e6d1d..bc0ca0be6 100644 --- a/main/reference/shared_params.html +++ b/main/reference/shared_params.html @@ -1,23 +1,7 @@ - - - - - - -Shared parameters documentation — shared_params • teal.modules.general - - - - - - - - - - - + +Shared parameters documentation — shared_params • teal.modules.general Skip to contents @@ -25,7 +9,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -99,112 +61,84 @@

Shared parameters documentation

-

Arguments -

+

Arguments

-
-
plot_height -
+
plot_height

(numeric) optional, specifies the plot height as a three-element vector of value, min, and max intended for use with a slider UI element.

-
plot_width -
+
plot_width

(numeric) optional, specifies the plot width as a three-element vector of value, min, and max for a slider encoding the plot width.

-
rotate_xaxis_labels -
+
rotate_xaxis_labels

(logical) optional, whether to rotate plot X axis labels. Does not rotate by default (FALSE).

-
ggtheme -
+
ggtheme

(character) optional, ggplot2 theme to be used by default. Defaults to "gray".

-
ggplot2_args -
-
-

(ggplot2_args) object created by teal.widgets::ggplot2_args() +

ggplot2_args
+

(ggplot2_args) object created by teal.widgets::ggplot2_args() with settings for the module plot. The argument is merged with options variable teal.ggplot2_args and default module setup.

-

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets")

-
+

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets")

-
basic_table_args -
-
-

(basic_table_args) object created by teal.widgets::basic_table_args() +

basic_table_args
+

(basic_table_args) object created by teal.widgets::basic_table_args() with settings for the module table. The argument is merged with options variable teal.basic_table_args and default module setup.

-

For more details see the vignette: vignette("custom-basic-table-arguments", package = "teal.widgets")

-
+

For more details see the vignette: vignette("custom-basic-table-arguments", package = "teal.widgets")

-
pre_output -
+
pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

-
alpha -
-
-

(integer(1) or integer(3)) optional, specifies point opacity.

-
    -
  • When the length of alpha is one: the plot points will have a fixed opacity.

  • +
    alpha
    +

    (integer(1) or integer(3)) optional, specifies point opacity.

    • When the length of alpha is one: the plot points will have a fixed opacity.

    • When the length of alpha is three: the plot points opacity are dynamically adjusted based on vector of value, min, and max.

    • -
    -
    +
-
size -
-
-

(integer(1) or integer(3)) optional, specifies point size.

-
    -
  • When the length of size is one: the plot point sizes will have a fixed size.

  • +
    size
    +

    (integer(1) or integer(3)) optional, specifies point size.

    • When the length of size is one: the plot point sizes will have a fixed size.

    • When the length of size is three: the plot points size are dynamically adjusted based on vector of value, min, and max.

    • -
    -
    +
-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/srv_decorate_teal_data.html b/main/reference/srv_decorate_teal_data.html index 4d20d626a..0c9c4be0d 100644 --- a/main/reference/srv_decorate_teal_data.html +++ b/main/reference/srv_decorate_teal_data.html @@ -1,21 +1,5 @@ - - - - - - -Wrappers around srv_transform_teal_data that allows to decorate the data — srv_decorate_teal_data • teal.modules.general - - - - - - - - - - - + +Wrappers around srv_transform_teal_data that allows to decorate the data — srv_decorate_teal_data • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,46 +57,37 @@

Wrappers around srv_transform_teal_data that allows to decorate
-

Usage -

+

Usage

srv_decorate_teal_data(id, data, decorators, expr, expr_is_reactive = FALSE)
 
 ui_decorate_teal_data(id, decorators, ...)
-

Arguments -

+

Arguments

-
-
id -
+
id

(character(1)) Module id

-
data -
+
data

(reactive teal_data)

-
expr -
+
expr

(expression or reactive) to evaluate on the output of the decoration. When an expression it must be inline code. See within() Default is NULL which won't evaluate any appending code.

-
expr_is_reactive -
+
expr_is_reactive

(logical(1)) whether expr is a reactive expression that skips defusing the argument.

-
-
+
-

Details -

+

Details

srv_decorate_teal_data is a wrapper around srv_transform_teal_data that allows to decorate the data with additional expressions. When original teal_data object is in error state, it will show that error @@ -143,19 +96,17 @@

Details -

+ - + + + - - diff --git a/main/reference/teal.modules.general.html b/main/reference/teal.modules.general.html index e8190accf..14d3173fa 100644 --- a/main/reference/teal.modules.general.html +++ b/main/reference/teal.modules.general.html @@ -1,23 +1,7 @@ - - - - - - -teal.modules.general: General modules to add to a teal application — teal.modules.general • teal.modules.general - - - - - - - - - - - + +teal.modules.general: General modules to add to a teal application — teal.modules.general • teal.modules.general Skip to contents @@ -25,7 +9,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -87,8 +49,7 @@
@@ -100,50 +61,36 @@

-

Author -

+

Author

Maintainer: Dawid Kaledkowski dawid.kaledkowski@roche.com

-

Authors:

-
+

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/tm_a_pca.html b/main/reference/tm_a_pca.html index 51880f9d5..83915947d 100644 --- a/main/reference/tm_a_pca.html +++ b/main/reference/tm_a_pca.html @@ -1,27 +1,11 @@ - - - - - - -teal module: Principal component analysis — tm_a_pca • teal.modules.general - - - - - -teal module: Principal component analysis — tm_a_pca • teal.modules.general - - - - - +font size, through UI inputs."> Skip to contents @@ -29,7 +13,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -91,8 +53,7 @@
@@ -105,8 +66,7 @@

-

Usage -

+

Usage

tm_a_pca(
   label = "Principal Component Analysis",
   dat,
@@ -125,139 +85,100 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
dat -
+
dat

(data_extract_spec or list of multiple data_extract_spec) specifying columns used to compute PCA.

-
plot_height -
+
plot_height

(numeric) optional, specifies the plot height as a three-element vector of value, min, and max intended for use with a slider UI element.

-
plot_width -
+
plot_width

(numeric) optional, specifies the plot width as a three-element vector of value, min, and max for a slider encoding the plot width.

-
ggtheme -
+
ggtheme

(character) optional, ggplot2 theme to be used by default. Defaults to "gray".

-
ggplot2_args -
-
-

(ggplot2_args) optional, object created by teal.widgets::ggplot2_args() with settings for all the plots or named list of ggplot2_args objects for plot-specific settings. The argument is merged with options variable teal.ggplot2_args and default module setup.

+
ggplot2_args
+

(ggplot2_args) optional, object created by teal.widgets::ggplot2_args() with settings for all the plots or named list of ggplot2_args objects for plot-specific settings. The argument is merged with options variable teal.ggplot2_args and default module setup.

List names should match the following: c("default", "Elbow plot", "Circle plot", "Biplot", "Eigenvector plot").

-

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets").

-
+

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets").

-
rotate_xaxis_labels -
+
rotate_xaxis_labels

(logical) optional, whether to rotate plot X axis labels. Does not rotate by default (FALSE).

-
font_size -
-
-

(numeric) optional, specifies font size. -It controls the font size for plot titles, axis labels, and legends.

-
    -
  • If vector of length == 1 then the font sizes will have a fixed size.

  • +
    font_size
    +

    (numeric) optional, specifies font size. +It controls the font size for plot titles, axis labels, and legends.

    • If vector of length == 1 then the font sizes will have a fixed size.

    • while vector of value, min, and max allows dynamic adjustment.

    • -
    -
    +
-
alpha -
-
-

(integer(1) or integer(3)) optional, specifies point opacity.

-
    -
  • When the length of alpha is one: the plot points will have a fixed opacity.

  • +
    alpha
    +

    (integer(1) or integer(3)) optional, specifies point opacity.

    • When the length of alpha is one: the plot points will have a fixed opacity.

    • When the length of alpha is three: the plot points opacity are dynamically adjusted based on vector of value, min, and max.

    • -
    -
    +
-
size -
-
-

(integer(1) or integer(3)) optional, specifies point size.

-
    -
  • When the length of size is one: the plot point sizes will have a fixed size.

  • +
    size
    +

    (integer(1) or integer(3)) optional, specifies point size.

    • When the length of size is one: the plot point sizes will have a fixed size.

    • When the length of size is three: the plot points size are dynamically adjusted based on vector of value, min, and max.

    • -
    -
    +
-
pre_output -
+
pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

-
decorators -
-
-

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

+
decorators
+

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

Otherwise, the decorators are applied to all objects, which is equivalent as using the name default.

-

See section "Decorating tm_a_pca" below for more details.

-
+

See section "Decorating tm_a_pca" below for more details.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Decorating tm_a_pca -

+

Decorating tm_a_pca

-

This module generates the following objects, which can be modified in place using decorators:

-
    -
  • elbow_plot (ggplot2)

  • +

    This module generates the following objects, which can be modified in place using decorators:

    • elbow_plot (ggplot2)

    • circle_plot (ggplot2)

    • biplot (ggplot2)

    • eigenvector_plot (ggplot2)

    • -
    -

    Decorators can be applied to all outputs or only to specific objects using a +

Decorators can be applied to all outputs or only to specific objects using a named list of teal_transform_module objects. The "default" name is reserved for decorators that are applied to all outputs. See code snippet below:

-

-
-
tm_a_pca(
+

tm_a_pca(
    ..., # arguments for module
    decorators = list(
      default = list(teal_transform_module(...)), # applied to all outputs
@@ -266,18 +187,14 @@ 

Decorating tm_a_pca biplot = list(teal_transform_module(...)) # applied only to `biplot` output eigenvector_plot = list(teal_transform_module(...)) # applied only to `eigenvector_plot` output ) -)

-

-
+)

For additional details and examples of decorators, refer to the vignette -vignette("decorate-modules-output", package = "teal") or the teal_transform_module() documentation.

+vignette("decorate-modules-output", package = "teal") or the teal::teal_transform_module() documentation.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

@@ -288,12 +205,10 @@

Examples in Shinylive

-

-
+
-

Examples -

+

Examples


 # general data example
 data <- teal_data()
@@ -364,19 +279,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_a_regression.html b/main/reference/tm_a_regression.html index eda35925d..742fe39cd 100644 --- a/main/reference/tm_a_regression.html +++ b/main/reference/tm_a_regression.html @@ -1,27 +1,11 @@ - - - - - - -teal module: Scatterplot and regression analysis — tm_a_regression • teal.modules.general - - - - - -teal module: Scatterplot and regression analysis — tm_a_regression • teal.modules.general - - - - - +visualize residuals, and identify outliers."> Skip to contents @@ -29,7 +13,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -91,8 +53,7 @@
@@ -105,8 +66,7 @@

-

Usage -

+

Usage

tm_a_regression(
   label = "Regression Analysis",
   regressor,
@@ -127,174 +87,126 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
regressor -
+
regressor

(data_extract_spec or list of multiple data_extract_spec) Regressor variables from an incoming dataset with filtering and selecting.

-
response -
+
response

(data_extract_spec or list of multiple data_extract_spec) Response variables from an incoming dataset with filtering and selecting.

-
plot_height -
+
plot_height

(numeric) optional, specifies the plot height as a three-element vector of value, min, and max intended for use with a slider UI element.

-
plot_width -
+
plot_width

(numeric) optional, specifies the plot width as a three-element vector of value, min, and max for a slider encoding the plot width.

-
alpha -
-
-

(integer(1) or integer(3)) optional, specifies point opacity.

-
    -
  • When the length of alpha is one: the plot points will have a fixed opacity.

  • +
    alpha
    +

    (integer(1) or integer(3)) optional, specifies point opacity.

    • When the length of alpha is one: the plot points will have a fixed opacity.

    • When the length of alpha is three: the plot points opacity are dynamically adjusted based on vector of value, min, and max.

    • -
    -
    +
-
size -
-
-

(integer(1) or integer(3)) optional, specifies point size.

-
    -
  • When the length of size is one: the plot point sizes will have a fixed size.

  • +
    size
    +

    (integer(1) or integer(3)) optional, specifies point size.

    • When the length of size is one: the plot point sizes will have a fixed size.

    • When the length of size is three: the plot points size are dynamically adjusted based on vector of value, min, and max.

    • -
    -
    +
-
ggtheme -
+
ggtheme

(character) optional, ggplot2 theme to be used by default. Defaults to "gray".

-
ggplot2_args -
-
-

(ggplot2_args) optional, object created by teal.widgets::ggplot2_args() with settings for all the plots or named list of ggplot2_args objects for plot-specific settings. The argument is merged with options variable teal.ggplot2_args and default module setup.

+
ggplot2_args
+

(ggplot2_args) optional, object created by teal.widgets::ggplot2_args() with settings for all the plots or named list of ggplot2_args objects for plot-specific settings. The argument is merged with options variable teal.ggplot2_args and default module setup.

List names should match the following: c("default", "Response vs Regressor", "Residuals vs Fitted", "Scale-Location", "Cook's distance", "Residuals vs Leverage", "Cook's dist vs Leverage").

-

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets").

-
+

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets").

-
pre_output -
+
pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

-
default_plot_type -
-
-

(numeric) optional, defaults to "Response vs Regressor".

-
    -
  1. Response vs Regressor

  2. +
    default_plot_type
    +

    (numeric) optional, defaults to "Response vs Regressor".

    1. Response vs Regressor

    2. Residuals vs Fitted

    3. Normal Q-Q

    4. Scale-Location

    5. Cook's distance

    6. Residuals vs Leverage

    7. Cook's dist vs Leverage

    8. -
    -
    +
-
default_outlier_label -
+
default_outlier_label

(character) optional, default column selected to label outliers.

-
label_segment_threshold -
-
-

(numeric(1) or numeric(3)) +

label_segment_threshold
+

(numeric(1) or numeric(3)) Minimum distance between label and point on the plot that triggers the creation of a line segment between the two. This may happen when the label cannot be placed next to the point as it overlaps another label or point. The value is used as the min.segment.length parameter to the ggrepel::geom_text_repel() function.

-

It can take the following forms:

-
    -
  • numeric(1): Fixed value used for the minimum distance and the slider is not presented in the UI.

  • -
  • -

    numeric(3): A slider is presented in the UI (under "Plot settings") to adjust the minimum distance dynamically.

    +

    It can take the following forms:

    • numeric(1): Fixed value used for the minimum distance and the slider is not presented in the UI.

    • +
    • numeric(3): A slider is presented in the UI (under "Plot settings") to adjust the minimum distance dynamically.

      It takes the form of c(value, min, max) and it is passed to the value_min_max -argument in teal.widgets::optionalSliderInputValMinMax.

      -
    • -
    -
+argument in teal.widgets::optionalSliderInputValMinMax.

+ -
decorators -
-
-

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

+
decorators
+

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

Otherwise, the decorators are applied to all objects, which is equivalent as using the name default.

-

See section "Decorating tm_a_regression" below for more details.

-
+

See section "Decorating tm_a_regression" below for more details.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Note -

+

Note

For more examples, please see the vignette "Using regression plots" via vignette("using-regression-plots", package = "teal.modules.general").

-

Decorating tm_a_regression -

+

Decorating tm_a_regression

-

This module generates the following objects, which can be modified in place using decorators:

-
    -
  • plot (ggplot2)

  • -
-

For additional details and examples of decorators, refer to the vignette -vignette("decorate-modules-output", package = "teal") or the teal_transform_module() documentation.

+

This module generates the following objects, which can be modified in place using decorators:

  • plot (ggplot2)

  • +

For additional details and examples of decorators, refer to the vignette +vignette("decorate-modules-output", package = "teal") or the teal::teal_transform_module() documentation.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

@@ -305,12 +217,10 @@

Examples in Shinylive

-

-
+
-

Examples -

+

Examples


 # general data example
 data <- teal_data()
@@ -398,19 +308,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_data_table.html b/main/reference/tm_data_table.html index 256b45746..8b18a1083 100644 --- a/main/reference/tm_data_table.html +++ b/main/reference/tm_data_table.html @@ -1,25 +1,9 @@ - - - - - - -teal module: Data table viewer — tm_data_table • teal.modules.general - - - - - -teal module: Data table viewer — tm_data_table • teal.modules.general - - - - - +which helps to enhance data exploration and analysis."> Skip to contents @@ -27,7 +11,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -89,8 +51,7 @@
@@ -102,8 +63,7 @@

-

Usage -

+

Usage

tm_data_table(
   label = "Data Table",
   variables_selected = list(),
@@ -119,19 +79,15 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
variables_selected -
+
variables_selected

(named list) Character vectors of the variables (i.e. columns) which should be initially shown for each dataset. Names of list elements should correspond to the names of the datasets available in the app. @@ -139,87 +95,69 @@

Argumentsdatasets_selected - +
datasets_selected

(character) A vector of datasets which should be shown and in what order. Names in the vector have to correspond with datasets names. If vector of length == 0 (default) then all datasets are shown. Note: Only datasets of the data.frame class are compatible.

-
dt_args -
+
dt_args

(named list) Additional arguments to be passed to DT::datatable() (must not include data or options).

-
dt_options -
+
dt_options

(named list) The options argument to DT::datatable. By default list(searching = FALSE, pageLength = 30, lengthMenu = c(5, 15, 30, 100), scrollX = TRUE)

-
server_rendering -
+
server_rendering

(logical) should the data table be rendered server side (see server argument of DT::renderDataTable())

-
pre_output -
+
pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

-
decorators -
-
-

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

+
decorators
+

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

Otherwise, the decorators are applied to all objects, which is equivalent as using the name default.

-

See section "Decorating tm_data_table" below for more details.

-
+

See section "Decorating tm_data_table" below for more details.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Details -

+

Details

The DT package has an option DT.TOJSON_ARGS to show Inf and NA in data tables. Configure the DT.TOJSON_ARGS option via options(DT.TOJSON_ARGS = list(na = "string")) before running the module. Note though that sorting of numeric columns with NA/Inf will be lexicographic not numerical.

-

Decorating tm_data_table -

+

Decorating tm_data_table

-

This module generates the following objects, which can be modified in place using decorators:

- -

For additional details and examples of decorators, refer to the vignette -vignette("decorate-modules-output", package = "teal") or the teal_transform_module() documentation.

+

This module generates the following objects, which can be modified in place using decorators:

For additional details and examples of decorators, refer to the vignette +vignette("decorate-modules-output", package = "teal") or the teal::teal_transform_module() documentation.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

@@ -230,12 +168,10 @@

Examples in Shinylive

-

-
+
-

Examples -

+

Examples

# general data example
 data <- teal_data()
 data <- within(data, {
@@ -284,19 +220,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_file_viewer.html b/main/reference/tm_file_viewer.html index 4e49af6c3..eccb9b995 100644 --- a/main/reference/tm_file_viewer.html +++ b/main/reference/tm_file_viewer.html @@ -1,25 +1,9 @@ - - - - - - -teal module: File viewer — tm_file_viewer • teal.modules.general - - - - - -teal module: File viewer — tm_file_viewer • teal.modules.general - - - - - +JPEG SVG, WEBP, GIF and BMP."> Skip to contents @@ -27,7 +11,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -89,8 +51,7 @@
@@ -102,8 +63,7 @@

-

Usage -

+

Usage

tm_file_viewer(
   label = "File Viewer Module",
   input_path = list(`Current Working Directory` = ".")
@@ -111,49 +71,37 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
input_path -
-
-

(list) of the input paths, optional. Each element can be:

+
input_path
+

(list) of the input paths, optional. Each element can be:

Paths can be specified as absolute paths or relative to the running directory of the application. -Default to the current working directory if not supplied.

-
+Default to the current working directory if not supplied.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

-
-
+
-

Examples -

+

Examples

data <- teal_data()
 data <- within(data, {
   data <- data.frame(1)
@@ -182,19 +130,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_front_page.html b/main/reference/tm_front_page.html index c146f99ae..88c5b1ecf 100644 --- a/main/reference/tm_front_page.html +++ b/main/reference/tm_front_page.html @@ -1,23 +1,7 @@ - - - - - - -teal module: Front page — tm_front_page • teal.modules.general - - - - - - - - - - - + +teal module: Front page — tm_front_page • teal.modules.general Skip to contents @@ -25,7 +9,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -87,8 +49,7 @@
@@ -99,8 +60,7 @@

-

Usage -

+

Usage

tm_front_page(
   label = "Front page",
   header_text = character(0),
@@ -112,70 +72,56 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
header_text -
+
header_text

(character vector) text to be shown at the top of the module, for each element, if named the name is shown first in bold as a header followed by the value. The first element's header is displayed larger than the others.

-
tables -
+
tables

(named list of data.frames) tables to be shown in the module.

-
additional_tags -
+
additional_tags

(shiny.tag.list or html) additional shiny tags or html to be included after the table, for example to include an image, tagList(tags$img(src = "image.png")) or to include further html, HTML("html text here").

-
footnotes -
+
footnotes

(character vector) of text to be shown at the bottom of the module, for each element, if named the name is shown first in bold, followed by the value.

-
show_metadata -
+
show_metadata

(logical) indicating whether the metadata of the datasets be available on the module.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

-
-
+
-

Examples -

+

Examples

data <- teal_data()
 data <- within(data, {
   require(nestcolor)
@@ -220,19 +166,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_g_association.html b/main/reference/tm_g_association.html index 71aff4a9c..cf255020d 100644 --- a/main/reference/tm_g_association.html +++ b/main/reference/tm_g_association.html @@ -1,25 +1,9 @@ - - - - - - -teal module: Stack plots of variables and show association with reference variable — tm_g_association • teal.modules.general - - - - - -teal module: Stack plots of variables and show association with reference variable — tm_g_association • teal.modules.general - - - - - +It supports configuring the appearance of the plots, including themes and whether to show associations."> Skip to contents @@ -27,7 +11,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -89,8 +51,7 @@
@@ -102,8 +63,7 @@

-

Usage -

+

Usage

tm_g_association(
   label = "Association",
   ref,
@@ -123,116 +83,90 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
ref -
+
ref

(data_extract_spec or list of multiple data_extract_spec) Reference variable, must accepts a data_extract_spec with select_spec(multiple = FALSE) to ensure single selection option.

-
vars -
+
vars

(data_extract_spec or list of multiple data_extract_spec) Variables to be associated with the reference variable.

-
show_association -
+
show_association

(logical) optional, whether show association of vars with reference variable. Defaults to TRUE.

-
plot_height -
+
plot_height

(numeric) optional, specifies the plot height as a three-element vector of value, min, and max intended for use with a slider UI element.

-
plot_width -
+
plot_width

(numeric) optional, specifies the plot width as a three-element vector of value, min, and max for a slider encoding the plot width.

-
distribution_theme, association_theme -
+
distribution_theme, association_theme

(character) optional, ggplot2 themes to be used by default. Default to "gray".

-
pre_output -
+
pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

-
ggplot2_args -
-
-

(ggplot2_args) optional, object created by teal.widgets::ggplot2_args() with settings for all the plots or named list of ggplot2_args objects for plot-specific settings. The argument is merged with options variable teal.ggplot2_args and default module setup.

+
ggplot2_args
+

(ggplot2_args) optional, object created by teal.widgets::ggplot2_args() with settings for all the plots or named list of ggplot2_args objects for plot-specific settings. The argument is merged with options variable teal.ggplot2_args and default module setup.

List names should match the following: c("default", "Bivariate1", "Bivariate2").

-

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets").

-
+

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets").

-
decorators -
-
-

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

+
decorators
+

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

Otherwise, the decorators are applied to all objects, which is equivalent as using the name default.

-

See section "Decorating tm_g_association" below for more details.

-
+

See section "Decorating tm_g_association" below for more details.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Note -

+

Note

For more examples, please see the vignette "Using association plot" via vignette("using-association-plot", package = "teal.modules.general").

-

Decorating tm_g_association -

+

Decorating tm_g_association

-

This module generates the following objects, which can be modified in place using decorators:

- -

For additional details and examples of decorators, refer to the vignette -vignette("decorate-modules-output", package = "teal") or the teal_transform_module() documentation.

+

This module generates the following objects, which can be modified in place using decorators:

For additional details and examples of decorators, refer to the vignette +vignette("decorate-modules-output", package = "teal") or the teal::teal_transform_module() documentation.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

@@ -243,12 +177,10 @@

Examples in Shinylive

-

-
+
-

Examples -

+

Examples

# general data example
 data <- teal_data()
 data <- within(data, {
@@ -339,19 +271,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_g_bivariate.html b/main/reference/tm_g_bivariate.html index 041727804..7c2d7aff5 100644 --- a/main/reference/tm_g_bivariate.html +++ b/main/reference/tm_g_bivariate.html @@ -1,23 +1,7 @@ - - - - - - -teal module: Univariate and bivariate visualizations — tm_g_bivariate • teal.modules.general - - - - - - - - - - - + +teal module: Univariate and bivariate visualizations — tm_g_bivariate • teal.modules.general Skip to contents @@ -25,7 +9,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -87,8 +49,7 @@
@@ -99,8 +60,7 @@

-

Usage -

+

Usage

tm_g_bivariate(
   label = "Bivariate Plots",
   x,
@@ -128,192 +88,154 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
x -
+
x

(data_extract_spec or list of multiple data_extract_spec) Variable names selected to plot along the x-axis by default. Can be numeric, factor or character. No empty selections are allowed.

-
y -
+
y

(data_extract_spec or list of multiple data_extract_spec) Variable names selected to plot along the y-axis by default. Can be numeric, factor or character.

-
row_facet -
+
row_facet

(data_extract_spec or list of multiple data_extract_spec) optional, specification of the data variable(s) to use for faceting rows.

-
col_facet -
+
col_facet

(data_extract_spec or list of multiple data_extract_spec) optional, specification of the data variable(s) to use for faceting columns.

-
facet -
+
facet

(logical) optional, specifies whether the facet encodings ui elements are toggled on and shown to the user by default. Defaults to TRUE if either row_facet or column_facet are supplied.

-
color -
+
color

(data_extract_spec or list of multiple data_extract_spec) optional, specification of the data variable(s) selected for the outline color inside the coloring settings. It will be applied when color_settings is set to TRUE.

-
fill -
+
fill

(data_extract_spec or list of multiple data_extract_spec) optional, specification of the data variable(s) selected for the fill color inside the coloring settings. It will be applied when color_settings is set to TRUE.

-
size -
+
size

(data_extract_spec or list of multiple data_extract_spec) optional, specification of the data variable(s) selected for the size of geom_point plots inside the coloring settings. It will be applied when color_settings is set to TRUE.

-
use_density -
+
use_density

(logical) optional, indicates whether to plot density (TRUE) or frequency (FALSE). Defaults to frequency (FALSE).

-
color_settings -
+
color_settings

(logical) Whether coloring, filling and size should be applied and UI tool offered to the user.

-
free_x_scales -
+
free_x_scales

(logical) optional, whether X scaling shall be changeable. Does not allow scaling to be changed by default (FALSE).

-
free_y_scales -
+
free_y_scales

(logical) optional, whether Y scaling shall be changeable. Does not allow scaling to be changed by default (FALSE).

-
plot_height -
+
plot_height

(numeric) optional, specifies the plot height as a three-element vector of value, min, and max intended for use with a slider UI element.

-
plot_width -
+
plot_width

(numeric) optional, specifies the plot width as a three-element vector of value, min, and max for a slider encoding the plot width.

-
rotate_xaxis_labels -
+
rotate_xaxis_labels

(logical) optional, whether to rotate plot X axis labels. Does not rotate by default (FALSE).

-
swap_axes -
+
swap_axes

(logical) optional, whether to swap X and Y axes. Defaults to FALSE.

-
ggtheme -
+
ggtheme

(character) optional, ggplot2 theme to be used by default. Defaults to "gray".

-
ggplot2_args -
-
-

(ggplot2_args) object created by teal.widgets::ggplot2_args() +

ggplot2_args
+

(ggplot2_args) object created by teal.widgets::ggplot2_args() with settings for the module plot. The argument is merged with options variable teal.ggplot2_args and default module setup.

-

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets")

-
+

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets")

-
pre_output -
+
pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

-
decorators -
-
-

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

+
decorators
+

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

Otherwise, the decorators are applied to all objects, which is equivalent as using the name default.

-

See section "Decorating tm_g_bivariate" below for more details.

-
+

See section "Decorating tm_g_bivariate" below for more details.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Details -

+

Details

This is a general module to visualize 1 & 2 dimensional data.

-

Note -

+

Note

For more examples, please see the vignette "Using bivariate plot" via vignette("using-bivariate-plot", package = "teal.modules.general").

-

Decorating tm_g_bivariate -

+

Decorating tm_g_bivariate

-

This module generates the following objects, which can be modified in place using decorators:

-
    -
  • plot (ggplot2)

  • -
-

For additional details and examples of decorators, refer to the vignette -vignette("decorate-modules-output", package = "teal") or the teal_transform_module() documentation.

+

This module generates the following objects, which can be modified in place using decorators:

  • plot (ggplot2)

  • +

For additional details and examples of decorators, refer to the vignette +vignette("decorate-modules-output", package = "teal") or the teal::teal_transform_module() documentation.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

@@ -324,12 +246,10 @@

Examples in Shinylive

-

-
+
-

Examples -

+

Examples

# general data example
 data <- teal_data()
 data <- within(data, {
@@ -444,19 +364,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_g_distribution.html b/main/reference/tm_g_distribution.html index 42e36a32b..9620c214e 100644 --- a/main/reference/tm_g_distribution.html +++ b/main/reference/tm_g_distribution.html @@ -1,25 +1,9 @@ - - - - - - -teal module: Distribution analysis — tm_g_distribution • teal.modules.general - - - - - -teal module: Distribution analysis — tm_g_distribution • teal.modules.general - - - - - +visually and statistically analyze the variable's distribution."> Skip to contents @@ -27,7 +11,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -89,8 +51,7 @@
@@ -102,8 +63,7 @@

-

Usage -

+

Usage

tm_g_distribution(
   label = "Distribution Module",
   dist_var,
@@ -122,127 +82,96 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
dist_var -
+
dist_var

(data_extract_spec or list of multiple data_extract_spec) Variable(s) for which the distribution will be analyzed.

-
strata_var -
+
strata_var

(data_extract_spec or list of multiple data_extract_spec) Categorical variable used to split the distribution analysis.

-
group_var -
+
group_var

(data_extract_spec or list of multiple data_extract_spec) Variable used for faceting plot into multiple panels.

-
freq -
+
freq

(logical) optional, whether to display frequency (TRUE) or density (FALSE). Defaults to density (FALSE).

-
ggtheme -
+
ggtheme

(character) optional, ggplot2 theme to be used by default. Defaults to "gray".

-
ggplot2_args -
-
-

(ggplot2_args) optional, object created by teal.widgets::ggplot2_args() with settings for all the plots or named list of ggplot2_args objects for plot-specific settings. The argument is merged with options variable teal.ggplot2_args and default module setup.

+
ggplot2_args
+

(ggplot2_args) optional, object created by teal.widgets::ggplot2_args() with settings for all the plots or named list of ggplot2_args objects for plot-specific settings. The argument is merged with options variable teal.ggplot2_args and default module setup.

List names should match the following: c("default", "Histogram", "QQplot").

-

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets").

-
+

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets").

-
bins -
-
-

(integer(1) or integer(3)) optional, specifies the number of bins for the histogram.

-
    -
  • When the length of bins is one: The histogram bins will have a fixed size based on the bins provided.

  • +
    bins
    +

    (integer(1) or integer(3)) optional, specifies the number of bins for the histogram.

    • When the length of bins is one: The histogram bins will have a fixed size based on the bins provided.

    • When the length of bins is three: The histogram bins are dynamically adjusted based on vector of value, min, and max. Defaults to c(30L, 1L, 100L).

    • -
    -
    +
-
plot_height -
+
plot_height

(numeric) optional, specifies the plot height as a three-element vector of value, min, and max intended for use with a slider UI element.

-
plot_width -
+
plot_width

(numeric) optional, specifies the plot width as a three-element vector of value, min, and max for a slider encoding the plot width.

-
pre_output -
+
pre_output

(shiny.tag, optional)
with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag, optional) with text placed after the output to put the output into context. For example the shiny::helpText() elements are useful.

-
decorators -
-
-

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

+
decorators
+

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

Otherwise, the decorators are applied to all objects, which is equivalent as using the name default.

-

See section "Decorating tm_g_distribution" below for more details.

-
+

See section "Decorating tm_g_distribution" below for more details.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Decorating tm_g_distribution -

+

Decorating tm_g_distribution

-

This module generates the following objects, which can be modified in place using decorators::

-
    -
  • histogram_plot (ggplot2)

  • +

    This module generates the following objects, which can be modified in place using decorators::

    • histogram_plot (ggplot2)

    • qq_plot (data.frame)

    • summary_table (data.frame)

    • test_table (data.frame)

    • -
    -

    Decorators can be applied to all outputs or only to specific objects using a +

Decorators can be applied to all outputs or only to specific objects using a named list of teal_transform_module objects. The "default" name is reserved for decorators that are applied to all outputs. See code snippet below:

-

-
-
tm_g_distribution(
+

tm_g_distribution(
    ..., # arguments for module
    decorators = list(
      default = list(teal_transform_module(...)), # applied to all outputs
@@ -251,18 +180,14 @@ 

Decorating tm_g_distribution< summary_table = list(teal_transform_module(...)) # applied only to `summary_table` output test_table = list(teal_transform_module(...)) # applied only to `test_table` output ) -)

-

-
+)

For additional details and examples of decorators, refer to the vignette -vignette("decorate-modules-output", package = "teal") or the teal_transform_module() documentation.

+vignette("decorate-modules-output", package = "teal") or the teal::teal_transform_module() documentation.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

@@ -273,12 +198,10 @@

Examples in Shinylive

-

-
+
-

Examples -

+

Examples

# general data example
 data <- teal_data()
 data <- within(data, {
@@ -351,19 +274,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_g_response.html b/main/reference/tm_g_response.html index 4edb36269..69b69012a 100644 --- a/main/reference/tm_g_response.html +++ b/main/reference/tm_g_response.html @@ -1,31 +1,15 @@ - - - - - - -teal module: Response plot — tm_g_response • teal.modules.general - - - - - -teal module: Response plot — tm_g_response • teal.modules.general - - - - - +as frequency or density."> Skip to contents @@ -33,7 +17,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,8 +57,7 @@
@@ -111,8 +72,7 @@

-

Usage -

+

Usage

tm_g_response(
   label = "Response Plot",
   response,
@@ -134,157 +94,122 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
response -
-
-

(data_extract_spec or list of multiple data_extract_spec) +

response
+

(data_extract_spec or list of multiple data_extract_spec) Which variable to use as the response. You can define one fixed column by setting fixed = TRUE inside the select_spec.

-

The data_extract_spec must not allow multiple selection in this case.

-
+

The data_extract_spec must not allow multiple selection in this case.

-
x -
-
-

(data_extract_spec or list of multiple data_extract_spec) +

x
+

(data_extract_spec or list of multiple data_extract_spec) Specifies which variable to use on the X-axis of the response plot. Allow the user to select multiple columns from the data allowed in teal.

-

The data_extract_spec must not allow multiple selection in this case.

-
+

The data_extract_spec must not allow multiple selection in this case.

-
row_facet -
+
row_facet

(data_extract_spec or list of multiple data_extract_spec) optional specification of the data variable(s) to use for faceting rows.

-
col_facet -
+
col_facet

(data_extract_spec or list of multiple data_extract_spec) optional specification of the data variable(s) to use for faceting columns.

-
coord_flip -
+
coord_flip

(logical(1)) Indicates whether to flip coordinates between x and response. The default value is FALSE and it will show the x variable on the x-axis and the response variable on the y-axis.

-
count_labels -
+
count_labels

(logical(1)) Indicates whether to show count labels. Defaults to TRUE.

-
rotate_xaxis_labels -
+
rotate_xaxis_labels

(logical) optional, whether to rotate plot X axis labels. Does not rotate by default (FALSE).

-
freq -
+
freq

(logical(1)) Indicates whether to display frequency (TRUE) or density (FALSE). Defaults to density (FALSE).

-
plot_height -
+
plot_height

(numeric) optional, specifies the plot height as a three-element vector of value, min, and max intended for use with a slider UI element.

-
plot_width -
+
plot_width

(numeric) optional, specifies the plot width as a three-element vector of value, min, and max for a slider encoding the plot width.

-
ggtheme -
+
ggtheme

(character) optional, ggplot2 theme to be used by default. Defaults to "gray".

-
ggplot2_args -
-
-

(ggplot2_args) object created by teal.widgets::ggplot2_args() +

ggplot2_args
+

(ggplot2_args) object created by teal.widgets::ggplot2_args() with settings for the module plot. The argument is merged with options variable teal.ggplot2_args and default module setup.

-

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets")

-
+

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets")

-
pre_output -
+
pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

-
decorators -
-
-

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

+
decorators
+

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

Otherwise, the decorators are applied to all objects, which is equivalent as using the name default.

-

See section "Decorating tm_g_response" below for more details.

-
+

See section "Decorating tm_g_response" below for more details.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Note -

+

Note

For more examples, please see the vignette "Using response plot" via vignette("using-response-plot", package = "teal.modules.general").

-

Decorating tm_g_response -

+

Decorating tm_g_response

-

This module generates the following objects, which can be modified in place using decorators:

-
    -
  • plot (ggplot2)

  • -
-

For additional details and examples of decorators, refer to the vignette -vignette("decorate-modules-output", package = "teal") or the teal_transform_module() documentation.

+

This module generates the following objects, which can be modified in place using decorators:

  • plot (ggplot2)

  • +

For additional details and examples of decorators, refer to the vignette +vignette("decorate-modules-output", package = "teal") or the teal::teal_transform_module() documentation.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

@@ -295,12 +220,10 @@

Examples in Shinylive

-

-
+
-

Examples -

+

Examples

# general data example
 data <- teal_data()
 data <- within(data, {
@@ -390,19 +313,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_g_scatterplot.html b/main/reference/tm_g_scatterplot.html index ea88a62e2..da9ad77e1 100644 --- a/main/reference/tm_g_scatterplot.html +++ b/main/reference/tm_g_scatterplot.html @@ -1,27 +1,11 @@ - - - - - - -teal module: Scatterplot — tm_g_scatterplot • teal.modules.general - - - - - -teal module: Scatterplot — tm_g_scatterplot • teal.modules.general - - - - - +trend line additions, and dynamic adjustments of point opacity and size through UI controls."> Skip to contents @@ -29,7 +13,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -91,8 +53,7 @@
@@ -105,8 +66,7 @@

-

Usage -

+

Usage

tm_g_scatterplot(
   label = "Scatterplot",
   x,
@@ -132,180 +92,137 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
x -
+
x

(data_extract_spec or list of multiple data_extract_spec) Specifies variable names selected to plot along the x-axis by default.

-
y -
+
y

(data_extract_spec or list of multiple data_extract_spec) Specifies variable names selected to plot along the y-axis by default.

-
color_by -
+
color_by

(data_extract_spec or list of multiple data_extract_spec) optional, defines the color encoding. If NULL then no color encoding option will be displayed.

-
size_by -
+
size_by

(data_extract_spec or list of multiple data_extract_spec) optional, defines the point size encoding. If NULL then no size encoding option will be displayed.

-
row_facet -
+
row_facet

(data_extract_spec or list of multiple data_extract_spec) optional, specifies the variable(s) for faceting rows.

-
col_facet -
+
col_facet

(data_extract_spec or list of multiple data_extract_spec) optional, specifies the variable(s) for faceting columns.

-
plot_height -
+
plot_height

(numeric) optional, specifies the plot height as a three-element vector of value, min, and max intended for use with a slider UI element.

-
plot_width -
+
plot_width

(numeric) optional, specifies the plot width as a three-element vector of value, min, and max for a slider encoding the plot width.

-
alpha -
-
-

(integer(1) or integer(3)) optional, specifies point opacity.

-
    -
  • When the length of alpha is one: the plot points will have a fixed opacity.

  • +
    alpha
    +

    (integer(1) or integer(3)) optional, specifies point opacity.

    • When the length of alpha is one: the plot points will have a fixed opacity.

    • When the length of alpha is three: the plot points opacity are dynamically adjusted based on vector of value, min, and max.

    • -
    -
    +
-
shape -
+
shape

(character) optional, character vector with the names of the shape, e.g. c("triangle", "square", "circle"). It defaults to shape_names. This is a complete list from vignette("ggplot2-specs", package="ggplot2").

-
size -
-
-

(integer(1) or integer(3)) optional, specifies point size.

-
    -
  • When the length of size is one: the plot point sizes will have a fixed size.

  • +
    size
    +

    (integer(1) or integer(3)) optional, specifies point size.

    • When the length of size is one: the plot point sizes will have a fixed size.

    • When the length of size is three: the plot points size are dynamically adjusted based on vector of value, min, and max.

    • -
    -
    +
-
max_deg -
+
max_deg

(integer) optional, maximum degree for the polynomial trend line. Must not be less than 1.

-
rotate_xaxis_labels -
+
rotate_xaxis_labels

(logical) optional, whether to rotate plot X axis labels. Does not rotate by default (FALSE).

-
ggtheme -
+
ggtheme

(character) optional, ggplot2 theme to be used by default. Defaults to "gray".

-
pre_output -
+
pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

-
table_dec -
+
table_dec

(integer) optional, number of decimal places used to round numeric values in the table.

-
ggplot2_args -
-
-

(ggplot2_args) object created by teal.widgets::ggplot2_args() +

ggplot2_args
+

(ggplot2_args) object created by teal.widgets::ggplot2_args() with settings for the module plot. The argument is merged with options variable teal.ggplot2_args and default module setup.

-

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets")

-
+

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets")

-
decorators -
-
-

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

+
decorators
+

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

Otherwise, the decorators are applied to all objects, which is equivalent as using the name default.

-

See section "Decorating tm_g_scatterplot" below for more details.

-
+

See section "Decorating tm_g_scatterplot" below for more details.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Note -

+

Note

For more examples, please see the vignette "Using scatterplot" via vignette("using-scatterplot", package = "teal.modules.general").

-

Decorating tm_g_scatterplot -

+

Decorating tm_g_scatterplot

-

This module generates the following objects, which can be modified in place using decorators:

-
    -
  • plot (ggplot2)

  • -
-

For additional details and examples of decorators, refer to the vignette -vignette("decorate-modules-output", package = "teal") or the teal_transform_module() documentation.

+

This module generates the following objects, which can be modified in place using decorators:

  • plot (ggplot2)

  • +

For additional details and examples of decorators, refer to the vignette +vignette("decorate-modules-output", package = "teal") or the teal::teal_transform_module() documentation.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

@@ -316,12 +233,10 @@

Examples in Shinylive

-

-
+
-

Examples -

+

Examples

# general data example
 data <- teal_data()
 data <- within(data, {
@@ -492,19 +407,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_g_scatterplotmatrix.html b/main/reference/tm_g_scatterplotmatrix.html index b8d353dec..c3bd941a5 100644 --- a/main/reference/tm_g_scatterplotmatrix.html +++ b/main/reference/tm_g_scatterplotmatrix.html @@ -1,25 +1,9 @@ - - - - - - -teal module: Scatterplot matrix — tm_g_scatterplotmatrix • teal.modules.general - - - - - -teal module: Scatterplot matrix — tm_g_scatterplotmatrix • teal.modules.general - - - - - +providing the overview of correlations and distributions across selected data."> Skip to contents @@ -27,7 +11,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -89,8 +51,7 @@
@@ -102,8 +63,7 @@

-

Usage -

+

Usage

tm_g_scatterplotmatrix(
   label = "Scatterplot Matrix",
   variables,
@@ -116,90 +76,70 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
variables -
+
variables

(data_extract_spec or list of multiple data_extract_spec) Specifies plotting variables from an incoming dataset with filtering and selecting. In case of data_extract_spec use select_spec(..., ordered = TRUE) if plot elements should be rendered according to selection order.

-
plot_height -
+
plot_height

(numeric) optional, specifies the plot height as a three-element vector of value, min, and max intended for use with a slider UI element.

-
plot_width -
+
plot_width

(numeric) optional, specifies the plot width as a three-element vector of value, min, and max for a slider encoding the plot width.

-
pre_output -
+
pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

-
decorators -
-
-

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

+
decorators
+

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

Otherwise, the decorators are applied to all objects, which is equivalent as using the name default.

-

See section "Decorating tm_g_scatterplotmatrix" below for more details.

-
+

See section "Decorating tm_g_scatterplotmatrix" below for more details.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Note -

+

Note

For more examples, please see the vignette "Using scatterplot matrix" via vignette("using-scatterplot-matrix", package = "teal.modules.general").

-

Decorating tm_g_scatterplotmatrix -

+

Decorating tm_g_scatterplotmatrix

-

This module generates the following objects, which can be modified in place using decorators:

- -

For additional details and examples of decorators, refer to the vignette -vignette("decorate-modules-output", package = "teal") or the teal_transform_module() documentation.

+

This module generates the following objects, which can be modified in place using decorators:

For additional details and examples of decorators, refer to the vignette +vignette("decorate-modules-output", package = "teal") or the teal::teal_transform_module() documentation.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

@@ -210,12 +150,10 @@

Examples in Shinylive

-

-
+
-

Examples -

+

Examples

# general data example
 data <- teal_data()
 data <- within(data, {
@@ -354,19 +292,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_missing_data.html b/main/reference/tm_missing_data.html index cc7e6ec24..91c8dde43 100644 --- a/main/reference/tm_missing_data.html +++ b/main/reference/tm_missing_data.html @@ -1,27 +1,11 @@ - - - - - - -teal module: Missing data analysis — tm_missing_data • teal.modules.general - - - - - -teal module: Missing data analysis — tm_missing_data • teal.modules.general - - - - - +adaptable for general data analysis purposes."> Skip to contents @@ -29,7 +13,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -91,8 +53,7 @@
@@ -105,8 +66,7 @@

-

Usage -

+

Usage

tm_missing_data(
   label = "Missing data",
   plot_height = c(600, 400, 5000),
@@ -123,98 +83,75 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
plot_height -
+
plot_height

(numeric) optional, specifies the plot height as a three-element vector of value, min, and max intended for use with a slider UI element.

-
plot_width -
+
plot_width

(numeric) optional, specifies the plot width as a three-element vector of value, min, and max for a slider encoding the plot width.

-
parent_dataname -
+
parent_dataname

(character(1)) Specifies the parent dataset name. Default is ADSL for CDISC data. If provided and exists, enables additional analysis "by subject". For non-CDISC data, this parameter can be ignored.

-
ggtheme -
+
ggtheme

(character) optional, specifies the default ggplot2 theme for plots. Defaults to classic.

-
ggplot2_args -
-
-

(ggplot2_args) optional, object created by teal.widgets::ggplot2_args() with settings for all the plots or named list of ggplot2_args objects for plot-specific settings. The argument is merged with options variable teal.ggplot2_args and default module setup.

+
ggplot2_args
+

(ggplot2_args) optional, object created by teal.widgets::ggplot2_args() with settings for all the plots or named list of ggplot2_args objects for plot-specific settings. The argument is merged with options variable teal.ggplot2_args and default module setup.

List names should match the following: c("default", "Summary Obs", "Summary Patients", "Combinations Main", "Combinations Hist", "By Subject").

-

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets").

-
+

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets").

-
pre_output -
+
pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

-
decorators -
-
-

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

+
decorators
+

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

Otherwise, the decorators are applied to all objects, which is equivalent as using the name default.

-

See section "Decorating tm_missing_data" below for more details.

-
+

See section "Decorating tm_missing_data" below for more details.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Decorating tm_missing_data -

+

Decorating tm_missing_data

-

This module generates the following objects, which can be modified in place using decorators:

-
    -
  • summary_plot (grob created with ggplot2::ggplotGrob())

  • +

    This module generates the following objects, which can be modified in place using decorators:

    -

    Decorators can be applied to all outputs or only to specific objects using a +

Decorators can be applied to all outputs or only to specific objects using a named list of teal_transform_module objects. The "default" name is reserved for decorators that are applied to all outputs. See code snippet below:

-

-
-
tm_missing_data(
+

tm_missing_data(
    ..., # arguments for module
    decorators = list(
      default = list(teal_transform_module(...)), # applied to all outputs
@@ -223,18 +160,14 @@ 

Decorating tm_missing_data by_subject_plot = list(teal_transform_module(...)) # applied only to `by_subject_plot` output table = list(teal_transform_module(...)) # applied only to `table` output ) -)

-

-
+)

For additional details and examples of decorators, refer to the vignette -vignette("decorate-modules-output", package = "teal") or the teal_transform_module() documentation.

+vignette("decorate-modules-output", package = "teal") or the teal::teal_transform_module() documentation.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

@@ -245,12 +178,10 @@

Examples in Shinylive

-

-
+
-

Examples -

+

Examples

# general example data
 data <- teal_data()
 data <- within(data, {
@@ -305,19 +236,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_outliers.html b/main/reference/tm_outliers.html index 05cdd43d3..df6ef703f 100644 --- a/main/reference/tm_outliers.html +++ b/main/reference/tm_outliers.html @@ -1,25 +1,9 @@ - - - - - - -teal module: Outliers analysis — tm_outliers • teal.modules.general - - - - - -teal module: Outliers analysis — tm_outliers • teal.modules.general - - - - - +box plots, density plots, and cumulative distribution plots to help interpret the outliers."> Skip to contents @@ -27,7 +11,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -89,8 +51,7 @@
@@ -102,8 +63,7 @@

-

Usage -

+

Usage

tm_outliers(
   label = "Outliers Module",
   outlier_var,
@@ -119,103 +79,79 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
outlier_var -
+
outlier_var

(data_extract_spec or list of multiple data_extract_spec) Specifies variable(s) to be analyzed for outliers.

-
categorical_var -
+
categorical_var

(data_extract_spec or list of multiple data_extract_spec) optional, specifies the categorical variable(s) to split the selected outlier variables on.

-
ggtheme -
+
ggtheme

(character) optional, ggplot2 theme to be used by default. Defaults to "gray".

-
ggplot2_args -
-
-

(ggplot2_args) optional, object created by teal.widgets::ggplot2_args() with settings for all the plots or named list of ggplot2_args objects for plot-specific settings. The argument is merged with options variable teal.ggplot2_args and default module setup.

+
ggplot2_args
+

(ggplot2_args) optional, object created by teal.widgets::ggplot2_args() with settings for all the plots or named list of ggplot2_args objects for plot-specific settings. The argument is merged with options variable teal.ggplot2_args and default module setup.

List names should match the following: c("default", "Boxplot", "Density Plot", "Cumulative Distribution Plot").

-

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets").

-
+

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets").

-
plot_height -
+
plot_height

(numeric) optional, specifies the plot height as a three-element vector of value, min, and max intended for use with a slider UI element.

-
plot_width -
+
plot_width

(numeric) optional, specifies the plot width as a three-element vector of value, min, and max for a slider encoding the plot width.

-
pre_output -
+
pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

-
decorators -
-
-

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

+
decorators
+

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

Otherwise, the decorators are applied to all objects, which is equivalent as using the name default.

-

See section "Decorating tm_outliers" below for more details.

-
+

See section "Decorating tm_outliers" below for more details.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Decorating tm_outliers -

+

Decorating tm_outliers

-

This module generates the following objects, which can be modified in place using decorators:

-
    -
  • box_plot (ggplot2)

  • +

    This module generates the following objects, which can be modified in place using decorators:

    • box_plot (ggplot2)

    • density_plot (ggplot2)

    • cumulative_plot (ggplot2)

    • table (DT::datatable())

    • -
    -

    Decorators can be applied to all outputs or only to specific objects using a +

Decorators can be applied to all outputs or only to specific objects using a named list of teal_transform_module objects. The "default" name is reserved for decorators that are applied to all outputs. See code snippet below:

-

-
-
tm_outliers(
+

tm_outliers(
    ..., # arguments for module
    decorators = list(
      default = list(teal_transform_module(...)), # applied to all outputs
@@ -224,18 +160,14 @@ 

Decorating tm_outliers cumulative_plot = list(teal_transform_module(...)) # applied only to `cumulative_plot` output table = list(teal_transform_module(...)) # applied only to `table` output ) -)

-

-
+)

For additional details and examples of decorators, refer to the vignette -vignette("decorate-modules-output", package = "teal") or the teal_transform_module() documentation.

+vignette("decorate-modules-output", package = "teal") or the teal::teal_transform_module() documentation.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

@@ -246,12 +178,10 @@

Examples in Shinylive

-

-
+
-

Examples -

+

Examples


 # general data example
 data <- teal_data()
@@ -351,19 +281,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_t_crosstable.html b/main/reference/tm_t_crosstable.html index 9ff2f3545..21377b2be 100644 --- a/main/reference/tm_t_crosstable.html +++ b/main/reference/tm_t_crosstable.html @@ -1,23 +1,7 @@ - - - - - - -teal module: Cross-table — tm_t_crosstable • teal.modules.general - - - - - - - - - - - + +teal module: Cross-table — tm_t_crosstable • teal.modules.general Skip to contents @@ -25,7 +9,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -87,8 +49,7 @@
@@ -99,8 +60,7 @@

-

Usage -

+

Usage

tm_t_crosstable(
   label = "Cross Table",
   x,
@@ -115,111 +75,85 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
x -
+
x

(data_extract_spec or list of multiple data_extract_spec) Object with all available choices with pre-selected option for variable X - row values. In case of data_extract_spec use select_spec(..., ordered = TRUE) if table elements should be rendered according to selection order.

-
y -
-
-

(data_extract_spec or list of multiple data_extract_spec) +

y
+

(data_extract_spec or list of multiple data_extract_spec) Object with all available choices with pre-selected option for variable Y - column values.

-

data_extract_spec must not allow multiple selection in this case.

-
+

data_extract_spec must not allow multiple selection in this case.

-
show_percentage -
+
show_percentage

(logical(1)) Indicates whether to show percentages (relevant only when x is a factor). Defaults to TRUE.

-
show_total -
+
show_total

(logical(1)) Indicates whether to show total column. Defaults to TRUE.

-
pre_output -
+
pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

-
basic_table_args -
-
-

(basic_table_args) object created by teal.widgets::basic_table_args() +

basic_table_args
+

(basic_table_args) object created by teal.widgets::basic_table_args() with settings for the module table. The argument is merged with options variable teal.basic_table_args and default module setup.

-

For more details see the vignette: vignette("custom-basic-table-arguments", package = "teal.widgets")

-
+

For more details see the vignette: vignette("custom-basic-table-arguments", package = "teal.widgets")

-
decorators -
-
-

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

+
decorators
+

[Experimental] (list of teal_transform_module, named list of teal_transform_module or NULL) optional, if not NULL, decorator for tables or plots included in the module. When a named list of teal_transform_module, the decorators are applied to the respective output objects.

Otherwise, the decorators are applied to all objects, which is equivalent as using the name default.

-

See section "Decorating tm_t_crosstable" below for more details.

-
+

See section "Decorating tm_t_crosstable" below for more details.

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Note -

+

Note

For more examples, please see the vignette "Using cross table" via vignette("using-cross-table", package = "teal.modules.general").

-

Decorating tm_t_crosstable -

+

Decorating tm_t_crosstable

-

This module generates the following objects, which can be modified in place using decorators:

- -

For additional details and examples of decorators, refer to the vignette -vignette("decorate-modules-output", package = "teal") or the teal_transform_module() documentation.

+

This module generates the following objects, which can be modified in place using decorators:

For additional details and examples of decorators, refer to the vignette +vignette("decorate-modules-output", package = "teal") or the teal::teal_transform_module() documentation.

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

@@ -230,12 +164,10 @@

Examples in Shinylive

-

-
+
-

Examples -

+

Examples

# general data example
 data <- teal_data()
 data <- within(data, {
@@ -331,19 +263,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/tm_variable_browser.html b/main/reference/tm_variable_browser.html index fc9218010..bf3643158 100644 --- a/main/reference/tm_variable_browser.html +++ b/main/reference/tm_variable_browser.html @@ -1,23 +1,7 @@ - - - - - - -teal module: Variable browser — tm_variable_browser • teal.modules.general - - - - - - - - - - - + +teal module: Variable browser — tm_variable_browser • teal.modules.general Skip to contents @@ -25,7 +9,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -87,8 +49,7 @@
@@ -99,8 +60,7 @@

-

Usage -

+

Usage

tm_variable_browser(
   label = "Variable Browser",
   datasets_selected = character(0),
@@ -112,27 +72,22 @@ 

Usage

-

Arguments -

+

Arguments

-
-
label -
+
label

(character(1)) Label shown in the navigation item for the module or module group. For modules() defaults to "root". See Details.

-
datasets_selected -
+
datasets_selected

(character) vector of datasets which should be shown, in order. Names must correspond with datasets names. If vector of length zero (default) then all datasets are shown. Note: Only data.frame objects are compatible; using other types will cause an error.

-
parent_dataname -
+
parent_dataname

(character(1)) string specifying a parent dataset. If it exists in datasets_selectedthen an extra checkbox will be shown to allow users to not show variables in other datasets which exist in this dataname. @@ -140,48 +95,38 @@

Arguments.

-
pre_output -
+
pre_output

(shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.

-
post_output -
+
post_output

(shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements like shiny::helpText() are useful.

-
ggplot2_args -
-
-

(ggplot2_args) object created by teal.widgets::ggplot2_args() +

ggplot2_args
+

(ggplot2_args) object created by teal.widgets::ggplot2_args() with settings for the module plot. The argument is merged with options variable teal.ggplot2_args and default module setup.

-

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets")

-
+

For more details see the vignette: vignette("custom-ggplot2-arguments", package = "teal.widgets")

-
-
+
-

Value -

+

Value

Object of class teal_module to be used in teal applications.

-

Details -

+

Details

Numeric columns with fewer than 30 distinct values can be treated as either discrete or continuous with a checkbox allowing users to switch how they are treated(if < 6 unique values then the default is discrete, otherwise it is continuous).

-

Examples in Shinylive -

+

Examples in Shinylive

-
-
example-1
+
example-1

Open in Shinylive

@@ -192,12 +137,10 @@

Examples in Shinylive

-

-
+
-

Examples -

+

Examples

# general data example
 data <- teal_data()
 data <- within(data, {
@@ -246,19 +189,17 @@ 

Examples -

+
- + + + - - diff --git a/main/reference/validate_input.html b/main/reference/validate_input.html index 2d9eb9141..051a8d4ac 100644 --- a/main/reference/validate_input.html +++ b/main/reference/validate_input.html @@ -1,21 +1,5 @@ - - - - - - -Validates the variable browser inputs — validate_input • teal.modules.general - - - - - - - - - - - + +Validates the variable browser inputs — validate_input • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,53 +57,43 @@

Validates the variable browser inputs

-

Usage -

+

Usage

validate_input(input, plot_var, data)
-

Arguments -

+

Arguments

-
-
input -
+
input

(session$input) the shiny session input

-
plot_var -
+
plot_var

(list) list of a data frame and an array of variable names

-
data -
+
data

(teal_data) the datasets passed to the module

-
-
+
-

Value -

+

Value

logical TRUE if validations pass; a shiny validation error otherwise

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/var_missings_info.html b/main/reference/var_missings_info.html index 22c4e45bb..3a18a4105 100644 --- a/main/reference/var_missings_info.html +++ b/main/reference/var_missings_info.html @@ -1,21 +1,5 @@ - - - - - - -Summarize NAs. — var_missings_info • teal.modules.general - - - - - - - - - - - + +Summarize NAs. — var_missings_info • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,43 +57,35 @@

Summarize NAs.

-

Usage -

+

Usage

var_missings_info(x)
-

Arguments -

+

Arguments

-
-
x -
+
x

vector of any type and length

-
-
+
-

Value -

+

Value

Character string describing NA occurrence.

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/var_summary_table.html b/main/reference/var_summary_table.html index 593e93044..d5dbe1daa 100644 --- a/main/reference/var_summary_table.html +++ b/main/reference/var_summary_table.html @@ -1,25 +1,9 @@ - - - - - - -Summarizes variable — var_summary_table • teal.modules.general - - - - - -Summarizes variable — var_summary_table • teal.modules.general - - - - - +number of levels."> Skip to contents @@ -27,7 +11,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -101,59 +63,48 @@

Summarizes variable

-

Usage -

+

Usage

var_summary_table(x, numeric_as_factor, dt_rows, outlier_definition)
-

Arguments -

+

Arguments

-
-
x -
+
x

vector of any type

-
numeric_as_factor -
+
numeric_as_factor

logical should the numeric variable be treated as a factor

-
dt_rows -
+
dt_rows

numeric current/latest DT page length

-
outlier_definition -
+
outlier_definition

If 0 no outliers are removed, otherwise outliers (those more than outlier_definition*IQR below/above Q1/Q3 be removed)

-
-
+
-

Value -

+

Value

text with simple statistics.

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/variable_type_icons.html b/main/reference/variable_type_icons.html index d0044da95..8b2eb6313 100644 --- a/main/reference/variable_type_icons.html +++ b/main/reference/variable_type_icons.html @@ -1,21 +1,5 @@ - - - - - - -Get icons to represent variable types in dataset — variable_type_icons • teal.modules.general - - - - - - - - - - - + +Get icons to represent variable types in dataset — variable_type_icons • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,43 +57,35 @@

Get icons to represent variable types in dataset

-

Usage -

+

Usage

variable_type_icons(var_type)
-

Arguments -

+

Arguments

-
-
var_type -
+
var_type

(character) of R internal types (classes).

-
-
+
-

Value -

+

Value

(character) vector of HTML icons corresponding to data type in each column.

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/reference/varname_w_label.html b/main/reference/varname_w_label.html index a5cedbc68..b1381605e 100644 --- a/main/reference/varname_w_label.html +++ b/main/reference/varname_w_label.html @@ -1,21 +1,5 @@ - - - - - - -Generate a string for a variable including its label — varname_w_label • teal.modules.general - - - - - - - - - - - + +Generate a string for a variable including its label — varname_w_label • teal.modules.general Skip to contents @@ -23,7 +7,7 @@ teal.modules.general - 0.3.0.9057 + 0.3.0.9058
part of NESTpharmaverse
+ @@ -95,8 +57,7 @@

Generate a string for a variable including its label

-

Usage -

+

Usage

varname_w_label(
   var_names,
   dataset,
@@ -107,52 +68,42 @@ 

Usage

-

Arguments -

+

Arguments

-
-
var_names -
+
var_names

(character) Name of variable to extract labels from.

-
dataset -
+
dataset

(dataset) Name of analysis dataset.

-
wrap_width -
+
wrap_width

(numeric) Number of characters to wrap original label to. Defaults to 80.

-
prefix, suffix -
+
prefix, suffix

(character) String to paste to the beginning/end of the variable name with label.

-
-
+
-

Value -

+

Value

(character) String with variable name and label.

- +

teal.modules.general is a part of the NEST and pharmaverse.

-
- + + + - - diff --git a/main/search.json b/main/search.json index 7ca8d1a31..a5a9012eb 100644 --- a/main/search.json +++ b/main/search.json @@ -1 +1 @@ -[{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"members, contributors, leaders pledge make participation community harassment-free experience everyone, regardless age, body size, visible invisible disability, ethnicity, sex characteristics, gender identity expression, level experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, sexual identity orientation. pledge act interact ways contribute open, welcoming, diverse, inclusive, healthy community.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes positive environment community include: Demonstrating empathy kindness toward people respectful differing opinions, viewpoints, experiences Giving gracefully accepting constructive feedback Accepting responsibility apologizing affected mistakes, learning experience Focusing best just us individuals, overall community Examples unacceptable behavior include: use sexualized language imagery, sexual attention advances kind Trolling, insulting derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical email address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CODE_OF_CONDUCT.html","id":"enforcement-responsibilities","dir":"","previous_headings":"","what":"Enforcement Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Community leaders responsible clarifying enforcing standards acceptable behavior take appropriate fair corrective action response behavior deem inappropriate, threatening, offensive, harmful. Community leaders right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, communicate reasons moderation decisions appropriate.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within community spaces, also applies individual officially representing community public spaces. Examples representing community include using official e-mail address, posting via official social media account, acting appointed representative online offline event.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported community leaders responsible enforcement [INSERT CONTACT METHOD]. complaints reviewed investigated promptly fairly. community leaders obligated respect privacy security reporter incident.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CODE_OF_CONDUCT.html","id":"enforcement-guidelines","dir":"","previous_headings":"","what":"Enforcement Guidelines","title":"Contributor Covenant Code of Conduct","text":"Community leaders follow Community Impact Guidelines determining consequences action deem violation Code Conduct:","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CODE_OF_CONDUCT.html","id":"id_1-correction","dir":"","previous_headings":"Enforcement Guidelines","what":"1. Correction","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Use inappropriate language behavior deemed unprofessional unwelcome community. Consequence: private, written warning community leaders, providing clarity around nature violation explanation behavior inappropriate. public apology may requested.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CODE_OF_CONDUCT.html","id":"id_2-warning","dir":"","previous_headings":"Enforcement Guidelines","what":"2. Warning","title":"Contributor Covenant Code of Conduct","text":"Community Impact: violation single incident series actions. Consequence: warning consequences continued behavior. interaction people involved, including unsolicited interaction enforcing Code Conduct, specified period time. includes avoiding interactions community spaces well external channels like social media. Violating terms may lead temporary permanent ban.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CODE_OF_CONDUCT.html","id":"id_3-temporary-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"3. Temporary Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: serious violation community standards, including sustained inappropriate behavior. Consequence: temporary ban sort interaction public communication community specified period time. public private interaction people involved, including unsolicited interaction enforcing Code Conduct, allowed period. Violating terms may lead permanent ban.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CODE_OF_CONDUCT.html","id":"id_4-permanent-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"4. Permanent Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Demonstrating pattern violation community standards, including sustained inappropriate behavior, harassment individual, aggression toward disparagement classes individuals. Consequence: permanent ban sort public interaction within community.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 2.1, available https://www.contributor-covenant.org/version/2/1/code_of_conduct.html. Community Impact Guidelines inspired Mozilla’s code conduct enforcement ladder. answers common questions code conduct, see FAQ https://www.contributor-covenant.org/faq. Translations available https://www.contributor-covenant.org/translations.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contribution Guidelines","title":"Contribution Guidelines","text":"🙏 Thank taking time contribute! input deeply valued, whether issue, pull request, even feedback, regardless size, content scope.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"table-of-contents","dir":"","previous_headings":"","what":"Table of contents","title":"Contribution Guidelines","text":"👶 Getting started 📔 Code Conduct 🗃 License 📜 Issues 🚩 Pull requests 💻 Coding guidelines 🏆 Recognition model ❓ Questions","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"getting-started","dir":"","previous_headings":"","what":"Getting started","title":"Contribution Guidelines","text":"Please refer project documentation brief introduction. Please also see articles within project documentation additional information.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contribution Guidelines","text":"Code Conduct governs project. Participants contributors expected follow rules outlined therein.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"license","dir":"","previous_headings":"","what":"License","title":"Contribution Guidelines","text":"contributions covered project’s license.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"issues","dir":"","previous_headings":"","what":"Issues","title":"Contribution Guidelines","text":"use GitHub track issues, feature requests, bugs. submitting new issue, please check issue already reported. issue already exists, please upvote existing issue 👍. new feature requests, please elaborate context benefit feature users, developers, relevant personas.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"github-flow","dir":"","previous_headings":"Pull requests","what":"GitHub Flow","title":"Contribution Guidelines","text":"repository uses GitHub Flow model collaboration. submit pull request: Create branch Please see branch naming convention . don’t write access repository, please fork . Make changes Make sure code passes checks imposed GitHub Actions well documented well tested unit tests sufficiently covering changes introduced Create pull request (PR) pull request description, please link relevant issue (), provide detailed description change, include assumptions. Address review comments, Post approval Merge PR write access. Otherwise, reviewer merge PR behalf. Pat back Congratulations! 🎉 now official contributor project! grateful contribution.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"branch-naming-convention","dir":"","previous_headings":"Pull requests","what":"Branch naming convention","title":"Contribution Guidelines","text":"Suppose changes related current issue current project; please name branch follows: _. Please use underscore (_) delimiter word separation. example, 420_fix_ui_bug suitable branch name change resolving UI-related bug reported issue number 420 current project. change affects multiple repositories, please name branches follows: __. example, 69_awesomeproject_fix_spelling_error reference issue 69 reported project awesomeproject aims resolve one spelling errors multiple (likely related) repositories.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"monorepo-and-stageddependencies","dir":"","previous_headings":"Pull requests","what":"monorepo and staged.dependencies","title":"Contribution Guidelines","text":"Sometimes might need change upstream dependent package(s) able submit meaningful change. using staged.dependencies functionality simulate monorepo behavior. dependency configuration already specified project’s staged_dependencies.yaml file. need name feature branches appropriately. exception branch naming convention described . Please refer staged.dependencies package documentation details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"coding-guidelines","dir":"","previous_headings":"","what":"Coding guidelines","title":"Contribution Guidelines","text":"repository follows unified processes standards adopted maintainers ensure software development carried consistently within teams cohesively across repositories.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"style-guide","dir":"","previous_headings":"Coding guidelines","what":"Style guide","title":"Contribution Guidelines","text":"repository follows standard tidyverse style guide uses lintr lint checks. Customized lint configurations available repository’s .lintr file.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"dependency-management","dir":"","previous_headings":"Coding guidelines","what":"Dependency management","title":"Contribution Guidelines","text":"Lightweight right weight. repository follows tinyverse recommedations limiting dependencies minimum.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"dependency-version-management","dir":"","previous_headings":"Coding guidelines","what":"Dependency version management","title":"Contribution Guidelines","text":"code compatible (!) historical versions given dependenct package, required specify minimal version DESCRIPTION file. particular: development version requires (imports) development version another package - required put abc (>= 1.2.3.9000).","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"r--package-versions","dir":"","previous_headings":"Coding guidelines > Recommended development environment & tools","what":"R & package versions","title":"Contribution Guidelines","text":"continuously test packages newest R version along recent dependencies CRAN BioConductor. recommend working environment also set way. can find details R version packages used R CMD check GitHub Action execution log - step prints R sessionInfo(). discover bugs older R versions older set dependencies, please create relevant bug reports.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"pre-commit","dir":"","previous_headings":"Coding guidelines > Recommended development environment & tools","what":"pre-commit","title":"Contribution Guidelines","text":"highly recommend use pre-commit tool combined R hooks pre-commit execute checks committing pushing changes. Pre-commit hooks already available repository’s .pre-commit-config.yaml file.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"recognition-model","dir":"","previous_headings":"","what":"Recognition model","title":"Contribution Guidelines","text":"mentioned previously, contributions deeply valued appreciated. contribution data available part repository insights, recognize significant contribution hence add contributor package authors list, following rules enforced: Minimum 5% lines code authored* (determined git blame query) top 5 contributors terms number commits lines added lines removed* *Excluding auto-generated code, including limited roxygen comments renv.lock files. package maintainer also reserves right adjust criteria recognize contributions.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/CONTRIBUTING.html","id":"questions","dir":"","previous_headings":"","what":"Questions","title":"Contribution Guidelines","text":"questions regarding contribution guidelines, please contact package/repository maintainer.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/SECURITY.html","id":"reporting-security-issues","dir":"","previous_headings":"","what":"Reporting Security Issues","title":"Security Policy","text":"believe found security vulnerability repositories organization, please report us coordinated disclosure. Please report security vulnerabilities public GitHub issues, discussions, pull requests. Instead, please send email vulnerability.management[@]roche.com. Please include much information listed can help us better understand resolve issue: type issue (e.g., buffer overflow, SQL injection, cross-site scripting) Full paths source file(s) related manifestation issue location affected source code (tag/branch/commit direct URL) special configuration required reproduce issue Step--step instructions reproduce issue Proof--concept exploit code (possible) Impact issue, including attacker might exploit issue information help us triage report quickly.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/SECURITY.html","id":"data-security-standards-dss","dir":"","previous_headings":"","what":"Data Security Standards (DSS)","title":"Security Policy","text":"Please make sure reporting issues form bug, feature, pull request, sensitive information PII, PHI, PCI completely removed text attachments, including pictures videos.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/teal-modules-general.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Getting started with teal.modules.general","text":"teal extends shiny framework, enabling creation interactive GUI applications using R. shiny, tealfacilitate development extensive applications combining small, decoupled modules. teal.modules.general package consist collection modules essential developing teal applications. “general” sense intended functions modules fundamental. contrasts specialized focus clinical data found teal.modules.clinical package. modules teal.modules.general can used conjunction modules teal.modules.clinical / shiny modules build large teal / shiny app. concepts presented require knowledge core features teal, specifically launch teal application pass data . Therefore, highly recommended refer README file introductory vignette teal package. See also teal.modules.clinical’s README.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/teal-modules-general.html","id":"main-features","dir":"Articles","previous_headings":"","what":"Main features","title":"Getting started with teal.modules.general","text":"five areas data science teal.modules.general provides tools solutions (modules) : viewing data tabular formats visualizing data plots graphs viewing data files directory examining missing extreme values data performing data analysis See package functions / modules.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/teal-modules-general.html","id":"example-application","dir":"Articles","previous_headings":"","what":"Example application","title":"Getting started with teal.modules.general","text":"simple application featuring tm_variable_browser() module:","code":"# load libraries library(teal.modules.general) library(teal.widgets) library(sparkline) # teal_data object data <- teal_data() data <- within(data, { ADSL <- rADSL ADTTE <- rADTTE }) join_keys(data) <- default_cdisc_join_keys[names(data)] # tm_variable_browser module tm_variable_browser_module <- tm_variable_browser( label = \"Variable browser\", ggplot2_args = ggplot2_args( labs = list(subtitle = \"Plot generated by Variable Browser Module\") ) ) # initialize the app app <- init( data = data, modules = modules(tm_variable_browser_module) ) shinyApp(app$ui, app$server)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/teal-modules-general.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"","what":"Try it out in Shinylive","title":"Getting started with teal.modules.general","text":"Open Shinylive Let’s break app pieces: 1: Load necessary libraries data. 2: Construct teal_data object containing serve source data teal app. teal_data encapsulates data app, also houses code required create data maintain reproducibility. , create empty teal_data object evaluate code produce data within teal_data object, code data stored together. Following , set datanames join_keys. 3: Initialize teal application specified data modules, case, module: tm_variable_browser, datasets:ADSL ADTTE. shiny::shinyApp() use ui server component initialize teal app. teal app, data modules decoupled. app : app developer specified data assigned data argument. app developer specified module assigned modules argument. init function took arguments returned list containing ui server object, can demonstrated running:","code":"library(teal.modules.general) library(teal.widgets) data <- teal_data() data <- within(data, { ADSL <- rADSL ADTTE <- rADTTE }) join_keys(data) <- default_cdisc_join_keys[names(data)] tm_variable_browser_module <- tm_variable_browser( # module name to display in the GUI label = \"Variable browser\", # this argument takes a set of arguments to pass to ggplot2. # the arguments must have the same names as its ggplot2 counterpart, e.g. `subtitle` ggplot2_args = ggplot2_args( labs = list(subtitle = \"Plot generated by Variable Browser Module\") ) ) app <- init( data = data, modules = modules(tm_variable_browser_module) ) shinyApp(app$ui, app$server) class(app) ## [1] \"list\" names(app) ## [1] \"ui\" \"server\""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-association-plot.html","id":"teal-application-to-use-association-plot-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use association plot with various datasets types","title":"Using association plot","text":"vignette guide four parts create teal application using various types datasets using association plot module tm_g_association(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-association-plot.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use association plot with various datasets types","what":"1 - Load libraries","title":"Using association plot","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-association-plot.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use association plot with various datasets types","what":"2 - Create data sets","title":"Using association plot","text":"Inside app 4 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.modules.general::rADRS ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-association-plot.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use association plot with various datasets types","what":"3 - Create an app variable","title":"Using association plot","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_g_association() using different combinations data sets.","code":"# configuration for a single wide dataset mod1 <- tm_g_association( label = \"Single wide dataset\", ref = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"AGE\", fixed = FALSE ) ), vars = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"BMRKR1\", multiple = TRUE, fixed = FALSE ) ) ) # configuration for two wide datasets mod2 <- tm_g_association( label = \"Two wide datasets\", ref = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\", \"STRATA1\", \"RACE\")), selected = \"STRATA1\", multiple = FALSE, fixed = FALSE ) ), vars = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\", \"RACE\", \"COUNTRY\")), selected = c(\"AGE\", \"COUNTRY\", \"RACE\"), multiple = TRUE, fixed = FALSE ) ) ) # configuration for multiple long datasets mod3 <- tm_g_association( label = \"Multiple different long datasets\", ref = data_extract_spec( dataname = \"ADTTE\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADTTE\"]]), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ), filter = filter_spec( label = \"Select endpoint:\", vars = \"PARAMCD\", choices = value_choices(data[[\"ADTTE\"]], \"PARAMCD\", \"PARAM\"), selected = c(\"PFS\", \"EFS\"), multiple = TRUE ) ), vars = data_extract_spec( dataname = \"ADRS\", reshape = TRUE, select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADRS\"]], c(\"AVALC\", \"BMRKR1\", \"BMRKR2\", \"ARM\")), selected = \"AVALC\", multiple = TRUE, fixed = FALSE ), filter = list( filter_spec( label = \"Select endpoints:\", vars = \"PARAMCD\", choices = value_choices(data[[\"ADRS\"]], \"PARAMCD\", \"PARAM\"), selected = \"BESRSPI\", multiple = TRUE ), filter_spec( label = \"Select endpoints:\", vars = \"AVISIT\", choices = levels(data[[\"ADRS\"]]$AVISIT), selected = \"SCREENING\", multiple = TRUE ) ) ) ) # configuration for wide and long datasets mod4 <- tm_g_association( label = \"Wide and long datasets\", ref = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVAL\", \"AVALC\")), selected = \"AVALC\", multiple = FALSE, fixed = FALSE, label = \"Selected variable:\" ), filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADRS\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADRS\"]]$PARAMCD), multiple = TRUE, label = \"Select response\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADRS\"]]$AVISIT), selected = levels(data[[\"ADRS\"]]$AVISIT), multiple = TRUE, label = \"Select visit:\" ) ) ), vars = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"AGE\", \"RACE\", \"COUNTRY\", \"BMRKR1\", \"STRATA1\", \"ARM\")), selected = \"AGE\", multiple = TRUE, fixed = FALSE, label = \"Select variable:\" ) ) ) # configuration for the same long dataset (same subsets) mod5 <- tm_g_association( label = \"Same long datasets (same subsets)\", ref = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]]), selected = \"AVALC\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), vars = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]]), selected = \"PARAMCD\", multiple = TRUE, fixed = FALSE, label = \"Select variable:\" ) ) ) # configuration for the same long dataset (different subsets) mod6 <- tm_g_association( label = \"Same long datasets (different subsets)\", ref = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"AVAL\", \"CHG2\", \"PCHG2\")), selected = \"AVAL\", multiple = FALSE ) ), vars = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select labs:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]]), selected = \"STRATA1\", multiple = TRUE ) ) ) # initialize the app app <- init( data = data, modules = modules( # tm_g_association ---- modules( label = \"Association plot\", mod1, mod2, mod3, mod4, mod5, mod6 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-association-plot.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use association plot with various datasets types","what":"4 - Run the app","title":"Using association plot","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-association-plot.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use association plot with various datasets types","what":"5 - Try it out in Shinylive","title":"Using association plot","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-bivariate-plot.html","id":"teal-application-to-use-bivariate-plot-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use bivariate plot with various datasets types","title":"Using bivariate plot","text":"vignette guide four parts create teal application using various types datasets using bivariate plot module tm_g_bivariate(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-bivariate-plot.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use bivariate plot with various datasets types","what":"1 - Load libraries","title":"Using bivariate plot","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-bivariate-plot.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use bivariate plot with various datasets types","what":"2 - Create data sets","title":"Using bivariate plot","text":"Inside app 4 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.modules.general::rADRS ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-bivariate-plot.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use bivariate plot with various datasets types","what":"3 - Create an app variable","title":"Using bivariate plot","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_g_bivariate() using different combinations data sets.","code":"# configuration for the single wide dataset mod1 <- tm_g_bivariate( label = \"Single wide dataset\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"BMRKR1\", fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"SEX\", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]]), selected = NULL, multiple = FALSE, fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]]), selected = NULL, multiple = FALSE, fixed = FALSE ) ) ) # configuration for the two wide datasets mod2 <- tm_g_bivariate( label = \"Two wide datasets\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"AGE\", \"SEX\", \"STRATA1\", \"RACE\")), selected = c(\"BMRKR1\"), multiple = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"COUNTRY\", \"AGE\", \"RACE\")), selected = \"RACE\", multiple = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = NULL, multiple = FALSE, fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]]), selected = NULL, multiple = FALSE, fixed = FALSE ) ) ) # configuration for the multiple different long datasets mod3 <- tm_g_bivariate( label = \"Multiple different long datasets\", x = data_extract_spec( dataname = \"ADRS\", filter = filter_spec( label = \"Select endpoints:\", vars = c(\"PARAMCD\", \"AVISIT\"), choices = value_choices(data[[\"ADRS\"]], c(\"PARAMCD\", \"AVISIT\"), c(\"PARAM\", \"AVISIT\")), selected = \"OVRINV - END OF INDUCTION\", multiple = TRUE ), select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVALC\", \"AVAL\")), selected = \"AVALC\", multiple = FALSE ) ), y = data_extract_spec( dataname = \"ADTTE\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADTTE\"]], c(\"AVAL\", \"CNSR\")), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ), filter = filter_spec( label = \"Select endpoint:\", vars = c(\"PARAMCD\"), choices = value_choices(data[[\"ADTTE\"]], \"PARAMCD\", \"PARAM\"), selected = \"OS\", multiple = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADRS\", filter = filter_spec( label = \"Select endpoints:\", vars = c(\"PARAMCD\", \"AVISIT\"), choices = value_choices(data[[\"ADRS\"]], c(\"PARAMCD\", \"AVISIT\"), c(\"PARAM\", \"AVISIT\")), selected = \"OVRINV - SCREENING\", multiple = TRUE ), select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADRS\"]], c(\"SEX\", \"RACE\", \"COUNTRY\", \"ARM\", \"PARAMCD\", \"AVISIT\")), selected = \"SEX\", multiple = FALSE, fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\")), selected = NULL, multiple = FALSE, fixed = FALSE ) ), color_settings = TRUE, color = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), fill = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), size = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), plot_height = c(600, 200, 2000), ggtheme = \"gray\" ) # configuration for the wide and long datasets mod4 <- tm_g_bivariate( label = \"Wide and long datasets\", x = data_extract_spec( dataname = \"ADRS\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADRS\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADRS\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select response:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADRS\"]]$AVISIT), selected = levels(data[[\"ADRS\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVALC\", \"AVAL\")), selected = \"AVALC\", multiple = FALSE, label = \"Select variable:\" ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"SEX\", \"AGE\", \"RACE\", \"COUNTRY\")), selected = \"BMRKR1\", multiple = FALSE, label = \"Select variable:\", fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"SEX\", \"RACE\", \"ARMCD\", \"PARAMCD\")), selected = \"SEX\", multiple = FALSE, label = \"Select variable:\" ) ), col_facet = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"SEX\", \"RACE\", \"ARMCD\", \"PARAMCD\", \"AVISIT\")), selected = \"ARMCD\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ) ) # configuration for the wide and multiple long datasets mod5 <- tm_g_bivariate( label = \"Wide and multiple long datasets\", x = data_extract_spec( dataname = \"ADRS\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADRS\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADRS\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select response:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADRS\"]]$AVISIT), selected = levels(data[[\"ADRS\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVALC\", \"AVAL\")), selected = \"AVALC\", multiple = FALSE, label = \"Select variable:\" ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"SEX\", \"AGE\", \"RACE\", \"COUNTRY\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select measurement:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = \"ARMCD\", selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"AGE\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), color_settings = TRUE, color = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), fill = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), size = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), plot_height = c(600, 200, 2000), ggtheme = \"gray\" ) # Configuration for the same long datasets (same subset) mod6 <- tm_g_bivariate( label = \"Same long datasets (same subset)\", x = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVALC\", \"AVAL\")), selected = \"AVALC\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), y = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"SEX\", \"RACE\", \"COUNTRY\", \"ARMCD\", \"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), row_facet = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVISIT\", \"PARAMCD\")), selected = \"PARAMCD\", multiple = FALSE, label = \"Select variables:\" ) ), col_facet = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVISIT\", \"PARAMCD\")), selected = \"AVISIT\", multiple = FALSE, label = \"Select variables:\" ) ) ) # Configuration for the same datasets (different subsets) mod7 <- tm_g_bivariate( label = \"Same datasets (different subsets)\", x = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), y = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), use_density = FALSE, row_facet = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select category:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"RACE\", \"SEX\", \"ARMCD\", \"ACTARMCD\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), col_facet = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select category:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"RACE\", \"SEX\", \"ARMCD\", \"ACTARMCD\")), selected = \"ARMCD\", multiple = FALSE, fixed = FALSE, label = \"Select variables:\" ) ), color_settings = TRUE, color = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), fill = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), size = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), plot_height = c(600, 200, 2000), ggtheme = \"gray\" ) # initialize the app app <- init( data = data, modules = modules( # tm_g_bivariate ------ modules( label = \"Bivariate plot\", mod1, mod2, mod3, mod4, mod5, mod6, mod7 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-bivariate-plot.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use bivariate plot with various datasets types","what":"4 - Run the app","title":"Using bivariate plot","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-bivariate-plot.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use bivariate plot with various datasets types","what":"5 - Try it out in Shinylive","title":"Using bivariate plot","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-cross-table.html","id":"teal-application-to-use-cross-table-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use cross table with various datasets types","title":"Using cross table","text":"vignette guide four parts create teal application using various types datasets using cross table module tm_t_crosstable(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-cross-table.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use cross table with various datasets types","what":"1 - Load libraries","title":"Using cross table","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets library(rtables)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-cross-table.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use cross table with various datasets types","what":"2 - Create data sets","title":"Using cross table","text":"Inside app 2 datasets used ADSL wide data set subject data ADLB long data set lab measurements subject","code":"data <- within(data, { ADSL <- teal.modules.general::rADSL ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-cross-table.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use cross table with various datasets types","what":"3 - Create an app variable","title":"Using cross table","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_t_crosstable() using different combinations data sets.","code":"# configuration for the single wide dataset mod1 <- tm_t_crosstable( label = \"Single wide dataset\", x = data_extract_spec( \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = names(data[[\"ADSL\"]])[5], multiple = TRUE, fixed = FALSE, ordered = TRUE ) ), y = data_extract_spec( \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = names(data[[\"ADSL\"]])[6], multiple = FALSE, fixed = FALSE ) ) ) # configuration for the same long datasets (different subsets) mod2 <- tm_t_crosstable( label = \"Same long datasets (different subsets)\", x = data_extract_spec( dataname = \"ADLB\", filter = filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]]), selected = \"AVISIT\", multiple = TRUE, fixed = FALSE, ordered = TRUE, label = \"Select variable:\" ) ), y = data_extract_spec( dataname = \"ADLB\", filter = filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]]), selected = \"LOQFL\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ) ) # initialize the app app <- init( data = data, modules = modules( modules( label = \"Cross table\", mod1, mod2 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-cross-table.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use cross table with various datasets types","what":"4 - Run the app","title":"Using cross table","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-cross-table.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use cross table with various datasets types","what":"5 - Try it out in Shinylive","title":"Using cross table","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-data-table.html","id":"teal-application-to-display-data-table-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to display data table with various datasets types","title":"Using data table","text":"vignette guide four parts create teal application using various types datasets using data table module tm_data_table(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-data-table.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to display data table with various datasets types","what":"1 - Load libraries","title":"Using data table","text":"","code":"library(teal.modules.general) # used to create the app"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-data-table.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to display data table with various datasets types","what":"2 - Create data sets","title":"Using data table","text":"Inside app 3 datasets used ADSL wide data set subject data ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-data-table.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to display data table with various datasets types","what":"3 - Create an app variable","title":"Using data table","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_data_table() using different combinations data sets.","code":"# configuration for the two-datasets example mod1 <- tm_data_table( label = \"Two datasets\", variables_selected = list( ADSL = c(\"STUDYID\", \"USUBJID\", \"SUBJID\", \"SITEID\", \"AGE\", \"SEX\"), ADTTE = c( \"STUDYID\", \"USUBJID\", \"SUBJID\", \"SITEID\", \"PARAM\", \"PARAMCD\", \"ARM\", \"ARMCD\", \"AVAL\", \"CNSR\" ) ) ) # configuration for the subsetting or changing order of datasets mod2 <- tm_data_table( label = \"Datasets order\", variables_selected = list( ADSL = c(\"STUDYID\", \"USUBJID\", \"SUBJID\", \"SITEID\", \"AGE\", \"SEX\"), ADLB = c( \"STUDYID\", \"USUBJID\", \"SUBJID\", \"SITEID\", \"PARAM\", \"PARAMCD\", \"AVISIT\", \"AVISITN\", \"AVAL\", \"CHG\" ) ), datasets_selected = c(\"ADTTE\", \"ADLB\", \"ADSL\") ) # configuration for the advanced usage of DT options and extensions mod3 <- tm_data_table( label = \"Advanced DT usage\", dt_args = list(extensions = c(\"Buttons\", \"ColReorder\", \"FixedHeader\")), dt_options = list( searching = FALSE, pageLength = 30, lengthMenu = c(5, 15, 25, 50, 100), scrollX = FALSE, dom = \"lBrtip\", buttons = c(\"copy\", \"csv\", \"excel\", \"pdf\", \"print\"), colReorder = TRUE, fixedHeader = TRUE ) ) # initialize the app app <- init( data = data, modules = modules( mod1, mod2, mod3 ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-data-table.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to display data table with various datasets types","what":"4 - Run the app","title":"Using data table","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-data-table.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to display data table with various datasets types","what":"5 - Try it out in Shinylive","title":"Using data table","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-outliers-module.html","id":"teal-application-to-analyze-and-report-outliers-with-various-datasets-types-","dir":"Articles","previous_headings":"","what":"teal application to analyze and report outliers with various datasets types.","title":"Using outliers module","text":"vignette guide four parts create teal application using various types datasets using outliers module tm_outliers(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-outliers-module.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to analyze and report outliers with various datasets types.","what":"1 - Load libraries","title":"Using outliers module","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-outliers-module.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to analyze and report outliers with various datasets types.","what":"2 - Create data sets","title":"Using outliers module","text":"Inside app 3 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL ADRS <- teal.modules.general::rADRS ADLB <- teal.modules.general::rADLB }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-outliers-module.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to analyze and report outliers with various datasets types.","what":"3 - Create an app variable","title":"Using outliers module","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_outliers() using different combinations data sets.","code":"# configuration for the single wide dataset mod1 <- tm_outliers( label = \"Single wide dataset\", outlier_var = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = \"AGE\", fixed = FALSE ) ), categorical_var = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices( data[[\"ADSL\"]], subset = names(Filter(isTRUE, sapply(data[[\"ADSL\"]], is.factor))) ), selected = \"RACE\", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the wide and long datasets mod2 <- tm_outliers( label = \"Wide and long datasets\", outlier_var = list( data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = \"AGE\", fixed = FALSE ) ), data_extract_spec( dataname = \"ADLB\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADLB\"]], c(\"AVAL\", \"CHG2\")), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ) ) ), categorical_var = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices( data[[\"ADSL\"]], subset = names(Filter(isTRUE, sapply(data[[\"ADSL\"]], is.factor))) ), selected = \"RACE\", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the multiple long datasets mod3 <- tm_outliers( label = \"Multiple long datasets\", outlier_var = list( data_extract_spec( dataname = \"ADRS\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADRS\"]], c(\"ADY\", \"EOSDY\")), selected = \"ADY\", fixed = FALSE ) ), data_extract_spec( dataname = \"ADLB\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADLB\"]], c(\"AVAL\", \"CHG2\")), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ) ) ), categorical_var = list( data_extract_spec( dataname = \"ADRS\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADRS\"]], c(\"ARM\", \"ACTARM\")), selected = \"ARM\", multiple = FALSE, fixed = FALSE ) ), data_extract_spec( dataname = \"ADLB\", select = select_spec( label = \"Select variables:\", choices = variable_choices( data[[\"ADLB\"]], subset = names(Filter(isTRUE, sapply(data[[\"ADLB\"]], is.factor))) ), selected = \"RACE\", multiple = FALSE, fixed = FALSE ) ) ) ) # initialize the app app <- init( data = data, modules = modules( # tm_outliers ---- modules( label = \"Outliers module\", mod1, mod2, mod3 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-outliers-module.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to analyze and report outliers with various datasets types.","what":"4 - Run the app","title":"Using outliers module","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-outliers-module.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to analyze and report outliers with various datasets types.","what":"5 - Try it out in Shinylive","title":"Using outliers module","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-regression-plots.html","id":"teal-application-to-use-regression-plot-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use regression plot with various datasets types","title":"Using regression plots","text":"vignette guide four parts create teal application using various types datasets using regression plot module tm_a_regression(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-regression-plots.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use regression plot with various datasets types","what":"1 - Load libraries","title":"Using regression plots","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-regression-plots.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use regression plot with various datasets types","what":"2 - Create data sets","title":"Using regression plots","text":"Inside app 4 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.modules.general::rADRS ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-regression-plots.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use regression plot with various datasets types","what":"3 - Create an app variable","title":"Using regression plots","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_a_regression() using different combinations data sets.","code":"# configuration for the single wide dataset mod1 <- tm_a_regression( label = \"Single wide dataset\", response = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), regressor = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\", \"RACE\")), selected = \"AGE\", multiple = TRUE, fixed = FALSE ) ) ) # configuration for the two wide datasets mod2 <- tm_a_regression( label = \"Two wide datasets\", default_plot_type = 2, response = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), regressor = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\", \"RACE\")), selected = c(\"AGE\", \"RACE\"), multiple = TRUE, fixed = FALSE ) ) ) # configuration for the same long datasets (same subset) mod3 <- tm_a_regression( label = \"Same long datasets (same subset)\", default_plot_type = 2, response = data_extract_spec( dataname = \"ADTTE\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADTTE\"]], c(\"AVAL\", \"CNSR\")), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ), filter = filter_spec( label = \"Select parameter:\", vars = \"PARAMCD\", choices = value_choices(data[[\"ADTTE\"]], \"PARAMCD\", \"PARAM\"), selected = \"PFS\", multiple = FALSE ) ), regressor = data_extract_spec( dataname = \"ADTTE\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADTTE\"]], c(\"AGE\", \"CNSR\", \"SEX\")), selected = c(\"AGE\", \"CNSR\", \"SEX\"), multiple = TRUE ), filter = filter_spec( label = \"Select parameter:\", vars = \"PARAMCD\", choices = value_choices(data[[\"ADTTE\"]], \"PARAMCD\", \"PARAM\"), selected = \"PFS\", multiple = FALSE ) ) ) # configuration for the wide and long datasets mod4 <- tm_a_regression( label = \"Wide and long datasets\", response = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[2], multiple = TRUE, label = \"Select measurement:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[2], multiple = TRUE, label = \"Select visit:\" ) ), select = select_spec( label = \"Select variable:\", choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), regressor = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"BMRKR2\", \"AGE\")), selected = \"AGE\", multiple = TRUE, fixed = FALSE ) ) ) # configuration for the same long datasets (different subsets) mod5 <- tm_a_regression( label = \"Same long datasets (different subsets)\", default_plot_type = 2, response = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = TRUE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = TRUE, label = \"Select visit:\" ) ), select = select_spec( choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), regressor = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select labs:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"AVAL\", \"AGE\", \"BMRKR1\", \"BMRKR2\", \"SEX\", \"ARM\")), selected = c(\"AVAL\", \"BMRKR1\"), multiple = TRUE ) ) ) # initialize the app app <- init( data = data, modules = modules( modules( label = \"Regression plots\", mod1, mod2, mod3, mod4, mod5 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-regression-plots.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use regression plot with various datasets types","what":"4 - Run the app","title":"Using regression plots","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-regression-plots.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use regression plot with various datasets types","what":"5 - Try it out in Shinylive","title":"Using regression plots","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-response-plot.html","id":"teal-application-to-use-response-plot-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use response plot with various datasets types","title":"Using response plot","text":"vignette guide four parts create teal application using various types datasets using response plot module tm_g_response(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-response-plot.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use response plot with various datasets types","what":"1 - Load libraries","title":"Using response plot","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-response-plot.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use response plot with various datasets types","what":"2 - Create data sets","title":"Using response plot","text":"Inside app 4 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.modules.general::rADRS ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-response-plot.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use response plot with various datasets types","what":"3 - Create an app variable","title":"Using response plot","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_g_response() using different combinations data sets.","code":"# configuration for the single wide dataset mod1 <- tm_g_response( label = \"Single wide dataset\", response = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR2\", \"ITTFL\", \"BEP01FL\")), selected = \"BMRKR2\", multiple = FALSE, fixed = FALSE ) ), x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\", \"ARMCD\", \"STRATA1\")), selected = \"ARMCD\", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the two wide datasets mod2 <- tm_g_response( label = \"Two wide datasets\", response = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR2\", \"ITTFL\", \"BEP01FL\")), selected = \"BMRKR2\", multiple = FALSE ) ), x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = c(\"SEX\", \"COUNTRY\", \"RACE\", \"STRATA1\", \"ARMCD\"), selected = \"ARMCD\", multiple = FALSE ) ) ) # configuration for the multiple long datasets mod3 <- tm_g_response( label = \"Multiple long datasets\", response = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( label = \"Select parameter:\", vars = \"PARAMCD\", choices = levels(data[[\"ADLB\"]]$PARAMCD), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE ), filter_spec( label = \"Select visit:\", vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE ) ), select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADLB\"]], c(\"BMRKR2\", \"ITTFL\", \"BEP01FL\")), selected = \"BMRKR2\", multiple = FALSE ) ), x = data_extract_spec( dataname = \"ADRS\", filter = list( filter_spec( label = \"Select parameter:\", vars = \"PARAMCD\", choices = levels(data[[\"ADRS\"]]$PARAMCD), selected = levels(data[[\"ADRS\"]]$PARAMCD)[3], multiple = FALSE ), filter_spec( label = \"Select visit:\", vars = \"AVISIT\", choices = levels(data[[\"ADRS\"]]$AVISIT), selected = levels(data[[\"ADRS\"]]$AVISIT)[3], multiple = FALSE ) ), select = select_spec( choices = c(\"AVALC\", \"ITTFL\", \"BEP01FL\"), selected = \"AVALC\", multiple = FALSE, fixed = TRUE ) ), row_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = \"SEX\", selected = NULL, multiple = FALSE ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"COUNTRY\")), selected = NULL, multiple = FALSE ) ) ) # configuration for the wide and long dataset mod4 <- tm_g_response( label = \"Wide and long dataset\", response = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = levels(data[[\"ADLB\"]]$PARAMCD), selected = levels(data[[\"ADLB\"]]$PARAMCD)[2], multiple = TRUE, label = \"Select measurement:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[2], multiple = TRUE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"BMRKR2\", \"ITTFL\", \"BEP01FL\")), selected = \"BMRKR2\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), x = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"ARMCD\", \"BMRKR1\", \"BMRKR2\", \"BEP01FL\")), selected = \"BMRKR2\", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the same long datasets (same subsets) mod5 <- tm_g_response( label = \"Same long datasets (same subsets)\", response = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"BMRKR2\", \"AVALC\", \"BEP01FL\")), selected = \"AVALC\", multiple = FALSE, fixed = TRUE, label = \"Select variable:\" ) ), x = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVALC\", \"AGE\", \"SEX\", \"ARMCD\", \"STRATA1\")), selected = \"ARMCD\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), row_facet = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = \"PARAMCD\", selected = \"PARAMCD\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), col_facet = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = \"AVISIT\", selected = \"AVISIT\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ) ) # configuration for the same long datasets (different subsets) mod6 <- tm_g_response( label = \"Same long datasets (different subsets)\", response = data_extract_spec( dataname = \"ADLB\", filter = filter_spec( vars = \"PARAMCD\", choices = levels(data[[\"ADLB\"]]$PARAMCD), selected = levels(data[[\"ADLB\"]]$PARAMCD)[2], multiple = FALSE, label = \"Select lab:\" ), select = select_spec( choices = \"BMRKR2\", selected = \"BMRKR2\", multiple = FALSE, fixed = TRUE ) ), x = data_extract_spec( dataname = \"ADLB\", filter = filter_spec( vars = \"PARAMCD\", choices = levels(data[[\"ADLB\"]]$PARAMCD), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"AVISIT\", \"PARAMCD\", \"BEP01FL\")), selected = \"AVISIT\", multiple = FALSE, fixed = TRUE ) ), row_facet = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = levels(data[[\"ADLB\"]]$PARAMCD), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"SEX\", \"RACE\", \"ARMCD\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select Variable\" ) ), col_facet = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = levels(data[[\"ADLB\"]]$PARAMCD), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"SEX\", \"RACE\", \"ARMCD\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ) ) # initialize the app app <- init( data = data, modules = modules( modules( label = \"Response plot\", mod1, mod2, mod3, mod4, mod5, mod6 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-response-plot.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use response plot with various datasets types","what":"4 - Run the app","title":"Using response plot","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-response-plot.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use response plot with various datasets types","what":"5 - Try it out in Shinylive","title":"Using response plot","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-scatterplot-matrix.html","id":"teal-application-to-use-scatter-plot-matrix-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use scatter plot matrix with various datasets types","title":"Using scatterplot matrix","text":"vignette guide four parts create teal application using various types datasets using scatter plot matrix module tm_g_scatterplotmatrix(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-scatterplot-matrix.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use scatter plot matrix with various datasets types","what":"1 - Load libraries","title":"Using scatterplot matrix","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets library(lattice)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-scatterplot-matrix.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use scatter plot matrix with various datasets types","what":"2 - Create data sets","title":"Using scatterplot matrix","text":"Inside app 4 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.modules.general::rADRS ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-scatterplot-matrix.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use scatter plot matrix with various datasets types","what":"3 - Create an app variable","title":"Using scatterplot matrix","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_g_scatterplotmatrix() using different combinations data sets.","code":"# configuration for the single wide dataset mod1 <- tm_g_scatterplotmatrix( label = \"Single wide dataset\", variables = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]]), selected = c(\"AGE\", \"RACE\", \"SEX\", \"BMRKR1\", \"BMRKR2\"), multiple = TRUE, fixed = FALSE, ordered = TRUE ) ) ) # configuration for the one long datasets mod2 <- tm_g_scatterplotmatrix( \"One long dataset\", variables = data_extract_spec( dataname = \"ADTTE\", select = select_spec( choices = variable_choices(data[[\"ADTTE\"]], c(\"AVAL\", \"BMRKR1\", \"BMRKR2\")), selected = c(\"AVAL\", \"BMRKR1\", \"BMRKR2\"), multiple = TRUE, fixed = FALSE, ordered = TRUE, label = \"Select variables:\" ) ) ) # configuration for the two long datasets mod3 <- tm_g_scatterplotmatrix( label = \"Two long datasets\", variables = list( data_extract_spec( dataname = \"ADRS\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADRS\"]]), selected = c(\"AVAL\", \"AVALC\"), multiple = TRUE, fixed = FALSE, ordered = TRUE, ), filter = filter_spec( label = \"Select endpoints:\", vars = c(\"PARAMCD\", \"AVISIT\"), choices = value_choices(data[[\"ADRS\"]], c(\"PARAMCD\", \"AVISIT\"), c(\"PARAM\", \"AVISIT\")), selected = \"OVRINV - SCREENING\", multiple = FALSE ) ), data_extract_spec( dataname = \"ADTTE\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADTTE\"]]), selected = c(\"AVAL\", \"CNSR\"), multiple = TRUE, fixed = FALSE, ordered = TRUE ), filter = filter_spec( label = \"Select parameters:\", vars = \"PARAMCD\", choices = value_choices(data[[\"ADTTE\"]], \"PARAMCD\", \"PARAM\"), selected = \"OS\", multiple = TRUE ) ) ) ) # initialize the app app <- init( data = data, modules = modules( modules( label = \"Scatterplot matrix\", mod1, mod2, mod3 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-scatterplot-matrix.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use scatter plot matrix with various datasets types","what":"4 - Run the app","title":"Using scatterplot matrix","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-scatterplot-matrix.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use scatter plot matrix with various datasets types","what":"5 - Try it out in Shinylive","title":"Using scatterplot matrix","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-scatterplot.html","id":"teal-application-to-use-scatter-plot-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use scatter plot with various datasets types","title":"Using scatterplot","text":"vignette guide four parts create teal application using various types datasets using scatter plot module tm_g_scatterplot(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-scatterplot.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use scatter plot with various datasets types","what":"1 - Load libraries","title":"Using scatterplot","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets library(ggpmisc) library(ggExtra) library(colourpicker)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-scatterplot.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use scatter plot with various datasets types","what":"2 - Create data sets","title":"Using scatterplot","text":"Inside app 4 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.modules.general::rADRS ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-scatterplot.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use scatter plot with various datasets types","what":"3 - Create an app variable","title":"Using scatterplot","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_g_scatterplot() using different combinations data sets.","code":"# configuration for the single wide datasets mod1 <- tm_g_scatterplot( label = \"Single wide dataset\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\", \"BMRKR2\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), color_by = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"RACE\", \"SEX\")), selected = NULL, multiple = TRUE, fixed = FALSE ) ) ) # configuration for the two wide datasets mod2 <- tm_g_scatterplot( label = \"Two wide datasets\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ), color_by = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"COUNTRY\", \"AGE\", \"RACE\")), selected = \"COUNTRY\", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the different long datasets mod3 <- tm_g_scatterplot( label = \"Different long datasets\", x = data_extract_spec( dataname = \"ADRS\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADRS\"]]), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ), filter = filter_spec( label = \"Select endpoint:\", vars = c(\"PARAMCD\", \"AVISIT\"), choices = value_choices(data[[\"ADRS\"]], c(\"PARAMCD\", \"AVISIT\"), c(\"PARAM\", \"AVISIT\")), selected = \"OVRINV - SCREENING\", multiple = FALSE ) ), y = data_extract_spec( dataname = \"ADTTE\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADTTE\"]]), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ), filter = filter_spec( label = \"Select parameters:\", vars = c(\"PARAMCD\"), choices = value_choices(data[[\"ADTTE\"]], \"PARAMCD\", \"PARAM\"), selected = \"OS\", multiple = TRUE ) ), color_by = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the wide and long datasets mod4 <- tm_g_scatterplot( label = \"Wide and long datasets\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"AGE\", \"BMRKR1\", \"COUNTRY\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select measurement:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( label = \"Selected variable:\", choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), color_by = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"AGE\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE ) ) ) # configuration for the same long datasets (same subsets) mod5 <- tm_g_scatterplot( label = \"Same long datasets (same subsets)\", x = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVAL\", \"BMRKR1\", \"BMRKR2\")), selected = \"AVAL\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), y = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVAL\", \"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), color_by = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AGE\", \"SEX\", \"RACE\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ) ) # configuration for the same long datasets (different subsets) mod6 <- tm_g_scatterplot( label = \"Same long datasets (different subsets)\", x = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), y = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), color_by = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"RACE\", \"SEX\")), selected = \"SEX\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ) ) # initialize the app app <- init( data = data, modules = modules( modules( label = \"Scatterplot\", mod1, mod2, mod3, mod4, mod5, mod6 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-scatterplot.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use scatter plot with various datasets types","what":"4 - Run the app","title":"Using scatterplot","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/articles/using-scatterplot.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use scatter plot with various datasets types","what":"5 - Try it out in Shinylive","title":"Using scatterplot","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Dawid Kaledkowski. Author, maintainer. Pawel Rucki. Author. Mahmoud Hallal. Author. Ondrej Slama. Contributor. Maciej Nasinski. Author. Konrad Pagacz. Author. Nikolas Burkoff. Author. F. Hoffmann-La Roche AG. Copyright holder, funder.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Kaledkowski D, Rucki P, Hallal M, Nasinski M, Pagacz K, Burkoff N (2024). teal.modules.general: General Modules 'teal' Applications. R package version 0.3.0.9057, https://github.com/insightsengineering/teal.modules.general/, https://insightsengineering.github.io/teal.modules.general/main/.","code":"@Manual{, title = {teal.modules.general: General Modules for 'teal' Applications}, author = {Dawid Kaledkowski and Pawel Rucki and Mahmoud Hallal and Maciej Nasinski and Konrad Pagacz and Nikolas Burkoff}, year = {2024}, note = {R package version 0.3.0.9057, https://github.com/insightsengineering/teal.modules.general/}, url = {https://insightsengineering.github.io/teal.modules.general/main/}, }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/index.html","id":"tealmodulesgeneral","dir":"","previous_headings":"","what":"General Modules for teal Applications","title":"General Modules for teal Applications","text":"package contains set standard teal modules include applications. include modules : viewing data (including tm_variable_browser, tm_data_table, tm_file_viewer, …) visualizing data (tm_g_scatterplot, tm_g_association, …) understanding missing outlier values within data (tm_missing_data, tm_outliers, …) performing simple data analysis (tm_a_pca, tm_g_distribution, tm_a_regression, …). modules work CDISC data, independent datasets general relational data. Please see teal gallery TLG Catalog see examples teal apps modules package.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"General Modules for teal Applications","text":"Alternatively, might want use development version.","code":"install.packages('teal.modules.general') # install.packages(\"pak\") pak::pak(\"insightsengineering/teal.modules.general\")"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/index.html","id":"usage","dir":"","previous_headings":"","what":"Usage","title":"General Modules for teal Applications","text":"understand use package, please refer Getting Started article, provides multiple examples code implementation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/index.html","id":"playground","dir":"","previous_headings":"","what":"Playground","title":"General Modules for teal Applications","text":"can try package without installing Shinylive: stable development","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/index.html","id":"getting-help","dir":"","previous_headings":"","what":"Getting help","title":"General Modules for teal Applications","text":"encounter bug feature request, please file issue. questions, discussions, staying date, please use teal channel pharmaverse slack workspace.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/index.html","id":"acknowledgment","dir":"","previous_headings":"","what":"Acknowledgment","title":"General Modules for teal Applications","text":"package result joint efforts many developers stakeholders. like thank everyone contributed far!","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/add_facet_labels.html","id":null,"dir":"Reference","previous_headings":"","what":"Add labels for facets to a ggplot2 object — add_facet_labels","title":"Add labels for facets to a ggplot2 object — add_facet_labels","text":"Enhances ggplot2 plot adding labels describe faceting variables along x y axes.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/add_facet_labels.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add labels for facets to a ggplot2 object — add_facet_labels","text":"","code":"add_facet_labels(p, xfacet_label = NULL, yfacet_label = NULL)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/add_facet_labels.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add labels for facets to a ggplot2 object — add_facet_labels","text":"p (ggplot2) object facet labels added. xfacet_label (character) Label facet along x-axis. NULL, label added. vector, labels joined \" & \". yfacet_label (character) Label facet along y-axis. Similar behavior xfacet_label.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/add_facet_labels.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add labels for facets to a ggplot2 object — add_facet_labels","text":"Returns grid grob object (drawn grid.draw)","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/add_facet_labels.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add labels for facets to a ggplot2 object — add_facet_labels","text":"","code":"library(ggplot2) library(grid) p <- ggplot(mtcars) + aes(x = mpg, y = disp) + geom_point() + facet_grid(gear ~ cyl) xfacet_label <- \"cylinders\" yfacet_label <- \"gear\" res <- add_facet_labels(p, xfacet_label, yfacet_label) grid.newpage() grid.draw(res) grid.newpage() grid.draw(add_facet_labels(p, xfacet_label = NULL, yfacet_label)) grid.newpage() grid.draw(add_facet_labels(p, xfacet_label, yfacet_label = NULL)) grid.newpage() grid.draw(add_facet_labels(p, xfacet_label = NULL, yfacet_label = NULL))"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/call_fun_dots.html","id":null,"dir":"Reference","previous_headings":"","what":"Call a function with a character vector for the ... argument — call_fun_dots","title":"Call a function with a character vector for the ... argument — call_fun_dots","text":"Call function character vector ... argument","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/call_fun_dots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Call a function with a character vector for the ... argument — call_fun_dots","text":"","code":"call_fun_dots(fun, str_args)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/call_fun_dots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Call a function with a character vector for the ... argument — call_fun_dots","text":"fun (character) Name function ... argument shall replaced values str_args. str_args (character) character vector function shall executed ","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/call_fun_dots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Call a function with a character vector for the ... argument — call_fun_dots","text":"Value call fun arguments specified str_args.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/create_sparklines.html","id":null,"dir":"Reference","previous_headings":"","what":"S3 generic for sparkline widget HTML — create_sparklines","title":"S3 generic for sparkline widget HTML — create_sparklines","text":"Generates sparkline HTML code corresponding input array. numeric variables creates box plot, character factors - bar plot. Produces empty string variables types.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/create_sparklines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"S3 generic for sparkline widget HTML — create_sparklines","text":"","code":"create_sparklines(arr, width = 150, ...) # S3 method for class 'logical' create_sparklines(arr, ...) # S3 method for class 'numeric' create_sparklines(arr, width = 150, ...) # S3 method for class 'character' create_sparklines(arr, ...) # S3 method for class 'factor' create_sparklines(arr, width = 150, bar_spacing = 5, bar_width = 20, ...) # S3 method for class 'Date' create_sparklines(arr, width = 150, bar_spacing = 5, bar_width = 20, ...) # S3 method for class 'POSIXct' create_sparklines(arr, width = 150, bar_spacing = 5, bar_width = 20, ...) # S3 method for class 'POSIXlt' create_sparklines(arr, width = 150, bar_spacing = 5, bar_width = 20, ...) # Default S3 method create_sparklines(arr, width = 150, ...)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/create_sparklines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"S3 generic for sparkline widget HTML — create_sparklines","text":"arr vector type length width numeric width sparkline widget (pixels) ... list additional options passed bar plots jquery.sparkline; see jquery.sparkline docs bar_spacing numeric spacing bars (pixels) bar_width numeric width bars (pixels)","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/create_sparklines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"S3 generic for sparkline widget HTML — create_sparklines","text":"Character string containing HTML code sparkline HTML widget.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/establish_updating_selection.html","id":null,"dir":"Reference","previous_headings":"","what":"Creates observers updating the currently selected column — establish_updating_selection","title":"Creates observers updating the currently selected column — establish_updating_selection","text":"created observers update column currently selected left-hand side tabset panel.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/establish_updating_selection.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Creates observers updating the currently selected column — establish_updating_selection","text":"","code":"establish_updating_selection(datanames, input, plot_var, columns_names)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/establish_updating_selection.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Creates observers updating the currently selected column — establish_updating_selection","text":"datanames (character) name dataset input (session$input) shiny session input plot_var (list) list containing currently selected dataset (tab) column names columns_names (environment) environment containing bindings dataset","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/establish_updating_selection.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Creates observers updating the currently selected column — establish_updating_selection","text":"Creates observer dataset (tab tabset panel).","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/get_scatterplotmatrix_stats.html","id":null,"dir":"Reference","previous_headings":"","what":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","title":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","text":"Uses stats::cor.test() per default numerical input variables converts results character vector. extended different stats different variable types needed. Meant called lattice::panel.text().","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/get_scatterplotmatrix_stats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","text":"","code":"get_scatterplotmatrix_stats( x, y, .f = stats::cor.test, .f_args = list(), round_stat = 2, round_pval = 4 )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/get_scatterplotmatrix_stats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","text":"x, y (numeric) vectors data values. x y must length. .f (function) function accepts x y formula input ~ x + y. Default stats::cor.test. .f_args (list) arguments passed .f. round_stat (integer(1)) optional, number decimal places use rounding estimate. round_pval (integer(1)) optional, number decimal places use rounding p-value.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/get_scatterplotmatrix_stats.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","text":"Character stats. stats::cor.test() correlation coefficient p-value.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/get_scatterplotmatrix_stats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","text":"Presently need use formula input stats::cor.test na.fail gets evaluated formula passed (see ).","code":"x = c(1,3,5,7,NA) y = c(3,6,7,8,1) stats::cor.test(x, y, na.action = \"na.fail\") stats::cor.test(~ x + y, na.action = \"na.fail\")"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/get_scatterplotmatrix_stats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","text":"","code":"set.seed(1) x <- runif(25, 0, 1) y <- runif(25, 0, 1) x[c(3, 10, 18)] <- NA get_scatterplotmatrix_stats(x, y, .f = stats::cor.test, .f_args = list(method = \"pearson\")) #> [1] \"cor:0.11\\nP:0.6255\" get_scatterplotmatrix_stats(x, y, .f = stats::cor.test, .f_args = list( method = \"pearson\", na.action = na.fail )) #> [1] \"NA\""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/include_css_files.html","id":null,"dir":"Reference","previous_headings":"","what":"Include CSS files from /inst/css/ package directory to application header — include_css_files","title":"Include CSS files from /inst/css/ package directory to application header — include_css_files","text":"system.file used access files packages, work devtools. Therefore, redefine method package needed. Thus, export method","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/include_css_files.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Include CSS files from /inst/css/ package directory to application header — include_css_files","text":"","code":"include_css_files(pattern = \"*\")"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/include_css_files.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Include CSS files from /inst/css/ package directory to application header — include_css_files","text":"pattern (character) optional, regular expression match file names included.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/include_css_files.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Include CSS files from /inst/css/ package directory to application header — include_css_files","text":"HTML code includes CSS files.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/is_tab_active_js.html","id":null,"dir":"Reference","previous_headings":"","what":"JavaScript condition to check if a specific tab is active — is_tab_active_js","title":"JavaScript condition to check if a specific tab is active — is_tab_active_js","text":"JavaScript condition check specific tab active","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/is_tab_active_js.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"JavaScript condition to check if a specific tab is active — is_tab_active_js","text":"","code":"is_tab_active_js(id, name)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/is_tab_active_js.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"JavaScript condition to check if a specific tab is active — is_tab_active_js","text":"id (character(1)) id tab panel tabs. name (character(1)) name tab.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/is_tab_active_js.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"JavaScript condition to check if a specific tab is active — is_tab_active_js","text":"JavaScript expression used shiny::conditionalPanel() determine specified tab active.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/normalize_decorators.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert flat list of teal_transform_module to named lists — normalize_decorators","title":"Convert flat list of teal_transform_module to named lists — normalize_decorators","text":"Convert flat list teal_transform_module named lists","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/normalize_decorators.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert flat list of teal_transform_module to named lists — normalize_decorators","text":"","code":"normalize_decorators(decorators)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/normalize_decorators.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert flat list of teal_transform_module to named lists — normalize_decorators","text":"decorators (list teal_transform_module) normalize.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/normalize_decorators.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert flat list of teal_transform_module to named lists — normalize_decorators","text":"named list lists teal_transform_module objects.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/plot_var_summary.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot variable — plot_var_summary","title":"Plot variable — plot_var_summary","text":"Creates summary plot statistics relevant data type.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/plot_var_summary.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot variable — plot_var_summary","text":"","code":"plot_var_summary( var, var_lab, wrap_character = NULL, numeric_as_factor, display_density = is.numeric(var), remove_NA_hist = FALSE, outlier_definition, records_for_factor, ggplot2_args )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/plot_var_summary.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot variable — plot_var_summary","text":"var vector type plotted. numeric variables produces histogram density line, factors creates frequency plot var_lab text describing selected variable displayed plot wrap_character (numeric) number characters wrap text values var numeric_as_factor (logical) numeric variable treated factor display_density (logical) density estimation displayed numeric values remove_NA_hist (logical) NA values removed histogram factor like variables outlier_definition 0 outliers removed, otherwise outliers (outlier_definition*IQR /Q1/Q3 removed) records_for_factor (numeric) number factor levels >= value graph factors shown, list values ggplot2_args (ggplot2_args) object created teal.widgets::ggplot2_args() settings module plot. argument merged options variable teal.ggplot2_args default module setup. details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\")","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/plot_var_summary.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot variable — plot_var_summary","text":"plot","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADAE.html","id":null,"dir":"Reference","previous_headings":"","what":"Random adverse events — rADAE","title":"Random adverse events — rADAE","text":"Random adverse events","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADAE.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Random adverse events — rADAE","text":"","code":"rADAE"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADAE.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Random adverse events — rADAE","text":"object class tbl_df (inherits tbl, data.frame) 1934 rows 92 columns.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADAE.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Random adverse events — rADAE","text":"internal","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADLB.html","id":null,"dir":"Reference","previous_headings":"","what":"Random lab analysis — rADLB","title":"Random lab analysis — rADLB","text":"Random lab analysis","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADLB.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Random lab analysis — rADLB","text":"","code":"rADLB"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADLB.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Random lab analysis — rADLB","text":"object class tbl_df (inherits tbl, data.frame) 8400 rows 102 columns.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADLB.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Random lab analysis — rADLB","text":"internal","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADRS.html","id":null,"dir":"Reference","previous_headings":"","what":"Random response — rADRS","title":"Random response — rADRS","text":"Random response","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADRS.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Random response — rADRS","text":"","code":"rADRS"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADRS.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Random response — rADRS","text":"object class tbl_df (inherits tbl, data.frame) 3200 rows 65 columns.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADRS.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Random response — rADRS","text":"internal","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADSL.html","id":null,"dir":"Reference","previous_headings":"","what":"Random patient listing — rADSL","title":"Random patient listing — rADSL","text":"Random patient listing","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADSL.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Random patient listing — rADSL","text":"","code":"rADSL"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADSL.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Random patient listing — rADSL","text":"object class tbl_df (inherits tbl, data.frame) 400 rows 55 columns.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADSL.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Random patient listing — rADSL","text":"internal","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADTTE.html","id":null,"dir":"Reference","previous_headings":"","what":"Random time to event analysis dataset — rADTTE","title":"Random time to event analysis dataset — rADTTE","text":"Random time event analysis dataset","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADTTE.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Random time to event analysis dataset — rADTTE","text":"","code":"rADTTE"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADTTE.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Random time to event analysis dataset — rADTTE","text":"object class tbl_df (inherits tbl, data.frame) 2000 rows 67 columns.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/rADTTE.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Random time to event analysis dataset — rADTTE","text":"internal","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/remove_outliers_from.html","id":null,"dir":"Reference","previous_headings":"","what":"Removes the outlier observation from an array — remove_outliers_from","title":"Removes the outlier observation from an array — remove_outliers_from","text":"Removes outlier observation array","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/remove_outliers_from.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Removes the outlier observation from an array — remove_outliers_from","text":"","code":"remove_outliers_from(var, outlier_definition)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/remove_outliers_from.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Removes the outlier observation from an array — remove_outliers_from","text":"var (numeric) numeric vector outlier_definition (numeric) 0 outliers removed, otherwise outliers (outlier_definition*IQR /Q1/Q3) removed","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/remove_outliers_from.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Removes the outlier observation from an array — remove_outliers_from","text":"(numeric) vector without outlier values","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/render_single_tab.html","id":null,"dir":"Reference","previous_headings":"","what":"Renders a single tab in the left-hand side tabset panel — render_single_tab","title":"Renders a single tab in the left-hand side tabset panel — render_single_tab","text":"Renders single tab left-hand side tabset panel. rendered tab contains information one dataset many presented module.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/render_single_tab.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Renders a single tab in the left-hand side tabset panel — render_single_tab","text":"","code":"render_single_tab( dataset_name, parent_dataname, output, data, input, columns_names, plot_var )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/render_single_tab.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Renders a single tab in the left-hand side tabset panel — render_single_tab","text":"dataset_name (character) name dataset contained rendered tab parent_dataname (character) name parent dataname filter variables output (session$output) shiny session output data (teal_data) object containing datasets input (session$input) shiny session input columns_names (environment) environment containing bindings dataset plot_var (list) list containing currently selected dataset (tab) column names","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/render_tab_header.html","id":null,"dir":"Reference","previous_headings":"","what":"Renders the text headlining a single tab in the left-hand side tabset panel — render_tab_header","title":"Renders the text headlining a single tab in the left-hand side tabset panel — render_tab_header","text":"Renders text headlining single tab left-hand side tabset panel","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/render_tab_header.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Renders the text headlining a single tab in the left-hand side tabset panel — render_tab_header","text":"","code":"render_tab_header(dataset_name, output, data)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/render_tab_header.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Renders the text headlining a single tab in the left-hand side tabset panel — render_tab_header","text":"dataset_name (character) name dataset tab output (session$output) shiny session output data (teal_data) object containing datasets","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/render_tab_table.html","id":null,"dir":"Reference","previous_headings":"","what":"Renders the table for a single dataset in the left-hand side tabset panel — render_tab_table","title":"Renders the table for a single dataset in the left-hand side tabset panel — render_tab_table","text":"table contains column names, column labels, small summary NA values sparkline (appropriate).","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/render_tab_table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Renders the table for a single dataset in the left-hand side tabset panel — render_tab_table","text":"","code":"render_tab_table( dataset_name, parent_dataname, output, data, input, columns_names, plot_var )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/render_tab_table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Renders the table for a single dataset in the left-hand side tabset panel — render_tab_table","text":"dataset_name (character) name dataset parent_dataname (character) name parent dataname filter variables output (session$output) shiny session output data (teal_data) object containing datasets input (session$input) shiny session input columns_names (environment) environment containing bindings dataset plot_var (list) list containing currently selected dataset (tab) column names","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/render_tabset_panel_content.html","id":null,"dir":"Reference","previous_headings":"","what":"Renders the left-hand side tabset panel of the module — render_tabset_panel_content","title":"Renders the left-hand side tabset panel of the module — render_tabset_panel_content","text":"Renders left-hand side tabset panel module","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/render_tabset_panel_content.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Renders the left-hand side tabset panel of the module — render_tabset_panel_content","text":"","code":"render_tabset_panel_content( datanames, parent_dataname, output, data, input, columns_names, plot_var )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/render_tabset_panel_content.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Renders the left-hand side tabset panel of the module — render_tabset_panel_content","text":"datanames (character) name dataset parent_dataname (character) name parent dataname filter variables output (session$output) shiny session output data (teal_data) object containing datasets input (session$input) shiny session input columns_names (environment) environment containing bindings dataset plot_var (list) list containing currently selected dataset (tab) column names","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/select_decorators.html","id":null,"dir":"Reference","previous_headings":"","what":"Subset decorators based on the scope — select_decorators","title":"Subset decorators based on the scope — select_decorators","text":"default protected decorator name always included output, exists","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/select_decorators.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Subset decorators based on the scope — select_decorators","text":"","code":"select_decorators(decorators, scope)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/select_decorators.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Subset decorators based on the scope — select_decorators","text":"decorators (named list) list decorators subset. scope (character) character vector decorator names include.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/select_decorators.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Subset decorators based on the scope — select_decorators","text":"flat list decorators include. can empty list none scope exists decorators argument.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/shared_params.html","id":null,"dir":"Reference","previous_headings":"","what":"Shared parameters documentation — shared_params","title":"Shared parameters documentation — shared_params","text":"Defines common arguments shared across multiple functions package avoid repetition using inheritParams.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/shared_params.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Shared parameters documentation — shared_params","text":"plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. rotate_xaxis_labels (logical) optional, whether rotate plot X axis labels. rotate default (FALSE). ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) object created teal.widgets::ggplot2_args() settings module plot. argument merged options variable teal.ggplot2_args default module setup. details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\") basic_table_args (basic_table_args) object created teal.widgets::basic_table_args() settings module table. argument merged options variable teal.basic_table_args default module setup. details see vignette: vignette(\"custom-basic-table-arguments\", package = \"teal.widgets\") pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. alpha (integer(1) integer(3)) optional, specifies point opacity. length alpha one: plot points fixed opacity. length alpha three: plot points opacity dynamically adjusted based vector value, min, max. size (integer(1) integer(3)) optional, specifies point size. length size one: plot point sizes fixed size. length size three: plot points size dynamically adjusted based vector value, min, max.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/shared_params.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Shared parameters documentation — shared_params","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/srv_decorate_teal_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Wrappers around srv_transform_teal_data that allows to decorate the data — srv_decorate_teal_data","title":"Wrappers around srv_transform_teal_data that allows to decorate the data — srv_decorate_teal_data","text":"Wrappers around srv_transform_teal_data allows decorate data","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/srv_decorate_teal_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Wrappers around srv_transform_teal_data that allows to decorate the data — srv_decorate_teal_data","text":"","code":"srv_decorate_teal_data(id, data, decorators, expr, expr_is_reactive = FALSE) ui_decorate_teal_data(id, decorators, ...)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/srv_decorate_teal_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Wrappers around srv_transform_teal_data that allows to decorate the data — srv_decorate_teal_data","text":"id (character(1)) Module id data (reactive teal_data) expr (expression reactive) evaluate output decoration. expression must inline code. See within() Default NULL evaluate appending code. expr_is_reactive (logical(1)) whether expr reactive expression skips defusing argument.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/srv_decorate_teal_data.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Wrappers around srv_transform_teal_data that allows to decorate the data — srv_decorate_teal_data","text":"srv_decorate_teal_data wrapper around srv_transform_teal_data allows decorate data additional expressions. original teal_data object error state, show error first. ui_decorate_teal_data wrapper around ui_transform_teal_data.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/teal.modules.general.html","id":null,"dir":"Reference","previous_headings":"","what":"teal.modules.general: General modules to add to a teal application — teal.modules.general","title":"teal.modules.general: General modules to add to a teal application — teal.modules.general","text":"modules package generic modules work data set (necessarily clinical trials data).","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/teal.modules.general.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"teal.modules.general: General modules to add to a teal application — teal.modules.general","text":"Maintainer: Dawid Kaledkowski dawid.kaledkowski@roche.com Authors: Pawel Rucki pawel.rucki@roche.com Mahmoud Hallal mahmoud.hallal@roche.com Maciej Nasinski Konrad Pagacz Nikolas Burkoff contributors: Ondrej Slama ondrej.slama@roche.com [contributor] F. Hoffmann-La Roche AG [copyright holder, funder]","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_pca.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Principal component analysis — tm_a_pca","title":"teal module: Principal component analysis — tm_a_pca","text":"Module conducts principal component analysis (PCA) given dataset offers different ways visualizing outcomes, including elbow plot, circle plot, biplot, eigenvector plot. Additionally, enables dynamic customization plot aesthetics, opacity, size, font size, UI inputs.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_pca.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Principal component analysis — tm_a_pca","text":"","code":"tm_a_pca( label = \"Principal Component Analysis\", dat, plot_height = c(600, 200, 2000), plot_width = NULL, ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), ggplot2_args = teal.widgets::ggplot2_args(), rotate_xaxis_labels = FALSE, font_size = c(12, 8, 20), alpha = c(1, 0, 1), size = c(2, 1, 8), pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_pca.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Principal component analysis — tm_a_pca","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. dat (data_extract_spec list multiple data_extract_spec) specifying columns used compute PCA. plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) optional, object created teal.widgets::ggplot2_args() settings plots named list ggplot2_args objects plot-specific settings. argument merged options variable teal.ggplot2_args default module setup. List names match following: c(\"default\", \"Elbow plot\", \"Circle plot\", \"Biplot\", \"Eigenvector plot\"). details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\"). rotate_xaxis_labels (logical) optional, whether rotate plot X axis labels. rotate default (FALSE). font_size (numeric) optional, specifies font size. controls font size plot titles, axis labels, legends. vector length == 1 font sizes fixed size. vector value, min, max allows dynamic adjustment. alpha (integer(1) integer(3)) optional, specifies point opacity. length alpha one: plot points fixed opacity. length alpha three: plot points opacity dynamically adjusted based vector value, min, max. size (integer(1) integer(3)) optional, specifies point size. length size one: plot point sizes fixed size. length size three: plot points size dynamically adjusted based vector value, min, max. pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_a_pca\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_pca.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Principal component analysis — tm_a_pca","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_pca.html","id":"decorating-tm-a-pca","dir":"Reference","previous_headings":"","what":"Decorating tm_a_pca","title":"teal module: Principal component analysis — tm_a_pca","text":"module generates following objects, can modified place using decorators: elbow_plot (ggplot2) circle_plot (ggplot2) biplot (ggplot2) eigenvector_plot (ggplot2) Decorators can applied outputs specific objects using named list teal_transform_module objects. \"default\" name reserved decorators applied outputs. See code snippet : additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal_transform_module() documentation.","code":"tm_a_pca( ..., # arguments for module decorators = list( default = list(teal_transform_module(...)), # applied to all outputs elbow_plot = list(teal_transform_module(...)), # applied only to `elbow_plot` output circle_plot = list(teal_transform_module(...)) # applied only to `circle_plot` output biplot = list(teal_transform_module(...)) # applied only to `biplot` output eigenvector_plot = list(teal_transform_module(...)) # applied only to `eigenvector_plot` output ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_pca.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Principal component analysis — tm_a_pca","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_pca.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Principal component analysis — tm_a_pca","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) USArrests <- USArrests }) app <- init( data = data, modules = modules( tm_a_pca( \"PCA\", dat = data_extract_spec( dataname = \"USArrests\", select = select_spec( choices = variable_choices( data = data[[\"USArrests\"]], c(\"Murder\", \"Assault\", \"UrbanPop\", \"Rape\") ), selected = c(\"Murder\", \"Assault\"), multiple = TRUE ), filter = NULL ) ) ) ) #> Initializing tm_a_pca #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_a_pca( \"PCA\", dat = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices( data = data[[\"ADSL\"]], c(\"BMRKR1\", \"AGE\", \"EOSDY\") ), selected = c(\"BMRKR1\", \"AGE\"), multiple = TRUE ), filter = NULL ) ) ) ) #> Initializing tm_a_pca #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_regression.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Scatterplot and regression analysis — tm_a_regression","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"Module visualizing regression analysis, including scatterplots various regression diagnostics plots. allows users explore relationship set regressors response variable, visualize residuals, identify outliers.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_regression.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"","code":"tm_a_regression( label = \"Regression Analysis\", regressor, response, plot_height = c(600, 200, 2000), plot_width = NULL, alpha = c(1, 0, 1), size = c(2, 1, 8), ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), ggplot2_args = teal.widgets::ggplot2_args(), pre_output = NULL, post_output = NULL, default_plot_type = 1, default_outlier_label = \"USUBJID\", label_segment_threshold = c(0.5, 0, 10), decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_regression.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. regressor (data_extract_spec list multiple data_extract_spec) Regressor variables incoming dataset filtering selecting. response (data_extract_spec list multiple data_extract_spec) Response variables incoming dataset filtering selecting. plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. alpha (integer(1) integer(3)) optional, specifies point opacity. length alpha one: plot points fixed opacity. length alpha three: plot points opacity dynamically adjusted based vector value, min, max. size (integer(1) integer(3)) optional, specifies point size. length size one: plot point sizes fixed size. length size three: plot points size dynamically adjusted based vector value, min, max. ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) optional, object created teal.widgets::ggplot2_args() settings plots named list ggplot2_args objects plot-specific settings. argument merged options variable teal.ggplot2_args default module setup. List names match following: c(\"default\", \"Response vs Regressor\", \"Residuals vs Fitted\", \"Scale-Location\", \"Cook's distance\", \"Residuals vs Leverage\", \"Cook's dist vs Leverage\"). details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\"). pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. default_plot_type (numeric) optional, defaults \"Response vs Regressor\". Response vs Regressor Residuals vs Fitted Normal Q-Q Scale-Location Cook's distance Residuals vs Leverage Cook's dist vs Leverage default_outlier_label (character) optional, default column selected label outliers. label_segment_threshold (numeric(1) numeric(3)) Minimum distance label point plot triggers creation line segment two. may happen label placed next point overlaps another label point. value used min.segment.length parameter ggrepel::geom_text_repel() function. can take following forms: numeric(1): Fixed value used minimum distance slider presented UI. numeric(3): slider presented UI (\"Plot settings\") adjust minimum distance dynamically. takes form c(value, min, max) passed value_min_max argument teal.widgets::optionalSliderInputValMinMax. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_a_regression\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_regression.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_regression.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"examples, please see vignette \"Using regression plots\" via vignette(\"using-regression-plots\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_regression.html","id":"decorating-tm-a-regression","dir":"Reference","previous_headings":"","what":"Decorating tm_a_regression","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"module generates following objects, can modified place using decorators: plot (ggplot2) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_regression.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_a_regression.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) CO2 <- CO2 }) app <- init( data = data, modules = modules( tm_a_regression( label = \"Regression\", response = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = \"uptake\", selected = \"uptake\", multiple = FALSE, fixed = TRUE ) ), regressor = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"CO2\"]], c(\"conc\", \"Treatment\")), selected = \"conc\", multiple = TRUE, fixed = FALSE ) ) ) ) ) #> Initializing tm_a_regression #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_a_regression( label = \"Regression\", response = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = \"BMRKR1\", selected = \"BMRKR1\", multiple = FALSE, fixed = TRUE ) ), regressor = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\", \"RACE\")), selected = \"AGE\", multiple = TRUE, fixed = FALSE ) ) ) ) ) #> Initializing tm_a_regression #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_data_table.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Data table viewer — tm_data_table","title":"teal module: Data table viewer — tm_data_table","text":"Module provides dynamic interactive way view data.frames teal application. uses DT package display data tables paginated, searchable, sortable format, helps enhance data exploration analysis.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_data_table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Data table viewer — tm_data_table","text":"","code":"tm_data_table( label = \"Data Table\", variables_selected = list(), datasets_selected = character(0), dt_args = list(), dt_options = list(searching = FALSE, pageLength = 30, lengthMenu = c(5, 15, 30, 100), scrollX = TRUE), server_rendering = FALSE, pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_data_table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Data table viewer — tm_data_table","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. variables_selected (named list) Character vectors variables (.e. columns) initially shown dataset. Names list elements correspond names datasets available app. entry specified dataset, first six variables dataset initially shown. datasets_selected (character) vector datasets shown order. Names vector correspond datasets names. vector length == 0 (default) datasets shown. Note: datasets data.frame class compatible. dt_args (named list) Additional arguments passed DT::datatable() (must include data options). dt_options (named list) options argument DT::datatable. default list(searching = FALSE, pageLength = 30, lengthMenu = c(5, 15, 30, 100), scrollX = TRUE) server_rendering (logical) data table rendered server side (see server argument DT::renderDataTable()) pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_data_table\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_data_table.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Data table viewer — tm_data_table","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_data_table.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"teal module: Data table viewer — tm_data_table","text":"DT package option DT.TOJSON_ARGS show Inf NA data tables. Configure DT.TOJSON_ARGS option via options(DT.TOJSON_ARGS = list(na = \"string\")) running module. Note though sorting numeric columns NA/Inf lexicographic numerical.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_data_table.html","id":"decorating-tm-data-table","dir":"Reference","previous_headings":"","what":"Decorating tm_data_table","title":"teal module: Data table viewer — tm_data_table","text":"module generates following objects, can modified place using decorators: table (DT::datatable()) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_data_table.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Data table viewer — tm_data_table","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_data_table.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Data table viewer — tm_data_table","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) iris <- iris }) app <- init( data = data, modules = modules( tm_data_table( variables_selected = list( iris = c(\"Sepal.Length\", \"Sepal.Width\", \"Petal.Length\", \"Petal.Width\", \"Species\") ), dt_args = list(caption = \"IRIS Table Caption\") ) ) ) #> Initializing tm_data_table if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_data_table( variables_selected = list(ADSL = c(\"STUDYID\", \"USUBJID\", \"SUBJID\", \"SITEID\", \"AGE\", \"SEX\")), dt_args = list(caption = \"ADSL Table Caption\") ) ) ) #> Initializing tm_data_table if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_file_viewer.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: File viewer — tm_file_viewer","title":"teal module: File viewer — tm_file_viewer","text":"file viewer module provides tool view static files. Supported formats include text formats, PDF, PNG APNG, JPEG SVG, WEBP, GIF BMP.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_file_viewer.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: File viewer — tm_file_viewer","text":"","code":"tm_file_viewer( label = \"File Viewer Module\", input_path = list(`Current Working Directory` = \".\") )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_file_viewer.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: File viewer — tm_file_viewer","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. input_path (list) input paths, optional. element can : Paths can specified absolute paths relative running directory application. Default current working directory supplied.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_file_viewer.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: File viewer — tm_file_viewer","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_file_viewer.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: File viewer — tm_file_viewer","text":"example-1 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_file_viewer.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: File viewer — tm_file_viewer","text":"","code":"data <- teal_data() data <- within(data, { data <- data.frame(1) }) app <- init( data = data, modules = modules( tm_file_viewer( input_path = list( folder = system.file(\"sample_files\", package = \"teal.modules.general\"), png = system.file(\"sample_files/sample_file.png\", package = \"teal.modules.general\"), txt = system.file(\"sample_files/sample_file.txt\", package = \"teal.modules.general\"), url = \"https://fda.gov/files/drugs/published/Portable-Document-Format-Specifications.pdf\" ) ) ) ) #> Initializing tm_file_viewer #> Warning: Non-existent file or url path. Please provide valid paths for: #> https://fda.gov/files/drugs/published/Portable-Document-Format-Specifications.pdf if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_front_page.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Front page — tm_front_page","title":"teal module: Front page — tm_front_page","text":"Creates simple front page teal applications, displaying introductory text, tables, additional html shiny tags, footnotes.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_front_page.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Front page — tm_front_page","text":"","code":"tm_front_page( label = \"Front page\", header_text = character(0), tables = list(), additional_tags = tagList(), footnotes = character(0), show_metadata = FALSE )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_front_page.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Front page — tm_front_page","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. header_text (character vector) text shown top module, element, named name shown first bold header followed value. first element's header displayed larger others. tables (named list data.frames) tables shown module. additional_tags (shiny.tag.list html) additional shiny tags html included table, example include image, tagList(tags$img(src = \"image.png\")) include html, HTML(\"html text \"). footnotes (character vector) text shown bottom module, element, named name shown first bold, followed value. show_metadata (logical) indicating whether metadata datasets available module.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_front_page.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Front page — tm_front_page","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_front_page.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Front page — tm_front_page","text":"example-1 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_front_page.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Front page — tm_front_page","text":"","code":"data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL attr(ADSL, \"metadata\") <- list(\"Author\" = \"NEST team\", \"data_source\" = \"synthetic data\") }) join_keys(data) <- default_cdisc_join_keys[names(data)] table_1 <- data.frame(Info = c(\"A\", \"B\"), Text = c(\"A\", \"B\")) table_2 <- data.frame(`Column 1` = c(\"C\", \"D\"), `Column 2` = c(5.5, 6.6), `Column 3` = c(\"A\", \"B\")) table_3 <- data.frame(Info = c(\"E\", \"F\"), Text = c(\"G\", \"H\")) table_input <- list( \"Table 1\" = table_1, \"Table 2\" = table_2, \"Table 3\" = table_3 ) app <- init( data = data, modules = modules( tm_front_page( header_text = c( \"Important information\" = \"It can go here.\", \"Other information\" = \"Can go here.\" ), tables = table_input, additional_tags = HTML(\"Additional HTML or shiny tags go here
\"), footnotes = c(\"X\" = \"is the first footnote\", \"Y is the second footnote\"), show_metadata = TRUE ) ), header = tags$h1(\"Sample Application\"), footer = tags$p(\"Application footer\"), ) #> Initializing tm_front_page if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_association.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"Module provides functionality visualizing distribution variables association reference variable. supports configuring appearance plots, including themes whether show associations.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_association.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"","code":"tm_g_association( label = \"Association\", ref, vars, show_association = TRUE, plot_height = c(600, 400, 5000), plot_width = NULL, distribution_theme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), association_theme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), pre_output = NULL, post_output = NULL, ggplot2_args = teal.widgets::ggplot2_args(), decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_association.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. ref (data_extract_spec list multiple data_extract_spec) Reference variable, must accepts data_extract_spec select_spec(multiple = FALSE) ensure single selection option. vars (data_extract_spec list multiple data_extract_spec) Variables associated reference variable. show_association (logical) optional, whether show association vars reference variable. Defaults TRUE. plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. distribution_theme, association_theme (character) optional, ggplot2 themes used default. Default \"gray\". pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. ggplot2_args (ggplot2_args) optional, object created teal.widgets::ggplot2_args() settings plots named list ggplot2_args objects plot-specific settings. argument merged options variable teal.ggplot2_args default module setup. List names match following: c(\"default\", \"Bivariate1\", \"Bivariate2\"). details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\"). decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_g_association\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_association.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_association.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"examples, please see vignette \"Using association plot\" via vignette(\"using-association-plot\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_association.html","id":"decorating-tm-g-association","dir":"Reference","previous_headings":"","what":"Decorating tm_g_association","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"module generates following objects, can modified place using decorators: plot (grob created ggplot2::ggplotGrob()) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_association.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_association.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) CO2 <- CO2 factors <- names(Filter(isTRUE, vapply(CO2, is.factor, logical(1L)))) CO2[factors] <- lapply(CO2[factors], as.character) }) app <- init( data = data, modules = modules( tm_g_association( ref = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"Plant\", \"Type\", \"Treatment\")), selected = \"Plant\", fixed = FALSE ) ), vars = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"CO2\"]], c(\"Plant\", \"Type\", \"Treatment\")), selected = \"Treatment\", multiple = TRUE, fixed = FALSE ) ) ) ) ) #> Initializing tm_g_association #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_g_association( ref = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices( data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\", \"ARM\", \"STRATA1\", \"STRATA2\", \"ITTFL\", \"BMRKR2\") ), selected = \"RACE\", fixed = FALSE ) ), vars = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices( data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\", \"ARM\", \"STRATA1\", \"STRATA2\", \"ITTFL\", \"BMRKR2\") ), selected = \"BMRKR2\", multiple = TRUE, fixed = FALSE ) ) ) ) ) #> Initializing tm_g_association #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_bivariate.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"Module enables creation univariate bivariate plots, facilitating exploration data distributions relationships two variables.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_bivariate.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"","code":"tm_g_bivariate( label = \"Bivariate Plots\", x, y, row_facet = NULL, col_facet = NULL, facet = !is.null(row_facet) || !is.null(col_facet), color = NULL, fill = NULL, size = NULL, use_density = FALSE, color_settings = FALSE, free_x_scales = FALSE, free_y_scales = FALSE, plot_height = c(600, 200, 2000), plot_width = NULL, rotate_xaxis_labels = FALSE, swap_axes = FALSE, ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), ggplot2_args = teal.widgets::ggplot2_args(), pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_bivariate.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. x (data_extract_spec list multiple data_extract_spec) Variable names selected plot along x-axis default. Can numeric, factor character. empty selections allowed. y (data_extract_spec list multiple data_extract_spec) Variable names selected plot along y-axis default. Can numeric, factor character. row_facet (data_extract_spec list multiple data_extract_spec) optional, specification data variable(s) use faceting rows. col_facet (data_extract_spec list multiple data_extract_spec) optional, specification data variable(s) use faceting columns. facet (logical) optional, specifies whether facet encodings ui elements toggled shown user default. Defaults TRUE either row_facet column_facet supplied. color (data_extract_spec list multiple data_extract_spec) optional, specification data variable(s) selected outline color inside coloring settings. applied color_settings set TRUE. fill (data_extract_spec list multiple data_extract_spec) optional, specification data variable(s) selected fill color inside coloring settings. applied color_settings set TRUE. size (data_extract_spec list multiple data_extract_spec) optional, specification data variable(s) selected size geom_point plots inside coloring settings. applied color_settings set TRUE. use_density (logical) optional, indicates whether plot density (TRUE) frequency (FALSE). Defaults frequency (FALSE). color_settings (logical) Whether coloring, filling size applied UI tool offered user. free_x_scales (logical) optional, whether X scaling shall changeable. allow scaling changed default (FALSE). free_y_scales (logical) optional, whether Y scaling shall changeable. allow scaling changed default (FALSE). plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. rotate_xaxis_labels (logical) optional, whether rotate plot X axis labels. rotate default (FALSE). swap_axes (logical) optional, whether swap X Y axes. Defaults FALSE. ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) object created teal.widgets::ggplot2_args() settings module plot. argument merged options variable teal.ggplot2_args default module setup. details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\") pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_g_bivariate\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_bivariate.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_bivariate.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"general module visualize 1 & 2 dimensional data.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_bivariate.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"examples, please see vignette \"Using bivariate plot\" via vignette(\"using-bivariate-plot\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_bivariate.html","id":"decorating-tm-g-bivariate","dir":"Reference","previous_headings":"","what":"Decorating tm_g_bivariate","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"module generates following objects, can modified place using decorators: plot (ggplot2) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_bivariate.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_bivariate.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) CO2 <- data.frame(CO2) }) app <- init( data = data, modules = tm_g_bivariate( x = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]]), selected = \"conc\", fixed = FALSE ) ), y = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]]), selected = \"uptake\", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]]), selected = \"Type\", fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]]), selected = \"Treatment\", fixed = FALSE ) ) ) ) #> Initializing tm_g_bivariate #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = tm_g_bivariate( x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"AGE\", fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"SEX\", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"ARM\", fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"COUNTRY\", fixed = FALSE ) ) ) ) #> Initializing tm_g_bivariate #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_distribution.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Distribution analysis — tm_g_distribution","title":"teal module: Distribution analysis — tm_g_distribution","text":"Module designed explore distribution single variable within given dataset. offers several tools, histograms, Q-Q plots, various statistical tests visually statistically analyze variable's distribution.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_distribution.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Distribution analysis — tm_g_distribution","text":"","code":"tm_g_distribution( label = \"Distribution Module\", dist_var, strata_var = NULL, group_var = NULL, freq = FALSE, ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), ggplot2_args = teal.widgets::ggplot2_args(), bins = c(30L, 1L, 100L), plot_height = c(600, 200, 2000), plot_width = NULL, pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_distribution.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Distribution analysis — tm_g_distribution","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. dist_var (data_extract_spec list multiple data_extract_spec) Variable(s) distribution analyzed. strata_var (data_extract_spec list multiple data_extract_spec) Categorical variable used split distribution analysis. group_var (data_extract_spec list multiple data_extract_spec) Variable used faceting plot multiple panels. freq (logical) optional, whether display frequency (TRUE) density (FALSE). Defaults density (FALSE). ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) optional, object created teal.widgets::ggplot2_args() settings plots named list ggplot2_args objects plot-specific settings. argument merged options variable teal.ggplot2_args default module setup. List names match following: c(\"default\", \"Histogram\", \"QQplot\"). details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\"). bins (integer(1) integer(3)) optional, specifies number bins histogram. length bins one: histogram bins fixed size based bins provided. length bins three: histogram bins dynamically adjusted based vector value, min, max. Defaults c(30L, 1L, 100L). plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. pre_output (shiny.tag, optional) text placed output put output context. example title. post_output (shiny.tag, optional) text placed output put output context. example shiny::helpText() elements useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_g_distribution\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_distribution.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Distribution analysis — tm_g_distribution","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_distribution.html","id":"decorating-tm-g-distribution","dir":"Reference","previous_headings":"","what":"Decorating tm_g_distribution","title":"teal module: Distribution analysis — tm_g_distribution","text":"module generates following objects, can modified place using decorators:: histogram_plot (ggplot2) qq_plot (data.frame) summary_table (data.frame) test_table (data.frame) Decorators can applied outputs specific objects using named list teal_transform_module objects. \"default\" name reserved decorators applied outputs. See code snippet : additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal_transform_module() documentation.","code":"tm_g_distribution( ..., # arguments for module decorators = list( default = list(teal_transform_module(...)), # applied to all outputs histogram_plot = list(teal_transform_module(...)), # applied only to `histogram_plot` output qq_plot = list(teal_transform_module(...)) # applied only to `qq_plot` output summary_table = list(teal_transform_module(...)) # applied only to `summary_table` output test_table = list(teal_transform_module(...)) # applied only to `test_table` output ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_distribution.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Distribution analysis — tm_g_distribution","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_distribution.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Distribution analysis — tm_g_distribution","text":"","code":"# general data example data <- teal_data() data <- within(data, { iris <- iris }) app <- init( data = data, modules = list( tm_g_distribution( dist_var = data_extract_spec( dataname = \"iris\", select = select_spec(variable_choices(\"iris\"), \"Petal.Length\") ) ) ) ) #> Initializing tm_g_distribution #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] vars1 <- choices_selected( variable_choices(data[[\"ADSL\"]], c(\"ARM\", \"COUNTRY\", \"SEX\")), selected = NULL ) app <- init( data = data, modules = modules( tm_g_distribution( dist_var = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), strata_var = data_extract_spec( dataname = \"ADSL\", filter = filter_spec( vars = vars1, multiple = TRUE ) ), group_var = data_extract_spec( dataname = \"ADSL\", filter = filter_spec( vars = vars1, multiple = TRUE ) ) ) ) ) #> Initializing tm_g_distribution #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_response.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Response plot — tm_g_response","title":"teal module: Response plot — tm_g_response","text":"Generates response plot given response x variables. module allows users customize add annotations plot depending module's arguments. supports showing counts grouped variable facets (row / column), swapping coordinates, show count annotations displaying response plot frequency density.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_response.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Response plot — tm_g_response","text":"","code":"tm_g_response( label = \"Response Plot\", response, x, row_facet = NULL, col_facet = NULL, coord_flip = FALSE, count_labels = TRUE, rotate_xaxis_labels = FALSE, freq = FALSE, plot_height = c(600, 400, 5000), plot_width = NULL, ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), ggplot2_args = teal.widgets::ggplot2_args(), pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_response.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Response plot — tm_g_response","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. response (data_extract_spec list multiple data_extract_spec) variable use response. can define one fixed column setting fixed = TRUE inside select_spec. data_extract_spec must allow multiple selection case. x (data_extract_spec list multiple data_extract_spec) Specifies variable use X-axis response plot. Allow user select multiple columns data allowed teal. data_extract_spec must allow multiple selection case. row_facet (data_extract_spec list multiple data_extract_spec) optional specification data variable(s) use faceting rows. col_facet (data_extract_spec list multiple data_extract_spec) optional specification data variable(s) use faceting columns. coord_flip (logical(1)) Indicates whether flip coordinates x response. default value FALSE show x variable x-axis response variable y-axis. count_labels (logical(1)) Indicates whether show count labels. Defaults TRUE. rotate_xaxis_labels (logical) optional, whether rotate plot X axis labels. rotate default (FALSE). freq (logical(1)) Indicates whether display frequency (TRUE) density (FALSE). Defaults density (FALSE). plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) object created teal.widgets::ggplot2_args() settings module plot. argument merged options variable teal.ggplot2_args default module setup. details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\") pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_g_response\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_response.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Response plot — tm_g_response","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_response.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Response plot — tm_g_response","text":"examples, please see vignette \"Using response plot\" via vignette(\"using-response-plot\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_response.html","id":"decorating-tm-g-response","dir":"Reference","previous_headings":"","what":"Decorating tm_g_response","title":"teal module: Response plot — tm_g_response","text":"module generates following objects, can modified place using decorators: plot (ggplot2) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_response.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Response plot — tm_g_response","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_response.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Response plot — tm_g_response","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) mtcars <- mtcars for (v in c(\"cyl\", \"vs\", \"am\", \"gear\")) { mtcars[[v]] <- as.factor(mtcars[[v]]) } }) app <- init( data = data, modules = modules( tm_g_response( label = \"Response Plots\", response = data_extract_spec( dataname = \"mtcars\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"mtcars\"]], c(\"cyl\", \"gear\")), selected = \"cyl\", multiple = FALSE, fixed = FALSE ) ), x = data_extract_spec( dataname = \"mtcars\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"mtcars\"]], c(\"vs\", \"am\")), selected = \"vs\", multiple = FALSE, fixed = FALSE ) ) ) ) ) #> Initializing tm_g_response #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_g_response( label = \"Response Plots\", response = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR2\", \"COUNTRY\")), selected = \"BMRKR2\", multiple = FALSE, fixed = FALSE ) ), x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\")), selected = \"RACE\", multiple = FALSE, fixed = FALSE ) ) ) ) ) #> Initializing tm_g_response #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplot.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Scatterplot — tm_g_scatterplot","title":"teal module: Scatterplot — tm_g_scatterplot","text":"Generates customizable scatterplot using ggplot2. module allows users select variables x y axes, color size encodings, faceting options, . supports log transformations, trend line additions, dynamic adjustments point opacity size UI controls.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Scatterplot — tm_g_scatterplot","text":"","code":"tm_g_scatterplot( label = \"Scatterplot\", x, y, color_by = NULL, size_by = NULL, row_facet = NULL, col_facet = NULL, plot_height = c(600, 200, 2000), plot_width = NULL, alpha = c(1, 0, 1), shape = shape_names, size = c(5, 1, 15), max_deg = 5L, rotate_xaxis_labels = FALSE, ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), pre_output = NULL, post_output = NULL, table_dec = 4, ggplot2_args = teal.widgets::ggplot2_args(), decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Scatterplot — tm_g_scatterplot","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. x (data_extract_spec list multiple data_extract_spec) Specifies variable names selected plot along x-axis default. y (data_extract_spec list multiple data_extract_spec) Specifies variable names selected plot along y-axis default. color_by (data_extract_spec list multiple data_extract_spec) optional, defines color encoding. NULL color encoding option displayed. size_by (data_extract_spec list multiple data_extract_spec) optional, defines point size encoding. NULL size encoding option displayed. row_facet (data_extract_spec list multiple data_extract_spec) optional, specifies variable(s) faceting rows. col_facet (data_extract_spec list multiple data_extract_spec) optional, specifies variable(s) faceting columns. plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. alpha (integer(1) integer(3)) optional, specifies point opacity. length alpha one: plot points fixed opacity. length alpha three: plot points opacity dynamically adjusted based vector value, min, max. shape (character) optional, character vector names shape, e.g. c(\"triangle\", \"square\", \"circle\"). defaults shape_names. complete list vignette(\"ggplot2-specs\", package=\"ggplot2\"). size (integer(1) integer(3)) optional, specifies point size. length size one: plot point sizes fixed size. length size three: plot points size dynamically adjusted based vector value, min, max. max_deg (integer) optional, maximum degree polynomial trend line. Must less 1. rotate_xaxis_labels (logical) optional, whether rotate plot X axis labels. rotate default (FALSE). ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. table_dec (integer) optional, number decimal places used round numeric values table. ggplot2_args (ggplot2_args) object created teal.widgets::ggplot2_args() settings module plot. argument merged options variable teal.ggplot2_args default module setup. details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\") decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_g_scatterplot\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Scatterplot — tm_g_scatterplot","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplot.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Scatterplot — tm_g_scatterplot","text":"examples, please see vignette \"Using scatterplot\" via vignette(\"using-scatterplot\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplot.html","id":"decorating-tm-g-scatterplot","dir":"Reference","previous_headings":"","what":"Decorating tm_g_scatterplot","title":"teal module: Scatterplot — tm_g_scatterplot","text":"module generates following objects, can modified place using decorators: plot (ggplot2) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplot.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Scatterplot — tm_g_scatterplot","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplot.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Scatterplot — tm_g_scatterplot","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) CO2 <- CO2 }) app <- init( data = data, modules = modules( tm_g_scatterplot( label = \"Scatterplot Choices\", x = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"conc\", \"uptake\")), selected = \"conc\", multiple = FALSE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"conc\", \"uptake\")), selected = \"uptake\", multiple = FALSE, fixed = FALSE ) ), color_by = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices( data[[\"CO2\"]], c(\"Plant\", \"Type\", \"Treatment\", \"conc\", \"uptake\") ), selected = NULL, multiple = FALSE, fixed = FALSE ) ), size_by = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"conc\", \"uptake\")), selected = \"uptake\", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"Plant\", \"Type\", \"Treatment\")), selected = NULL, multiple = FALSE, fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"Plant\", \"Type\", \"Treatment\")), selected = NULL, multiple = FALSE, fixed = FALSE ) ) ) ) ) #> Initializing tm_g_scatterplot #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_g_scatterplot( label = \"Scatterplot Choices\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\", \"BMRKR2\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), color_by = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices( data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\", \"BMRKR2\", \"RACE\", \"REGION1\") ), selected = NULL, multiple = FALSE, fixed = FALSE ) ), size_by = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR2\", \"RACE\", \"REGION1\")), selected = NULL, multiple = FALSE, fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR2\", \"RACE\", \"REGION1\")), selected = NULL, multiple = FALSE, fixed = FALSE ) ) ) ) ) #> Initializing tm_g_scatterplot #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplotmatrix.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"Generates scatterplot matrix selected variables datasets. plot within matrix represents relationship two variables, providing overview correlations distributions across selected data.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplotmatrix.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"","code":"tm_g_scatterplotmatrix( label = \"Scatterplot Matrix\", variables, plot_height = c(600, 200, 2000), plot_width = NULL, pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplotmatrix.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. variables (data_extract_spec list multiple data_extract_spec) Specifies plotting variables incoming dataset filtering selecting. case data_extract_spec use select_spec(..., ordered = TRUE) plot elements rendered according selection order. plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_g_scatterplotmatrix\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplotmatrix.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplotmatrix.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"examples, please see vignette \"Using scatterplot matrix\" via vignette(\"using-scatterplot-matrix\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplotmatrix.html","id":"decorating-tm-g-scatterplotmatrix","dir":"Reference","previous_headings":"","what":"Decorating tm_g_scatterplotmatrix","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"module generates following objects, can modified place using decorators: plot (trellis - output lattice::splom) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplotmatrix.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_g_scatterplotmatrix.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"","code":"# general data example data <- teal_data() data <- within(data, { countries <- data.frame( id = c(\"DE\", \"FR\", \"IT\", \"ES\", \"PT\", \"GR\", \"NL\", \"BE\", \"LU\", \"AT\"), government = factor( c(2, 2, 2, 1, 2, 2, 1, 1, 1, 2), labels = c(\"Monarchy\", \"Republic\") ), language_family = factor( c(1, 3, 3, 3, 3, 2, 1, 1, 3, 1), labels = c(\"Germanic\", \"Hellenic\", \"Romance\") ), population = c(83, 67, 60, 47, 10, 11, 17, 11, 0.6, 9), area = c(357, 551, 301, 505, 92, 132, 41, 30, 2.6, 83), gdp = c(3.4, 2.7, 2.1, 1.4, 0.3, 0.2, 0.7, 0.5, 0.1, 0.4), debt = c(2.1, 2.3, 2.4, 2.6, 2.3, 2.4, 2.3, 2.4, 2.3, 2.4) ) sales <- data.frame( id = 1:50, country_id = sample( c(\"DE\", \"FR\", \"IT\", \"ES\", \"PT\", \"GR\", \"NL\", \"BE\", \"LU\", \"AT\"), size = 50, replace = TRUE ), year = sort(sample(2010:2020, 50, replace = TRUE)), venue = sample(c(\"small\", \"medium\", \"large\", \"online\"), 50, replace = TRUE), cancelled = sample(c(TRUE, FALSE), 50, replace = TRUE), quantity = rnorm(50, 100, 20), costs = rnorm(50, 80, 20), profit = rnorm(50, 20, 10) ) }) join_keys(data) <- join_keys( join_key(\"countries\", \"countries\", \"id\"), join_key(\"sales\", \"sales\", \"id\"), join_key(\"countries\", \"sales\", c(\"id\" = \"country_id\")) ) app <- init( data = data, modules = modules( tm_g_scatterplotmatrix( label = \"Scatterplot matrix\", variables = list( data_extract_spec( dataname = \"countries\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"countries\"]]), selected = c(\"area\", \"gdp\", \"debt\"), multiple = TRUE, ordered = TRUE, fixed = FALSE ) ), data_extract_spec( dataname = \"sales\", filter = filter_spec( label = \"Select variable:\", vars = \"country_id\", choices = value_choices(data[[\"sales\"]], \"country_id\"), selected = c(\"DE\", \"FR\", \"IT\", \"ES\", \"PT\", \"GR\", \"NL\", \"BE\", \"LU\", \"AT\"), multiple = TRUE ), select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"sales\"]], c(\"quantity\", \"costs\", \"profit\")), selected = c(\"quantity\", \"costs\", \"profit\"), multiple = TRUE, ordered = TRUE, fixed = FALSE ) ) ) ) ) ) #> Initializing tm_g_scatterplotmatrix #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { ADSL <- rADSL ADRS <- rADRS }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_g_scatterplotmatrix( label = \"Scatterplot matrix\", variables = list( data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]]), selected = c(\"AGE\", \"RACE\", \"SEX\"), multiple = TRUE, ordered = TRUE, fixed = FALSE ) ), data_extract_spec( dataname = \"ADRS\", filter = filter_spec( label = \"Select endpoints:\", vars = c(\"PARAMCD\", \"AVISIT\"), choices = value_choices(data[[\"ADRS\"]], c(\"PARAMCD\", \"AVISIT\"), c(\"PARAM\", \"AVISIT\")), selected = \"INVET - END OF INDUCTION\", multiple = TRUE ), select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADRS\"]]), selected = c(\"AGE\", \"AVAL\", \"ADY\"), multiple = TRUE, ordered = TRUE, fixed = FALSE ) ) ) ) ) ) #> Initializing tm_g_scatterplotmatrix #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_missing_data.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Missing data analysis — tm_missing_data","title":"teal module: Missing data analysis — tm_missing_data","text":"module analyzes missing data data.frames help users explore missing observations gain insights completeness data. useful clinical data analysis within context CDISC standards adaptable general data analysis purposes.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_missing_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Missing data analysis — tm_missing_data","text":"","code":"tm_missing_data( label = \"Missing data\", plot_height = c(600, 400, 5000), plot_width = NULL, parent_dataname = \"ADSL\", ggtheme = c(\"classic\", \"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"void\"), ggplot2_args = list(`Combinations Hist` = teal.widgets::ggplot2_args(labs = list(caption = NULL)), `Combinations Main` = teal.widgets::ggplot2_args(labs = list(title = NULL))), pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_missing_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Missing data analysis — tm_missing_data","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. parent_dataname (character(1)) Specifies parent dataset name. Default ADSL CDISC data. provided exists, enables additional analysis \"subject\". non-CDISC data, parameter can ignored. ggtheme (character) optional, specifies default ggplot2 theme plots. Defaults classic. ggplot2_args (ggplot2_args) optional, object created teal.widgets::ggplot2_args() settings plots named list ggplot2_args objects plot-specific settings. argument merged options variable teal.ggplot2_args default module setup. List names match following: c(\"default\", \"Summary Obs\", \"Summary Patients\", \"Combinations Main\", \"Combinations Hist\", \"Subject\"). details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\"). pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_missing_data\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_missing_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Missing data analysis — tm_missing_data","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_missing_data.html","id":"decorating-tm-missing-data","dir":"Reference","previous_headings":"","what":"Decorating tm_missing_data","title":"teal module: Missing data analysis — tm_missing_data","text":"module generates following objects, can modified place using decorators: summary_plot (grob created ggplot2::ggplotGrob()) combination_plot (grob created ggplot2::ggplotGrob()) by_subject_plot (ggplot2) table (DT::datatable()) Decorators can applied outputs specific objects using named list teal_transform_module objects. \"default\" name reserved decorators applied outputs. See code snippet : additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal_transform_module() documentation.","code":"tm_missing_data( ..., # arguments for module decorators = list( default = list(teal_transform_module(...)), # applied to all outputs summary_plot = list(teal_transform_module(...)), # applied only to `summary_plot` output combination_plot = list(teal_transform_module(...)) # applied only to `combination_plot` output by_subject_plot = list(teal_transform_module(...)) # applied only to `by_subject_plot` output table = list(teal_transform_module(...)) # applied only to `table` output ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_missing_data.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Missing data analysis — tm_missing_data","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_missing_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Missing data analysis — tm_missing_data","text":"","code":"# general example data data <- teal_data() data <- within(data, { require(nestcolor) add_nas <- function(x) { x[sample(seq_along(x), floor(length(x) * runif(1, .05, .17)))] <- NA x } iris <- iris mtcars <- mtcars iris[] <- lapply(iris, add_nas) mtcars[] <- lapply(mtcars, add_nas) mtcars[[\"cyl\"]] <- as.factor(mtcars[[\"cyl\"]]) mtcars[[\"gear\"]] <- as.factor(mtcars[[\"gear\"]]) }) app <- init( data = data, modules = modules( tm_missing_data() ) ) #> Initializing tm_missing_data #> Warning: 'package:rlang' may not be available when loading #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC example data data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL ADRS <- rADRS }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_missing_data() ) ) #> Initializing tm_missing_data #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_outliers.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Outliers analysis — tm_outliers","title":"teal module: Outliers analysis — tm_outliers","text":"Module analyze identify outliers using different methods IQR, Z-score, Percentiles, offers visualizations including box plots, density plots, cumulative distribution plots help interpret outliers.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_outliers.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Outliers analysis — tm_outliers","text":"","code":"tm_outliers( label = \"Outliers Module\", outlier_var, categorical_var = NULL, ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), ggplot2_args = teal.widgets::ggplot2_args(), plot_height = c(600, 200, 2000), plot_width = NULL, pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_outliers.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Outliers analysis — tm_outliers","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. outlier_var (data_extract_spec list multiple data_extract_spec) Specifies variable(s) analyzed outliers. categorical_var (data_extract_spec list multiple data_extract_spec) optional, specifies categorical variable(s) split selected outlier variables . ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) optional, object created teal.widgets::ggplot2_args() settings plots named list ggplot2_args objects plot-specific settings. argument merged options variable teal.ggplot2_args default module setup. List names match following: c(\"default\", \"Boxplot\", \"Density Plot\", \"Cumulative Distribution Plot\"). details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\"). plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_outliers\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_outliers.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Outliers analysis — tm_outliers","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_outliers.html","id":"decorating-tm-outliers","dir":"Reference","previous_headings":"","what":"Decorating tm_outliers","title":"teal module: Outliers analysis — tm_outliers","text":"module generates following objects, can modified place using decorators: box_plot (ggplot2) density_plot (ggplot2) cumulative_plot (ggplot2) table (DT::datatable()) Decorators can applied outputs specific objects using named list teal_transform_module objects. \"default\" name reserved decorators applied outputs. See code snippet : additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal_transform_module() documentation.","code":"tm_outliers( ..., # arguments for module decorators = list( default = list(teal_transform_module(...)), # applied to all outputs box_plot = list(teal_transform_module(...)), # applied only to `box_plot` output density_plot = list(teal_transform_module(...)) # applied only to `density_plot` output cumulative_plot = list(teal_transform_module(...)) # applied only to `cumulative_plot` output table = list(teal_transform_module(...)) # applied only to `table` output ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_outliers.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Outliers analysis — tm_outliers","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_outliers.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Outliers analysis — tm_outliers","text":"","code":"# general data example data <- teal_data() data <- within(data, { CO2 <- CO2 CO2[[\"primary_key\"]] <- seq_len(nrow(CO2)) }) join_keys(data) <- join_keys(join_key(\"CO2\", \"CO2\", \"primary_key\")) vars <- choices_selected(variable_choices(data[[\"CO2\"]], c(\"Plant\", \"Type\", \"Treatment\"))) app <- init( data = data, modules = modules( tm_outliers( outlier_var = list( data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"conc\", \"uptake\")), selected = \"uptake\", multiple = FALSE, fixed = FALSE ) ) ), categorical_var = list( data_extract_spec( dataname = \"CO2\", filter = filter_spec( vars = vars, choices = value_choices(data[[\"CO2\"]], vars$selected), selected = value_choices(data[[\"CO2\"]], vars$selected), multiple = TRUE ) ) ) ) ) ) #> Initializing tm_outliers #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] fact_vars_adsl <- names(Filter(isTRUE, sapply(data[[\"ADSL\"]], is.factor))) vars <- choices_selected(variable_choices(data[[\"ADSL\"]], fact_vars_adsl)) app <- init( data = data, modules = modules( tm_outliers( outlier_var = list( data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ) ), categorical_var = list( data_extract_spec( dataname = \"ADSL\", filter = filter_spec( vars = vars, choices = value_choices(data[[\"ADSL\"]], vars$selected), selected = value_choices(data[[\"ADSL\"]], vars$selected), multiple = TRUE ) ) ) ) ) ) #> Initializing tm_outliers #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_t_crosstable.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Cross-table — tm_t_crosstable","title":"teal module: Cross-table — tm_t_crosstable","text":"Generates simple cross-table two variables dataset custom options showing percentages sub-totals.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_t_crosstable.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Cross-table — tm_t_crosstable","text":"","code":"tm_t_crosstable( label = \"Cross Table\", x, y, show_percentage = TRUE, show_total = TRUE, pre_output = NULL, post_output = NULL, basic_table_args = teal.widgets::basic_table_args(), decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_t_crosstable.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Cross-table — tm_t_crosstable","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. x (data_extract_spec list multiple data_extract_spec) Object available choices pre-selected option variable X - row values. case data_extract_spec use select_spec(..., ordered = TRUE) table elements rendered according selection order. y (data_extract_spec list multiple data_extract_spec) Object available choices pre-selected option variable Y - column values. data_extract_spec must allow multiple selection case. show_percentage (logical(1)) Indicates whether show percentages (relevant x factor). Defaults TRUE. show_total (logical(1)) Indicates whether show total column. Defaults TRUE. pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. basic_table_args (basic_table_args) object created teal.widgets::basic_table_args() settings module table. argument merged options variable teal.basic_table_args default module setup. details see vignette: vignette(\"custom-basic-table-arguments\", package = \"teal.widgets\") decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_t_crosstable\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_t_crosstable.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Cross-table — tm_t_crosstable","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_t_crosstable.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Cross-table — tm_t_crosstable","text":"examples, please see vignette \"Using cross table\" via vignette(\"using-cross-table\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_t_crosstable.html","id":"decorating-tm-t-crosstable","dir":"Reference","previous_headings":"","what":"Decorating tm_t_crosstable","title":"teal module: Cross-table — tm_t_crosstable","text":"module generates following objects, can modified place using decorators: table (ElementaryTable - output rtables::build_table) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_t_crosstable.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Cross-table — tm_t_crosstable","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_t_crosstable.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Cross-table — tm_t_crosstable","text":"","code":"# general data example data <- teal_data() data <- within(data, { mtcars <- mtcars for (v in c(\"cyl\", \"vs\", \"am\", \"gear\")) { mtcars[[v]] <- as.factor(mtcars[[v]]) } mtcars[[\"primary_key\"]] <- seq_len(nrow(mtcars)) }) join_keys(data) <- join_keys(join_key(\"mtcars\", \"mtcars\", \"primary_key\")) app <- init( data = data, modules = modules( tm_t_crosstable( label = \"Cross Table\", x = data_extract_spec( dataname = \"mtcars\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"mtcars\"]], c(\"cyl\", \"vs\", \"am\", \"gear\")), selected = c(\"cyl\", \"gear\"), multiple = TRUE, ordered = TRUE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"mtcars\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"mtcars\"]], c(\"cyl\", \"vs\", \"am\", \"gear\")), selected = \"vs\", multiple = FALSE, fixed = FALSE ) ) ) ) ) #> Initializing tm_t_crosstable #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_t_crosstable( label = \"Cross Table\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], subset = function(data) { idx <- !vapply(data, inherits, logical(1), c(\"Date\", \"POSIXct\", \"POSIXlt\")) return(names(data)[idx]) }), selected = \"COUNTRY\", multiple = TRUE, ordered = TRUE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], subset = function(data) { idx <- vapply(data, is.factor, logical(1)) return(names(data)[idx]) }), selected = \"SEX\", multiple = FALSE, fixed = FALSE ) ) ) ) ) #> Initializing tm_t_crosstable #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_variable_browser.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Variable browser — tm_variable_browser","title":"teal module: Variable browser — tm_variable_browser","text":"Module provides provides detailed summary visualization variable distributions data.frame objects, interactive features customize analysis.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_variable_browser.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Variable browser — tm_variable_browser","text":"","code":"tm_variable_browser( label = \"Variable Browser\", datasets_selected = character(0), parent_dataname = \"ADSL\", pre_output = NULL, post_output = NULL, ggplot2_args = teal.widgets::ggplot2_args() )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_variable_browser.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Variable browser — tm_variable_browser","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. datasets_selected (character) vector datasets shown, order. Names must correspond datasets names. vector length zero (default) datasets shown. Note: data.frame objects compatible; using types cause error. parent_dataname (character(1)) string specifying parent dataset. exists datasets_selectedthen extra checkbox shown allow users show variables datasets exist dataname. typically used remove ADSL columns CDISC data. non CDISC data can ignored. Defaults \"ADSL\". pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. ggplot2_args (ggplot2_args) object created teal.widgets::ggplot2_args() settings module plot. argument merged options variable teal.ggplot2_args default module setup. details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\")","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_variable_browser.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Variable browser — tm_variable_browser","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_variable_browser.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"teal module: Variable browser — tm_variable_browser","text":"Numeric columns fewer 30 distinct values can treated either discrete continuous checkbox allowing users switch treated(< 6 unique values default discrete, otherwise continuous).","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_variable_browser.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Variable browser — tm_variable_browser","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/tm_variable_browser.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Variable browser — tm_variable_browser","text":"","code":"# general data example data <- teal_data() data <- within(data, { iris <- iris mtcars <- mtcars women <- women faithful <- faithful CO2 <- CO2 }) app <- init( data = data, modules = modules( tm_variable_browser( label = \"Variable browser\" ) ) ) #> Initializing tm_variable_browser #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC example data library(sparkline) data <- teal_data() data <- within(data, { ADSL <- rADSL ADTTE <- rADTTE }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_variable_browser( label = \"Variable browser\" ) ) ) #> Initializing tm_variable_browser #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/validate_input.html","id":null,"dir":"Reference","previous_headings":"","what":"Validates the variable browser inputs — validate_input","title":"Validates the variable browser inputs — validate_input","text":"Validates variable browser inputs","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/validate_input.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Validates the variable browser inputs — validate_input","text":"","code":"validate_input(input, plot_var, data)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/validate_input.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Validates the variable browser inputs — validate_input","text":"input (session$input) shiny session input plot_var (list) list data frame array variable names data (teal_data) datasets passed module","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/validate_input.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Validates the variable browser inputs — validate_input","text":"logical TRUE validations pass; shiny validation error otherwise","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/var_missings_info.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarize NAs. — var_missings_info","title":"Summarize NAs. — var_missings_info","text":"Summarizes occurrence missing values vector.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/var_missings_info.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarize NAs. — var_missings_info","text":"","code":"var_missings_info(x)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/var_missings_info.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarize NAs. — var_missings_info","text":"x vector type length","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/var_missings_info.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarize NAs. — var_missings_info","text":"Character string describing NA occurrence.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/var_summary_table.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarizes variable — var_summary_table","title":"Summarizes variable — var_summary_table","text":"Creates html summary statistics relevant data type. numeric values returns central tendency measures, factor returns level counts, Date date range, just number levels.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/var_summary_table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarizes variable — var_summary_table","text":"","code":"var_summary_table(x, numeric_as_factor, dt_rows, outlier_definition)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/var_summary_table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarizes variable — var_summary_table","text":"x vector type numeric_as_factor logical numeric variable treated factor dt_rows numeric current/latest DT page length outlier_definition 0 outliers removed, otherwise outliers (outlier_definition*IQR /Q1/Q3 removed)","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/var_summary_table.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarizes variable — var_summary_table","text":"text simple statistics.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/variable_type_icons.html","id":null,"dir":"Reference","previous_headings":"","what":"Get icons to represent variable types in dataset — variable_type_icons","title":"Get icons to represent variable types in dataset — variable_type_icons","text":"Get icons represent variable types dataset","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/variable_type_icons.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get icons to represent variable types in dataset — variable_type_icons","text":"","code":"variable_type_icons(var_type)"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/variable_type_icons.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get icons to represent variable types in dataset — variable_type_icons","text":"var_type (character) R internal types (classes).","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/variable_type_icons.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get icons to represent variable types in dataset — variable_type_icons","text":"(character) vector HTML icons corresponding data type column.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/varname_w_label.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate a string for a variable including its label — varname_w_label","title":"Generate a string for a variable including its label — varname_w_label","text":"Generate string variable including label","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/varname_w_label.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate a string for a variable including its label — varname_w_label","text":"","code":"varname_w_label( var_names, dataset, wrap_width = 80, prefix = NULL, suffix = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/varname_w_label.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate a string for a variable including its label — varname_w_label","text":"var_names (character) Name variable extract labels . dataset (dataset) Name analysis dataset. wrap_width (numeric) Number characters wrap original label . Defaults 80. prefix, suffix (character) String paste beginning/end variable name label.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/reference/varname_w_label.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate a string for a variable including its label — varname_w_label","text":"(character) String variable name label.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tealmodulesgeneral-0309057","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.3.0.9057","title":"teal.modules.general 0.3.0.9057","text":"Removed Show Warnings modals modules.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"enhancements-0-3-0-9057","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.3.0.9057","text":"Added teal.logger functionality logging changes shiny inputs modules.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"bug-fixes-0-3-0-9057","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.3.0.9057","text":"Fixed bug tm_missing_data “Group Subject” using reactive data call.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tealmodulesgeneral-030","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.3.0","title":"teal.modules.general 0.3.0","text":"CRAN release: 2024-03-05","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"enhancements-0-3-0","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.3.0","text":"Updated package docs vignettes new way specifying data teal::init(). data argument accept teal_data object.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"bug-fixes-0-3-0","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.3.0","text":"Outlier labels longer appear bounds tm_a_regression. Fixed bug tm_outliers changing selected variable cause popup.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"miscellaneous-0-3-0","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.3.0","text":"Removed teal.slice dependencies. Specified minimal version package dependencies.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"breaking-changes-0-2-16","dir":"Changelog","previous_headings":"","what":"Breaking changes","title":"teal.modules.general 0.2.16","text":"Replaced chunks simpler qenv class. Replaced datasets argument containing FilteredData new arguments data (tdata object) filter_panel_api (FilterPanelAPI).","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"enhancements-0-2-16","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.16","text":"Added parent_dataname argument tm_variable_browser tm_missing_data allow specification parent dataset modules. Improved UI labels plot panel title tm_g_association. Added inputs tm_variable_browser module text size plot theme. Forced ggplot theme always selected modules. Updated encodings input checks use shinyvalidate::InputValidator instead shiny::validate better UI experience.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"bug-fixes-0-2-16","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.2.16","text":"Fixed bug tm_g_scatterplot selected x y facets . Fixed bug tm_g_distribution plot theoretical distribution newer ggplot2 version. Fixed bug tm_g_bivariate adding lines checkbox available one x y deselected. Fixed bug tm_variable_browser changing filters reset selected variable first list.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"miscellaneous-0-2-16","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.16","text":"Removed scda package dependency examples. Replaced deprecated ggplot2 functions ..count.., ..density.. ..prop... Version bump forcats dependency. Replaced scda data generation functions random.cdisc.data","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"enhancements-0-2-15","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.15","text":"Added teal.reporter functionality modules. Implemented nestcolor examples, refactored tm_a_pca tm_missing_data allow using nestcolor. Added log transformation options tm_g_scatterplot. Added server_rendering flag tm_data_table control whether table rendered server client side.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"bug-fixes-0-2-15","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.2.15","text":"Fixed overflow wide tm_a_pca tables. Fixed join type functionality tm_t_crosstable. Fixed bug tm_missing_data selecting variables missings. Fixed bug tm_missing_data using any_na.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"miscellaneous-0-2-15","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.15","text":"Moved packages used one module Imports Suggests DESCRIPTION file. Moved magrittr package Depends Imports DESCRIPTION file.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"enhancements-0-2-14","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.14","text":"New teal module tm_front_page simplify creating front page teal apps. Added slider widget control font size label tm_g_scatterplot. Output integers without decimal places selecting points tm_g_scatterplot. Improved names code chunks shown Debug Info. Improved validation message number regressors big tm_a_regression.R.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"bug-fixes-0-2-14","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.2.14","text":"Fixed wrong validation tm_a_pca. Fixed crash deselecting categorical factor tm_outliers.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"miscellaneous-0-2-14","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.14","text":"Added template pkgdown site. Updated package authors.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"enhancements-0-2-13","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.13","text":"Rewrote modules use moduleServer updated call plot_with_settings_srv changes teal.devel. Fixed tracking selection order data_extract_ui. selectors can return ordered selection one specifies ordered = TRUE select_spec. Switched order tm_missing_data combination plot show data descending order. Changed variable levels output tm_missing_data allow numerical sorting.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"miscellaneous-0-2-13","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.13","text":"Removed unneeded n row tm_t_crosstable. Replaced calls teal::root_modules teal::modules following deprecation teal::root_modules. Adjusted package imports take account changes teal framework. Added “Getting started teal.modules.general” vignette. Updated README file. Moved ggmosaic package Depends Imports DESCRIPTION file.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"enhancements-0-2-12","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.12","text":"Added support logging logger package added info level logs upon initialization module. Added support custom arguments ggplot2::labs ggplot2::theme plot based modules. Added support custom arguments rtables::basic_table tm_t_crosstable. Updated tm_outliers, tm_g_scatterplotmatrix, tm_g_association, tm_t_crosstable modules adopt new teal.transform::data_merge_srv teal.transform::data_extract_multiple_srv modules. Distinguished bars representing NA plot depicting counts tm_variable_browser different color fill. Modified summary statistics table numeric columns tm_variable_browser reflect plot outliers removed. Added option remove missing values tm_variable_browser histogram factor like variables. Added ability sort Variable Type tm_variable_browser separating variable type icons column. Updated Grouped Subject tab tm_missing_data module present data way Summary tab . Added support NA level grouping variable variable levels table tm_missing_data module. Added informative labels level grouping variable variable levels table tm_missing_data module. Added checkbox tm_g_scatterplot toggle option free x y axis scales whenever faceting arguments provided. Used browser-side processing tm_data_table Buttons extension download full table. Added example advanced usage DT module.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"bug-fixes-0-2-12","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.2.12","text":"Fixed error tm_variable_browser selected column logical(1). Fixed bugs modules’ vignette examples.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"miscellaneous-0-2-12","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.12","text":"Added R version requirement R >= 3.6. Removed input_id argument teal.transform::data_merge_module calls modules. Refactored defunct teal.devel::data_extract_input replacement teal.transform::data_extract_ui. Updated teal.transform::data_merge_srv use dplyr::inner_join instead dplyr::left_join tm_outliers module. Removed overlay statistics table tm_g_distribution module. Removed dependency test.nest package. Removed dependency utils.nest package replaced functions equivalents checkmate package.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"new-features-0-2-11","dir":"Changelog","previous_headings":"","what":"New features","title":"teal.modules.general 0.2.11","text":"new module, tm_file_viewer, added visualization static files. new module, tm_g_distribution, added distribution analysis.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"bug-fixes-0-2-11","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.2.11","text":"Fixed bar plot order factor variables tm_variable_browser.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_variable_browser-0-2-11","dir":"Changelog","previous_headings":"Enhancements","what":"tm_variable_browser","title":"teal.modules.general 0.2.11","text":"Added sparkline support Date/POSIXct/POSIXlt variable types. Fixed histograms contain least two bars.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_outliers-0-2-11","dir":"Changelog","previous_headings":"Enhancements","what":"tm_outliers","title":"teal.modules.general 0.2.11","text":"Added filter_spec support. Simplified returned R code. Support select_spec categorical variables.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_g_scatterplotmatrix-0-2-11","dir":"Changelog","previous_headings":"Enhancements","what":"tm_g_scatterplotmatrix","title":"teal.modules.general 0.2.11","text":"Added ordered select input support. Decoupled dataset list variables list parameters.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_g_association-0-2-11","dir":"Changelog","previous_headings":"Enhancements","what":"tm_g_association","title":"teal.modules.general 0.2.11","text":"Added ordered select input support.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_t_crosstable-0-2-11","dir":"Changelog","previous_headings":"Enhancements","what":"tm_t_crosstable","title":"teal.modules.general 0.2.11","text":"Added ordered select input support.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_g_scatterplot-0-2-11","dir":"Changelog","previous_headings":"Enhancements","what":"tm_g_scatterplot","title":"teal.modules.general 0.2.11","text":"Modified trend line feature scatterplot display raw equation equal actual y value actual x values plugged .","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"miscellaneous-0-2-11","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.11","text":"Updated LICENCE README new package references. Added error_on_lint: TRUE .lintr. Updated quantile type = 2 argument tm_variable_browser line STREAM.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"enhancements-0-2-10","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.10","text":"Refactored internal code modules optimize performance. Refactored tm_g_scatterplot compute trend line statistics using ggpmisc::stat_poly_eq simplify code labels group plot. Refactored tm_g_scatterplot enable filtering via Encoding Panel using new filter_spec functionality. Added support logical variables tm_variable_browser. Updated tm_outliers handle non-CDISC datasets. Updated UI tm_variable_browser factor character variables 30 levels. Updated sparklines remove NA values numeric variables. Added checkbox display number observations plot tm_g_scatterplot. Added validation statements tm_g_scatterplot handling users choosing one facet variable. Improved performance tm_variable_browser efficient sparkline generation. Added html code type datasets labels inside tm_missing_data. Improved styling tool tips tm_a_regression, tm_missing_data tm_variable_browser.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"enhancements-0-2-9","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.9","text":"Added download, enlarge resize graph options tm_variable_browser module. Added download expand options table tm_t_crosstable. Enabled selection custom datasets tm_variable_browser datasets_selected argument. Allowed dataset variables used grouping variables variable levels tab tm_missing_data, just selected displayed rows table. Enabled brushing points NA categories facetting tm_g_scatterplot.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"bug-fixes-0-2-9","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.2.9","text":"Added persistence number entries displayed data tables. Removed ‘treat variable factor’ checkbox tm_variable_browser graph shown. Fixed DT length reset tm_variable_browser “Show parent dataset variables” checkbox tick.","code":""},{"path":[]},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_outliers-0-2-8","dir":"Changelog","previous_headings":"New Module","what":"tm_outliers","title":"teal.modules.general 0.2.8","text":"Added new module tm_outliers analyze outliers datasets.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_g_scatterplot-0-2-8","dir":"Changelog","previous_headings":"Enhancements","what":"tm_g_scatterplot","title":"teal.modules.general 0.2.8","text":"Added max_deg optional argument scatterplot allow users choose maximum smoothing degree trend line. Added column row facetting functionality scatterplot. Added possibility specify type join tm_t_crosstable. Incorporate missings resulting non inner join.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"bug-fixes-0-2-8","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"teal.modules.general 0.2.8","text":"Fixed edge case errors tm_missing_data caused input dataset categorical variables data.frame instead tibble. Fixed tm_a_pca biplot plot coloring factor/character/numeric < 6 values variable. Fixed typo outlier definition tm_variable_browser.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"miscellaneous-0-2-8","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.8","text":"Sparklines longer shown numeric variables 100000 rows. Colors legend plot. Replaced \"Show variables ADSL\" checkbox general \"Show parent dataset variables\". Capitalize default module labels. outputs tm_missing_data conditional data CDISC data. Added pre_output post_output arguments tm_data_table, tm_missing_data, tm_variable_browser. Fixed issue tm_data_table selecting “show distinct rows” variable names non-alphanumeric characters.","code":""},{"path":[]},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_variable_browser-0-2-7","dir":"Changelog","previous_headings":"Enhancements","what":"tm_variable_browser","title":"teal.modules.general 0.2.7","text":"Introduced sparklines quick, inline variable summaries. Added option remove outliers. Histograms statistics tables now displayed variables type Date, POSIXct POSIXlt. Character variable summary statistics tables now displayed decreasing order occurrences instead alphabetical. Display number non-missing rows n statistics table numeric variables. Added ability treat numeric variables categorical. tm_variable_browser shows 30 50 levels divided 2 columns character/factor variables 30 unique levels.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_a_regression-0-2-7","dir":"Changelog","previous_headings":"Enhancements","what":"tm_a_regression","title":"teal.modules.general 0.2.7","text":"Added support outlier labels tm_a_regression provided additional optional argument, default_outlier_label can used specify default column used label outliers.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_g_scatterplot-0-2-7","dir":"Changelog","previous_headings":"Enhancements","what":"tm_g_scatterplot","title":"teal.modules.general 0.2.7","text":"Implemented trend line. Added marginal density plots. Added option display rug plot axes. Added shape point color arguments. latter users colourpicker::colourInput. Added size_by variable scatterplot allowed point size mapped numeric variable.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_missing_data-0-2-7","dir":"Changelog","previous_headings":"Enhancements","what":"tm_missing_data","title":"teal.modules.general 0.2.7","text":"Added bar chart missing data combination plot. Removed keys missing data combinations plot selected.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_g_bivariate-0-2-7","dir":"Changelog","previous_headings":"Enhancements","what":"tm_g_bivariate","title":"teal.modules.general 0.2.7","text":"Bivariate plots two continuous variables now allow adding lines. Show labels x axis selecting categorical variable fixed issues deselecting variables datasets encodings panel (including addition meaningful warnings).","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tm_a_pca-0-2-7","dir":"Changelog","previous_headings":"Enhancements","what":"tm_a_pca","title":"teal.modules.general 0.2.7","text":"Updated include Plot settings Plot specific settings.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"miscellaneous-0-2-7","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.7","text":"Integrated is_single_dataset argument data_extract_input function calls simplify encodings panel UI. Moved code argument cdisc_dataset (cdisc_data) examples vignettes. Require ggmosaic version >= 0.3.0.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tealmodulesgeneral-026","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.6","title":"teal.modules.general 0.2.6","text":"Adds additional plot settings themes tm_g_association, tm_g_response, tm_g_scatterplot, well point size opacity settings tm_g_association tm_g_scatterplot. Replace pickerInput optionalSelectInput tm_data_table. Adds new facet parameter tm_g_bivariate specify whether facet encodings elements visible user default. Replace plot_with_height module new plot_with_settings module. Missing data module now uses chunks get reproducible R code. New theme missing data module new label positioning. tm_data_table: allow developers pass arguments DT::dataTable use pickerInput select variables. tm_g_response new argument count_labels. Counts might assessed frequency plot . Moved missing data module summary plot footer elements tool tip encodings panels. Replaced base plots tm_a_regression ggplot2. Added optional slider adjust width plot_with_settings. Handle Inf data gracefully. tm_variable_browser now outputs summary table factors missing values.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tealmodulesgeneral-025","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.5","title":"teal.modules.general 0.2.5","text":"Adds ggplot call inside chunks modules. Pass dataname get_rcode_srv. Uses utils function standardize plot label generation. Improved handling variable labels. Removed “Add filter variable” button variable browser module. Scatterplot matrix module now automatically converts characters factors message.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tealmodulesgeneral-024","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.4","title":"teal.modules.general 0.2.4","text":"New PCA module. Documentation fix cross table module. Display variable labels drop-menu data table (#393). Optional subsetting ordering datasets tm_data_table. Use teal.code::chunks_push_data_merge include merge code reproducibility code. consistent coloring behavior bivariate plots. Updates missing data module. Updated graph axis labels following modules: bivariate plot, missing data, response plot, regression module, scatterplot, scatterplot matrix. Simplify scatterplot matrix display plot within one dataset .","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tealmodulesgeneral-023","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.3","title":"teal.modules.general 0.2.3","text":"Fixed naming tm_variable_browser. Correlation added Scatter Plot Matrix. Opacity slider added tm_bivariate. Fixes due bug teal.devel#313. Performance enhancements missing data module. Fix bug reactivity scatterplot matrix module.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tealmodulesgeneral-022","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.2","title":"teal.modules.general 0.2.2","text":"New module summarize missing data. Refactor variable browser module. Correct display density / frequency option bivariate plot.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tealmodulesgeneral-021","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.1","title":"teal.modules.general 0.2.1","text":"Fix magrittr loading reproducible code.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tealmodulesgeneral-020","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.0","title":"teal.modules.general 0.2.0","text":"Refactor functions data extract data merge. Create sample_app.R demonstrating teal.modules.general modules. Rename tm_table tm_cross_table. Include show R code modules. Merge tm_cross_table tm_t_percentage_table one module.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/main/news/index.html","id":"tealmodulesgeneral-010","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.1.0","title":"teal.modules.general 0.1.0","text":"Initial release.","code":""}] +[{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"members, contributors, leaders pledge make participation community harassment-free experience everyone, regardless age, body size, visible invisible disability, ethnicity, sex characteristics, gender identity expression, level experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, sexual identity orientation. pledge act interact ways contribute open, welcoming, diverse, inclusive, healthy community.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes positive environment community include: Demonstrating empathy kindness toward people respectful differing opinions, viewpoints, experiences Giving gracefully accepting constructive feedback Accepting responsibility apologizing affected mistakes, learning experience Focusing best just us individuals, overall community Examples unacceptable behavior include: use sexualized language imagery, sexual attention advances kind Trolling, insulting derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical email address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CODE_OF_CONDUCT.html","id":"enforcement-responsibilities","dir":"","previous_headings":"","what":"Enforcement Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Community leaders responsible clarifying enforcing standards acceptable behavior take appropriate fair corrective action response behavior deem inappropriate, threatening, offensive, harmful. Community leaders right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, communicate reasons moderation decisions appropriate.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within community spaces, also applies individual officially representing community public spaces. Examples representing community include using official e-mail address, posting via official social media account, acting appointed representative online offline event.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported community leaders responsible enforcement [INSERT CONTACT METHOD]. complaints reviewed investigated promptly fairly. community leaders obligated respect privacy security reporter incident.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CODE_OF_CONDUCT.html","id":"enforcement-guidelines","dir":"","previous_headings":"","what":"Enforcement Guidelines","title":"Contributor Covenant Code of Conduct","text":"Community leaders follow Community Impact Guidelines determining consequences action deem violation Code Conduct:","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CODE_OF_CONDUCT.html","id":"id_1-correction","dir":"","previous_headings":"Enforcement Guidelines","what":"1. Correction","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Use inappropriate language behavior deemed unprofessional unwelcome community. Consequence: private, written warning community leaders, providing clarity around nature violation explanation behavior inappropriate. public apology may requested.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CODE_OF_CONDUCT.html","id":"id_2-warning","dir":"","previous_headings":"Enforcement Guidelines","what":"2. Warning","title":"Contributor Covenant Code of Conduct","text":"Community Impact: violation single incident series actions. Consequence: warning consequences continued behavior. interaction people involved, including unsolicited interaction enforcing Code Conduct, specified period time. includes avoiding interactions community spaces well external channels like social media. Violating terms may lead temporary permanent ban.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CODE_OF_CONDUCT.html","id":"id_3-temporary-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"3. Temporary Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: serious violation community standards, including sustained inappropriate behavior. Consequence: temporary ban sort interaction public communication community specified period time. public private interaction people involved, including unsolicited interaction enforcing Code Conduct, allowed period. Violating terms may lead permanent ban.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CODE_OF_CONDUCT.html","id":"id_4-permanent-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"4. Permanent Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Demonstrating pattern violation community standards, including sustained inappropriate behavior, harassment individual, aggression toward disparagement classes individuals. Consequence: permanent ban sort public interaction within community.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 2.1, available https://www.contributor-covenant.org/version/2/1/code_of_conduct.html. Community Impact Guidelines inspired Mozilla’s code conduct enforcement ladder. answers common questions code conduct, see FAQ https://www.contributor-covenant.org/faq. Translations available https://www.contributor-covenant.org/translations.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contribution Guidelines","title":"Contribution Guidelines","text":"🙏 Thank taking time contribute! input deeply valued, whether issue, pull request, even feedback, regardless size, content scope.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"table-of-contents","dir":"","previous_headings":"","what":"Table of contents","title":"Contribution Guidelines","text":"👶 Getting started 📔 Code Conduct 🗃 License 📜 Issues 🚩 Pull requests 💻 Coding guidelines 🏆 Recognition model ❓ Questions","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"getting-started","dir":"","previous_headings":"","what":"Getting started","title":"Contribution Guidelines","text":"Please refer project documentation brief introduction. Please also see articles within project documentation additional information.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contribution Guidelines","text":"Code Conduct governs project. Participants contributors expected follow rules outlined therein.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"license","dir":"","previous_headings":"","what":"License","title":"Contribution Guidelines","text":"contributions covered project’s license.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"issues","dir":"","previous_headings":"","what":"Issues","title":"Contribution Guidelines","text":"use GitHub track issues, feature requests, bugs. submitting new issue, please check issue already reported. issue already exists, please upvote existing issue 👍. new feature requests, please elaborate context benefit feature users, developers, relevant personas.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"github-flow","dir":"","previous_headings":"Pull requests","what":"GitHub Flow","title":"Contribution Guidelines","text":"repository uses GitHub Flow model collaboration. submit pull request: Create branch Please see branch naming convention . don’t write access repository, please fork . Make changes Make sure code passes checks imposed GitHub Actions well documented well tested unit tests sufficiently covering changes introduced Create pull request (PR) pull request description, please link relevant issue (), provide detailed description change, include assumptions. Address review comments, Post approval Merge PR write access. Otherwise, reviewer merge PR behalf. Pat back Congratulations! 🎉 now official contributor project! grateful contribution.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"branch-naming-convention","dir":"","previous_headings":"Pull requests","what":"Branch naming convention","title":"Contribution Guidelines","text":"Suppose changes related current issue current project; please name branch follows: _. Please use underscore (_) delimiter word separation. example, 420_fix_ui_bug suitable branch name change resolving UI-related bug reported issue number 420 current project. change affects multiple repositories, please name branches follows: __. example, 69_awesomeproject_fix_spelling_error reference issue 69 reported project awesomeproject aims resolve one spelling errors multiple (likely related) repositories.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"monorepo-and-stageddependencies","dir":"","previous_headings":"Pull requests","what":"monorepo and staged.dependencies","title":"Contribution Guidelines","text":"Sometimes might need change upstream dependent package(s) able submit meaningful change. using staged.dependencies functionality simulate monorepo behavior. dependency configuration already specified project’s staged_dependencies.yaml file. need name feature branches appropriately. exception branch naming convention described . Please refer staged.dependencies package documentation details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"coding-guidelines","dir":"","previous_headings":"","what":"Coding guidelines","title":"Contribution Guidelines","text":"repository follows unified processes standards adopted maintainers ensure software development carried consistently within teams cohesively across repositories.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"style-guide","dir":"","previous_headings":"Coding guidelines","what":"Style guide","title":"Contribution Guidelines","text":"repository follows standard tidyverse style guide uses lintr lint checks. Customized lint configurations available repository’s .lintr file.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"dependency-management","dir":"","previous_headings":"Coding guidelines","what":"Dependency management","title":"Contribution Guidelines","text":"Lightweight right weight. repository follows tinyverse recommedations limiting dependencies minimum.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"dependency-version-management","dir":"","previous_headings":"Coding guidelines","what":"Dependency version management","title":"Contribution Guidelines","text":"code compatible (!) historical versions given dependenct package, required specify minimal version DESCRIPTION file. particular: development version requires (imports) development version another package - required put abc (>= 1.2.3.9000).","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"r--package-versions","dir":"","previous_headings":"Coding guidelines > Recommended development environment & tools","what":"R & package versions","title":"Contribution Guidelines","text":"continuously test packages newest R version along recent dependencies CRAN BioConductor. recommend working environment also set way. can find details R version packages used R CMD check GitHub Action execution log - step prints R sessionInfo(). discover bugs older R versions older set dependencies, please create relevant bug reports.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"pre-commit","dir":"","previous_headings":"Coding guidelines > Recommended development environment & tools","what":"pre-commit","title":"Contribution Guidelines","text":"highly recommend use pre-commit tool combined R hooks pre-commit execute checks committing pushing changes. Pre-commit hooks already available repository’s .pre-commit-config.yaml file.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"recognition-model","dir":"","previous_headings":"","what":"Recognition model","title":"Contribution Guidelines","text":"mentioned previously, contributions deeply valued appreciated. contribution data available part repository insights, recognize significant contribution hence add contributor package authors list, following rules enforced: Minimum 5% lines code authored* (determined git blame query) top 5 contributors terms number commits lines added lines removed* *Excluding auto-generated code, including limited roxygen comments renv.lock files. package maintainer also reserves right adjust criteria recognize contributions.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/CONTRIBUTING.html","id":"questions","dir":"","previous_headings":"","what":"Questions","title":"Contribution Guidelines","text":"questions regarding contribution guidelines, please contact package/repository maintainer.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/SECURITY.html","id":"reporting-security-issues","dir":"","previous_headings":"","what":"Reporting Security Issues","title":"Security Policy","text":"believe found security vulnerability repositories organization, please report us coordinated disclosure. Please report security vulnerabilities public GitHub issues, discussions, pull requests. Instead, please send email vulnerability.management[@]roche.com. Please include much information listed can help us better understand resolve issue: type issue (e.g., buffer overflow, SQL injection, cross-site scripting) Full paths source file(s) related manifestation issue location affected source code (tag/branch/commit direct URL) special configuration required reproduce issue Step--step instructions reproduce issue Proof--concept exploit code (possible) Impact issue, including attacker might exploit issue information help us triage report quickly.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/SECURITY.html","id":"data-security-standards-dss","dir":"","previous_headings":"","what":"Data Security Standards (DSS)","title":"Security Policy","text":"Please make sure reporting issues form bug, feature, pull request, sensitive information PII, PHI, PCI completely removed text attachments, including pictures videos.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/teal-modules-general.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Getting started with teal.modules.general","text":"teal extends shiny framework, enabling creation interactive GUI applications using R. shiny, tealfacilitate development extensive applications combining small, decoupled modules. teal.modules.general package consist collection modules essential developing teal applications. “general” sense intended functions modules fundamental. contrasts specialized focus clinical data found teal.modules.clinical package. modules teal.modules.general can used conjunction modules teal.modules.clinical / shiny modules build large teal / shiny app. concepts presented require knowledge core features teal, specifically launch teal application pass data . Therefore, highly recommended refer README file introductory vignette teal package. See also teal.modules.clinical’s README.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/teal-modules-general.html","id":"main-features","dir":"Articles","previous_headings":"","what":"Main features","title":"Getting started with teal.modules.general","text":"five areas data science teal.modules.general provides tools solutions (modules) : viewing data tabular formats visualizing data plots graphs viewing data files directory examining missing extreme values data performing data analysis See package functions / modules.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/teal-modules-general.html","id":"example-application","dir":"Articles","previous_headings":"","what":"Example application","title":"Getting started with teal.modules.general","text":"simple application featuring tm_variable_browser() module:","code":"# load libraries library(teal.modules.general) library(teal.widgets) library(sparkline) # teal_data object data <- teal_data() data <- within(data, { ADSL <- rADSL ADTTE <- rADTTE }) join_keys(data) <- default_cdisc_join_keys[names(data)] # tm_variable_browser module tm_variable_browser_module <- tm_variable_browser( label = \"Variable browser\", ggplot2_args = ggplot2_args( labs = list(subtitle = \"Plot generated by Variable Browser Module\") ) ) # initialize the app app <- init( data = data, modules = modules(tm_variable_browser_module) ) shinyApp(app$ui, app$server)"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/teal-modules-general.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"","what":"Try it out in Shinylive","title":"Getting started with teal.modules.general","text":"Open Shinylive Let’s break app pieces: 1: Load necessary libraries data. 2: Construct teal_data object containing serve source data teal app. teal_data encapsulates data app, also houses code required create data maintain reproducibility. , create empty teal_data object evaluate code produce data within teal_data object, code data stored together. Following , set datanames join_keys. 3: Initialize teal application specified data modules, case, module: tm_variable_browser, datasets:ADSL ADTTE. shiny::shinyApp() use ui server component initialize teal app. teal app, data modules decoupled. app : app developer specified data assigned data argument. app developer specified module assigned modules argument. init function took arguments returned list containing ui server object, can demonstrated running:","code":"library(teal.modules.general) library(teal.widgets) data <- teal_data() data <- within(data, { ADSL <- rADSL ADTTE <- rADTTE }) join_keys(data) <- default_cdisc_join_keys[names(data)] tm_variable_browser_module <- tm_variable_browser( # module name to display in the GUI label = \"Variable browser\", # this argument takes a set of arguments to pass to ggplot2. # the arguments must have the same names as its ggplot2 counterpart, e.g. `subtitle` ggplot2_args = ggplot2_args( labs = list(subtitle = \"Plot generated by Variable Browser Module\") ) ) app <- init( data = data, modules = modules(tm_variable_browser_module) ) shinyApp(app$ui, app$server) class(app) ## [1] \"list\" names(app) ## [1] \"ui\" \"server\""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-association-plot.html","id":"teal-application-to-use-association-plot-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use association plot with various datasets types","title":"Using association plot","text":"vignette guide four parts create teal application using various types datasets using association plot module tm_g_association(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-association-plot.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use association plot with various datasets types","what":"1 - Load libraries","title":"Using association plot","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-association-plot.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use association plot with various datasets types","what":"2 - Create data sets","title":"Using association plot","text":"Inside app 4 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.modules.general::rADRS ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-association-plot.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use association plot with various datasets types","what":"3 - Create an app variable","title":"Using association plot","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_g_association() using different combinations data sets.","code":"# configuration for a single wide dataset mod1 <- tm_g_association( label = \"Single wide dataset\", ref = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"AGE\", fixed = FALSE ) ), vars = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"BMRKR1\", multiple = TRUE, fixed = FALSE ) ) ) # configuration for two wide datasets mod2 <- tm_g_association( label = \"Two wide datasets\", ref = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\", \"STRATA1\", \"RACE\")), selected = \"STRATA1\", multiple = FALSE, fixed = FALSE ) ), vars = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\", \"RACE\", \"COUNTRY\")), selected = c(\"AGE\", \"COUNTRY\", \"RACE\"), multiple = TRUE, fixed = FALSE ) ) ) # configuration for multiple long datasets mod3 <- tm_g_association( label = \"Multiple different long datasets\", ref = data_extract_spec( dataname = \"ADTTE\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADTTE\"]]), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ), filter = filter_spec( label = \"Select endpoint:\", vars = \"PARAMCD\", choices = value_choices(data[[\"ADTTE\"]], \"PARAMCD\", \"PARAM\"), selected = c(\"PFS\", \"EFS\"), multiple = TRUE ) ), vars = data_extract_spec( dataname = \"ADRS\", reshape = TRUE, select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADRS\"]], c(\"AVALC\", \"BMRKR1\", \"BMRKR2\", \"ARM\")), selected = \"AVALC\", multiple = TRUE, fixed = FALSE ), filter = list( filter_spec( label = \"Select endpoints:\", vars = \"PARAMCD\", choices = value_choices(data[[\"ADRS\"]], \"PARAMCD\", \"PARAM\"), selected = \"BESRSPI\", multiple = TRUE ), filter_spec( label = \"Select endpoints:\", vars = \"AVISIT\", choices = levels(data[[\"ADRS\"]]$AVISIT), selected = \"SCREENING\", multiple = TRUE ) ) ) ) # configuration for wide and long datasets mod4 <- tm_g_association( label = \"Wide and long datasets\", ref = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVAL\", \"AVALC\")), selected = \"AVALC\", multiple = FALSE, fixed = FALSE, label = \"Selected variable:\" ), filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADRS\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADRS\"]]$PARAMCD), multiple = TRUE, label = \"Select response\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADRS\"]]$AVISIT), selected = levels(data[[\"ADRS\"]]$AVISIT), multiple = TRUE, label = \"Select visit:\" ) ) ), vars = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"AGE\", \"RACE\", \"COUNTRY\", \"BMRKR1\", \"STRATA1\", \"ARM\")), selected = \"AGE\", multiple = TRUE, fixed = FALSE, label = \"Select variable:\" ) ) ) # configuration for the same long dataset (same subsets) mod5 <- tm_g_association( label = \"Same long datasets (same subsets)\", ref = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]]), selected = \"AVALC\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), vars = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]]), selected = \"PARAMCD\", multiple = TRUE, fixed = FALSE, label = \"Select variable:\" ) ) ) # configuration for the same long dataset (different subsets) mod6 <- tm_g_association( label = \"Same long datasets (different subsets)\", ref = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"AVAL\", \"CHG2\", \"PCHG2\")), selected = \"AVAL\", multiple = FALSE ) ), vars = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select labs:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]]), selected = \"STRATA1\", multiple = TRUE ) ) ) # initialize the app app <- init( data = data, modules = modules( # tm_g_association ---- modules( label = \"Association plot\", mod1, mod2, mod3, mod4, mod5, mod6 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-association-plot.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use association plot with various datasets types","what":"4 - Run the app","title":"Using association plot","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-association-plot.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use association plot with various datasets types","what":"5 - Try it out in Shinylive","title":"Using association plot","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-bivariate-plot.html","id":"teal-application-to-use-bivariate-plot-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use bivariate plot with various datasets types","title":"Using bivariate plot","text":"vignette guide four parts create teal application using various types datasets using bivariate plot module tm_g_bivariate(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-bivariate-plot.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use bivariate plot with various datasets types","what":"1 - Load libraries","title":"Using bivariate plot","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-bivariate-plot.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use bivariate plot with various datasets types","what":"2 - Create data sets","title":"Using bivariate plot","text":"Inside app 4 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.modules.general::rADRS ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-bivariate-plot.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use bivariate plot with various datasets types","what":"3 - Create an app variable","title":"Using bivariate plot","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_g_bivariate() using different combinations data sets.","code":"# configuration for the single wide dataset mod1 <- tm_g_bivariate( label = \"Single wide dataset\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"BMRKR1\", fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"SEX\", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]]), selected = NULL, multiple = FALSE, fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]]), selected = NULL, multiple = FALSE, fixed = FALSE ) ) ) # configuration for the two wide datasets mod2 <- tm_g_bivariate( label = \"Two wide datasets\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"AGE\", \"SEX\", \"STRATA1\", \"RACE\")), selected = c(\"BMRKR1\"), multiple = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"COUNTRY\", \"AGE\", \"RACE\")), selected = \"RACE\", multiple = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = NULL, multiple = FALSE, fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]]), selected = NULL, multiple = FALSE, fixed = FALSE ) ) ) # configuration for the multiple different long datasets mod3 <- tm_g_bivariate( label = \"Multiple different long datasets\", x = data_extract_spec( dataname = \"ADRS\", filter = filter_spec( label = \"Select endpoints:\", vars = c(\"PARAMCD\", \"AVISIT\"), choices = value_choices(data[[\"ADRS\"]], c(\"PARAMCD\", \"AVISIT\"), c(\"PARAM\", \"AVISIT\")), selected = \"OVRINV - END OF INDUCTION\", multiple = TRUE ), select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVALC\", \"AVAL\")), selected = \"AVALC\", multiple = FALSE ) ), y = data_extract_spec( dataname = \"ADTTE\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADTTE\"]], c(\"AVAL\", \"CNSR\")), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ), filter = filter_spec( label = \"Select endpoint:\", vars = c(\"PARAMCD\"), choices = value_choices(data[[\"ADTTE\"]], \"PARAMCD\", \"PARAM\"), selected = \"OS\", multiple = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADRS\", filter = filter_spec( label = \"Select endpoints:\", vars = c(\"PARAMCD\", \"AVISIT\"), choices = value_choices(data[[\"ADRS\"]], c(\"PARAMCD\", \"AVISIT\"), c(\"PARAM\", \"AVISIT\")), selected = \"OVRINV - SCREENING\", multiple = TRUE ), select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADRS\"]], c(\"SEX\", \"RACE\", \"COUNTRY\", \"ARM\", \"PARAMCD\", \"AVISIT\")), selected = \"SEX\", multiple = FALSE, fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\")), selected = NULL, multiple = FALSE, fixed = FALSE ) ), color_settings = TRUE, color = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), fill = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), size = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), plot_height = c(600, 200, 2000), ggtheme = \"gray\" ) # configuration for the wide and long datasets mod4 <- tm_g_bivariate( label = \"Wide and long datasets\", x = data_extract_spec( dataname = \"ADRS\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADRS\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADRS\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select response:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADRS\"]]$AVISIT), selected = levels(data[[\"ADRS\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVALC\", \"AVAL\")), selected = \"AVALC\", multiple = FALSE, label = \"Select variable:\" ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"SEX\", \"AGE\", \"RACE\", \"COUNTRY\")), selected = \"BMRKR1\", multiple = FALSE, label = \"Select variable:\", fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"SEX\", \"RACE\", \"ARMCD\", \"PARAMCD\")), selected = \"SEX\", multiple = FALSE, label = \"Select variable:\" ) ), col_facet = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"SEX\", \"RACE\", \"ARMCD\", \"PARAMCD\", \"AVISIT\")), selected = \"ARMCD\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ) ) # configuration for the wide and multiple long datasets mod5 <- tm_g_bivariate( label = \"Wide and multiple long datasets\", x = data_extract_spec( dataname = \"ADRS\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADRS\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADRS\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select response:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADRS\"]]$AVISIT), selected = levels(data[[\"ADRS\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVALC\", \"AVAL\")), selected = \"AVALC\", multiple = FALSE, label = \"Select variable:\" ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"SEX\", \"AGE\", \"RACE\", \"COUNTRY\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select measurement:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = \"ARMCD\", selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"AGE\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), color_settings = TRUE, color = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), fill = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), size = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), plot_height = c(600, 200, 2000), ggtheme = \"gray\" ) # Configuration for the same long datasets (same subset) mod6 <- tm_g_bivariate( label = \"Same long datasets (same subset)\", x = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVALC\", \"AVAL\")), selected = \"AVALC\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), y = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"SEX\", \"RACE\", \"COUNTRY\", \"ARMCD\", \"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), row_facet = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVISIT\", \"PARAMCD\")), selected = \"PARAMCD\", multiple = FALSE, label = \"Select variables:\" ) ), col_facet = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVISIT\", \"PARAMCD\")), selected = \"AVISIT\", multiple = FALSE, label = \"Select variables:\" ) ) ) # Configuration for the same datasets (different subsets) mod7 <- tm_g_bivariate( label = \"Same datasets (different subsets)\", x = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), y = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), use_density = FALSE, row_facet = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select category:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"RACE\", \"SEX\", \"ARMCD\", \"ACTARMCD\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), col_facet = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select category:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"RACE\", \"SEX\", \"ARMCD\", \"ACTARMCD\")), selected = \"ARMCD\", multiple = FALSE, fixed = FALSE, label = \"Select variables:\" ) ), color_settings = TRUE, color = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), fill = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), size = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), plot_height = c(600, 200, 2000), ggtheme = \"gray\" ) # initialize the app app <- init( data = data, modules = modules( # tm_g_bivariate ------ modules( label = \"Bivariate plot\", mod1, mod2, mod3, mod4, mod5, mod6, mod7 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-bivariate-plot.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use bivariate plot with various datasets types","what":"4 - Run the app","title":"Using bivariate plot","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-bivariate-plot.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use bivariate plot with various datasets types","what":"5 - Try it out in Shinylive","title":"Using bivariate plot","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-cross-table.html","id":"teal-application-to-use-cross-table-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use cross table with various datasets types","title":"Using cross table","text":"vignette guide four parts create teal application using various types datasets using cross table module tm_t_crosstable(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-cross-table.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use cross table with various datasets types","what":"1 - Load libraries","title":"Using cross table","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets library(rtables)"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-cross-table.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use cross table with various datasets types","what":"2 - Create data sets","title":"Using cross table","text":"Inside app 2 datasets used ADSL wide data set subject data ADLB long data set lab measurements subject","code":"data <- within(data, { ADSL <- teal.modules.general::rADSL ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-cross-table.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use cross table with various datasets types","what":"3 - Create an app variable","title":"Using cross table","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_t_crosstable() using different combinations data sets.","code":"# configuration for the single wide dataset mod1 <- tm_t_crosstable( label = \"Single wide dataset\", x = data_extract_spec( \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = names(data[[\"ADSL\"]])[5], multiple = TRUE, fixed = FALSE, ordered = TRUE ) ), y = data_extract_spec( \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = names(data[[\"ADSL\"]])[6], multiple = FALSE, fixed = FALSE ) ) ) # configuration for the same long datasets (different subsets) mod2 <- tm_t_crosstable( label = \"Same long datasets (different subsets)\", x = data_extract_spec( dataname = \"ADLB\", filter = filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]]), selected = \"AVISIT\", multiple = TRUE, fixed = FALSE, ordered = TRUE, label = \"Select variable:\" ) ), y = data_extract_spec( dataname = \"ADLB\", filter = filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]]), selected = \"LOQFL\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ) ) # initialize the app app <- init( data = data, modules = modules( modules( label = \"Cross table\", mod1, mod2 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-cross-table.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use cross table with various datasets types","what":"4 - Run the app","title":"Using cross table","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-cross-table.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use cross table with various datasets types","what":"5 - Try it out in Shinylive","title":"Using cross table","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-data-table.html","id":"teal-application-to-display-data-table-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to display data table with various datasets types","title":"Using data table","text":"vignette guide four parts create teal application using various types datasets using data table module tm_data_table(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-data-table.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to display data table with various datasets types","what":"1 - Load libraries","title":"Using data table","text":"","code":"library(teal.modules.general) # used to create the app"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-data-table.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to display data table with various datasets types","what":"2 - Create data sets","title":"Using data table","text":"Inside app 3 datasets used ADSL wide data set subject data ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-data-table.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to display data table with various datasets types","what":"3 - Create an app variable","title":"Using data table","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_data_table() using different combinations data sets.","code":"# configuration for the two-datasets example mod1 <- tm_data_table( label = \"Two datasets\", variables_selected = list( ADSL = c(\"STUDYID\", \"USUBJID\", \"SUBJID\", \"SITEID\", \"AGE\", \"SEX\"), ADTTE = c( \"STUDYID\", \"USUBJID\", \"SUBJID\", \"SITEID\", \"PARAM\", \"PARAMCD\", \"ARM\", \"ARMCD\", \"AVAL\", \"CNSR\" ) ) ) # configuration for the subsetting or changing order of datasets mod2 <- tm_data_table( label = \"Datasets order\", variables_selected = list( ADSL = c(\"STUDYID\", \"USUBJID\", \"SUBJID\", \"SITEID\", \"AGE\", \"SEX\"), ADLB = c( \"STUDYID\", \"USUBJID\", \"SUBJID\", \"SITEID\", \"PARAM\", \"PARAMCD\", \"AVISIT\", \"AVISITN\", \"AVAL\", \"CHG\" ) ), datasets_selected = c(\"ADTTE\", \"ADLB\", \"ADSL\") ) # configuration for the advanced usage of DT options and extensions mod3 <- tm_data_table( label = \"Advanced DT usage\", dt_args = list(extensions = c(\"Buttons\", \"ColReorder\", \"FixedHeader\")), dt_options = list( searching = FALSE, pageLength = 30, lengthMenu = c(5, 15, 25, 50, 100), scrollX = FALSE, dom = \"lBrtip\", buttons = c(\"copy\", \"csv\", \"excel\", \"pdf\", \"print\"), colReorder = TRUE, fixedHeader = TRUE ) ) # initialize the app app <- init( data = data, modules = modules( mod1, mod2, mod3 ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-data-table.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to display data table with various datasets types","what":"4 - Run the app","title":"Using data table","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-data-table.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to display data table with various datasets types","what":"5 - Try it out in Shinylive","title":"Using data table","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-outliers-module.html","id":"teal-application-to-analyze-and-report-outliers-with-various-datasets-types-","dir":"Articles","previous_headings":"","what":"teal application to analyze and report outliers with various datasets types.","title":"Using outliers module","text":"vignette guide four parts create teal application using various types datasets using outliers module tm_outliers(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-outliers-module.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to analyze and report outliers with various datasets types.","what":"1 - Load libraries","title":"Using outliers module","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-outliers-module.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to analyze and report outliers with various datasets types.","what":"2 - Create data sets","title":"Using outliers module","text":"Inside app 3 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL ADRS <- teal.modules.general::rADRS ADLB <- teal.modules.general::rADLB }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-outliers-module.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to analyze and report outliers with various datasets types.","what":"3 - Create an app variable","title":"Using outliers module","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_outliers() using different combinations data sets.","code":"# configuration for the single wide dataset mod1 <- tm_outliers( label = \"Single wide dataset\", outlier_var = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = \"AGE\", fixed = FALSE ) ), categorical_var = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices( data[[\"ADSL\"]], subset = names(Filter(isTRUE, sapply(data[[\"ADSL\"]], is.factor))) ), selected = \"RACE\", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the wide and long datasets mod2 <- tm_outliers( label = \"Wide and long datasets\", outlier_var = list( data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = \"AGE\", fixed = FALSE ) ), data_extract_spec( dataname = \"ADLB\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADLB\"]], c(\"AVAL\", \"CHG2\")), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ) ) ), categorical_var = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices( data[[\"ADSL\"]], subset = names(Filter(isTRUE, sapply(data[[\"ADSL\"]], is.factor))) ), selected = \"RACE\", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the multiple long datasets mod3 <- tm_outliers( label = \"Multiple long datasets\", outlier_var = list( data_extract_spec( dataname = \"ADRS\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADRS\"]], c(\"ADY\", \"EOSDY\")), selected = \"ADY\", fixed = FALSE ) ), data_extract_spec( dataname = \"ADLB\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADLB\"]], c(\"AVAL\", \"CHG2\")), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ) ) ), categorical_var = list( data_extract_spec( dataname = \"ADRS\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADRS\"]], c(\"ARM\", \"ACTARM\")), selected = \"ARM\", multiple = FALSE, fixed = FALSE ) ), data_extract_spec( dataname = \"ADLB\", select = select_spec( label = \"Select variables:\", choices = variable_choices( data[[\"ADLB\"]], subset = names(Filter(isTRUE, sapply(data[[\"ADLB\"]], is.factor))) ), selected = \"RACE\", multiple = FALSE, fixed = FALSE ) ) ) ) # initialize the app app <- init( data = data, modules = modules( # tm_outliers ---- modules( label = \"Outliers module\", mod1, mod2, mod3 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-outliers-module.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to analyze and report outliers with various datasets types.","what":"4 - Run the app","title":"Using outliers module","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-outliers-module.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to analyze and report outliers with various datasets types.","what":"5 - Try it out in Shinylive","title":"Using outliers module","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-regression-plots.html","id":"teal-application-to-use-regression-plot-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use regression plot with various datasets types","title":"Using regression plots","text":"vignette guide four parts create teal application using various types datasets using regression plot module tm_a_regression(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-regression-plots.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use regression plot with various datasets types","what":"1 - Load libraries","title":"Using regression plots","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-regression-plots.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use regression plot with various datasets types","what":"2 - Create data sets","title":"Using regression plots","text":"Inside app 4 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.modules.general::rADRS ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-regression-plots.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use regression plot with various datasets types","what":"3 - Create an app variable","title":"Using regression plots","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_a_regression() using different combinations data sets.","code":"# configuration for the single wide dataset mod1 <- tm_a_regression( label = \"Single wide dataset\", response = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), regressor = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\", \"RACE\")), selected = \"AGE\", multiple = TRUE, fixed = FALSE ) ) ) # configuration for the two wide datasets mod2 <- tm_a_regression( label = \"Two wide datasets\", default_plot_type = 2, response = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), regressor = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\", \"RACE\")), selected = c(\"AGE\", \"RACE\"), multiple = TRUE, fixed = FALSE ) ) ) # configuration for the same long datasets (same subset) mod3 <- tm_a_regression( label = \"Same long datasets (same subset)\", default_plot_type = 2, response = data_extract_spec( dataname = \"ADTTE\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADTTE\"]], c(\"AVAL\", \"CNSR\")), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ), filter = filter_spec( label = \"Select parameter:\", vars = \"PARAMCD\", choices = value_choices(data[[\"ADTTE\"]], \"PARAMCD\", \"PARAM\"), selected = \"PFS\", multiple = FALSE ) ), regressor = data_extract_spec( dataname = \"ADTTE\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADTTE\"]], c(\"AGE\", \"CNSR\", \"SEX\")), selected = c(\"AGE\", \"CNSR\", \"SEX\"), multiple = TRUE ), filter = filter_spec( label = \"Select parameter:\", vars = \"PARAMCD\", choices = value_choices(data[[\"ADTTE\"]], \"PARAMCD\", \"PARAM\"), selected = \"PFS\", multiple = FALSE ) ) ) # configuration for the wide and long datasets mod4 <- tm_a_regression( label = \"Wide and long datasets\", response = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[2], multiple = TRUE, label = \"Select measurement:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[2], multiple = TRUE, label = \"Select visit:\" ) ), select = select_spec( label = \"Select variable:\", choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), regressor = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"BMRKR2\", \"AGE\")), selected = \"AGE\", multiple = TRUE, fixed = FALSE ) ) ) # configuration for the same long datasets (different subsets) mod5 <- tm_a_regression( label = \"Same long datasets (different subsets)\", default_plot_type = 2, response = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = TRUE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = TRUE, label = \"Select visit:\" ) ), select = select_spec( choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), regressor = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select labs:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"AVAL\", \"AGE\", \"BMRKR1\", \"BMRKR2\", \"SEX\", \"ARM\")), selected = c(\"AVAL\", \"BMRKR1\"), multiple = TRUE ) ) ) # initialize the app app <- init( data = data, modules = modules( modules( label = \"Regression plots\", mod1, mod2, mod3, mod4, mod5 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-regression-plots.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use regression plot with various datasets types","what":"4 - Run the app","title":"Using regression plots","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-regression-plots.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use regression plot with various datasets types","what":"5 - Try it out in Shinylive","title":"Using regression plots","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-response-plot.html","id":"teal-application-to-use-response-plot-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use response plot with various datasets types","title":"Using response plot","text":"vignette guide four parts create teal application using various types datasets using response plot module tm_g_response(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-response-plot.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use response plot with various datasets types","what":"1 - Load libraries","title":"Using response plot","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-response-plot.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use response plot with various datasets types","what":"2 - Create data sets","title":"Using response plot","text":"Inside app 4 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.modules.general::rADRS ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-response-plot.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use response plot with various datasets types","what":"3 - Create an app variable","title":"Using response plot","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_g_response() using different combinations data sets.","code":"# configuration for the single wide dataset mod1 <- tm_g_response( label = \"Single wide dataset\", response = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR2\", \"ITTFL\", \"BEP01FL\")), selected = \"BMRKR2\", multiple = FALSE, fixed = FALSE ) ), x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\", \"ARMCD\", \"STRATA1\")), selected = \"ARMCD\", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the two wide datasets mod2 <- tm_g_response( label = \"Two wide datasets\", response = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR2\", \"ITTFL\", \"BEP01FL\")), selected = \"BMRKR2\", multiple = FALSE ) ), x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = c(\"SEX\", \"COUNTRY\", \"RACE\", \"STRATA1\", \"ARMCD\"), selected = \"ARMCD\", multiple = FALSE ) ) ) # configuration for the multiple long datasets mod3 <- tm_g_response( label = \"Multiple long datasets\", response = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( label = \"Select parameter:\", vars = \"PARAMCD\", choices = levels(data[[\"ADLB\"]]$PARAMCD), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE ), filter_spec( label = \"Select visit:\", vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE ) ), select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADLB\"]], c(\"BMRKR2\", \"ITTFL\", \"BEP01FL\")), selected = \"BMRKR2\", multiple = FALSE ) ), x = data_extract_spec( dataname = \"ADRS\", filter = list( filter_spec( label = \"Select parameter:\", vars = \"PARAMCD\", choices = levels(data[[\"ADRS\"]]$PARAMCD), selected = levels(data[[\"ADRS\"]]$PARAMCD)[3], multiple = FALSE ), filter_spec( label = \"Select visit:\", vars = \"AVISIT\", choices = levels(data[[\"ADRS\"]]$AVISIT), selected = levels(data[[\"ADRS\"]]$AVISIT)[3], multiple = FALSE ) ), select = select_spec( choices = c(\"AVALC\", \"ITTFL\", \"BEP01FL\"), selected = \"AVALC\", multiple = FALSE, fixed = TRUE ) ), row_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = \"SEX\", selected = NULL, multiple = FALSE ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"COUNTRY\")), selected = NULL, multiple = FALSE ) ) ) # configuration for the wide and long dataset mod4 <- tm_g_response( label = \"Wide and long dataset\", response = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = levels(data[[\"ADLB\"]]$PARAMCD), selected = levels(data[[\"ADLB\"]]$PARAMCD)[2], multiple = TRUE, label = \"Select measurement:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[2], multiple = TRUE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"BMRKR2\", \"ITTFL\", \"BEP01FL\")), selected = \"BMRKR2\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), x = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"ARMCD\", \"BMRKR1\", \"BMRKR2\", \"BEP01FL\")), selected = \"BMRKR2\", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the same long datasets (same subsets) mod5 <- tm_g_response( label = \"Same long datasets (same subsets)\", response = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"BMRKR2\", \"AVALC\", \"BEP01FL\")), selected = \"AVALC\", multiple = FALSE, fixed = TRUE, label = \"Select variable:\" ) ), x = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVALC\", \"AGE\", \"SEX\", \"ARMCD\", \"STRATA1\")), selected = \"ARMCD\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), row_facet = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = \"PARAMCD\", selected = \"PARAMCD\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), col_facet = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = \"AVISIT\", selected = \"AVISIT\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ) ) # configuration for the same long datasets (different subsets) mod6 <- tm_g_response( label = \"Same long datasets (different subsets)\", response = data_extract_spec( dataname = \"ADLB\", filter = filter_spec( vars = \"PARAMCD\", choices = levels(data[[\"ADLB\"]]$PARAMCD), selected = levels(data[[\"ADLB\"]]$PARAMCD)[2], multiple = FALSE, label = \"Select lab:\" ), select = select_spec( choices = \"BMRKR2\", selected = \"BMRKR2\", multiple = FALSE, fixed = TRUE ) ), x = data_extract_spec( dataname = \"ADLB\", filter = filter_spec( vars = \"PARAMCD\", choices = levels(data[[\"ADLB\"]]$PARAMCD), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"AVISIT\", \"PARAMCD\", \"BEP01FL\")), selected = \"AVISIT\", multiple = FALSE, fixed = TRUE ) ), row_facet = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = levels(data[[\"ADLB\"]]$PARAMCD), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"SEX\", \"RACE\", \"ARMCD\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select Variable\" ) ), col_facet = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = levels(data[[\"ADLB\"]]$PARAMCD), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"SEX\", \"RACE\", \"ARMCD\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ) ) # initialize the app app <- init( data = data, modules = modules( modules( label = \"Response plot\", mod1, mod2, mod3, mod4, mod5, mod6 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-response-plot.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use response plot with various datasets types","what":"4 - Run the app","title":"Using response plot","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-response-plot.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use response plot with various datasets types","what":"5 - Try it out in Shinylive","title":"Using response plot","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-scatterplot-matrix.html","id":"teal-application-to-use-scatter-plot-matrix-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use scatter plot matrix with various datasets types","title":"Using scatterplot matrix","text":"vignette guide four parts create teal application using various types datasets using scatter plot matrix module tm_g_scatterplotmatrix(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-scatterplot-matrix.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use scatter plot matrix with various datasets types","what":"1 - Load libraries","title":"Using scatterplot matrix","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets library(lattice)"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-scatterplot-matrix.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use scatter plot matrix with various datasets types","what":"2 - Create data sets","title":"Using scatterplot matrix","text":"Inside app 4 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.modules.general::rADRS ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-scatterplot-matrix.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use scatter plot matrix with various datasets types","what":"3 - Create an app variable","title":"Using scatterplot matrix","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_g_scatterplotmatrix() using different combinations data sets.","code":"# configuration for the single wide dataset mod1 <- tm_g_scatterplotmatrix( label = \"Single wide dataset\", variables = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]]), selected = c(\"AGE\", \"RACE\", \"SEX\", \"BMRKR1\", \"BMRKR2\"), multiple = TRUE, fixed = FALSE, ordered = TRUE ) ) ) # configuration for the one long datasets mod2 <- tm_g_scatterplotmatrix( \"One long dataset\", variables = data_extract_spec( dataname = \"ADTTE\", select = select_spec( choices = variable_choices(data[[\"ADTTE\"]], c(\"AVAL\", \"BMRKR1\", \"BMRKR2\")), selected = c(\"AVAL\", \"BMRKR1\", \"BMRKR2\"), multiple = TRUE, fixed = FALSE, ordered = TRUE, label = \"Select variables:\" ) ) ) # configuration for the two long datasets mod3 <- tm_g_scatterplotmatrix( label = \"Two long datasets\", variables = list( data_extract_spec( dataname = \"ADRS\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADRS\"]]), selected = c(\"AVAL\", \"AVALC\"), multiple = TRUE, fixed = FALSE, ordered = TRUE, ), filter = filter_spec( label = \"Select endpoints:\", vars = c(\"PARAMCD\", \"AVISIT\"), choices = value_choices(data[[\"ADRS\"]], c(\"PARAMCD\", \"AVISIT\"), c(\"PARAM\", \"AVISIT\")), selected = \"OVRINV - SCREENING\", multiple = FALSE ) ), data_extract_spec( dataname = \"ADTTE\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADTTE\"]]), selected = c(\"AVAL\", \"CNSR\"), multiple = TRUE, fixed = FALSE, ordered = TRUE ), filter = filter_spec( label = \"Select parameters:\", vars = \"PARAMCD\", choices = value_choices(data[[\"ADTTE\"]], \"PARAMCD\", \"PARAM\"), selected = \"OS\", multiple = TRUE ) ) ) ) # initialize the app app <- init( data = data, modules = modules( modules( label = \"Scatterplot matrix\", mod1, mod2, mod3 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-scatterplot-matrix.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use scatter plot matrix with various datasets types","what":"4 - Run the app","title":"Using scatterplot matrix","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-scatterplot-matrix.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use scatter plot matrix with various datasets types","what":"5 - Try it out in Shinylive","title":"Using scatterplot matrix","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-scatterplot.html","id":"teal-application-to-use-scatter-plot-with-various-datasets-types","dir":"Articles","previous_headings":"","what":"teal application to use scatter plot with various datasets types","title":"Using scatterplot","text":"vignette guide four parts create teal application using various types datasets using scatter plot module tm_g_scatterplot(): Load libraries Create data sets Create app variable Run app","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-scatterplot.html","id":"load-libraries","dir":"Articles","previous_headings":"teal application to use scatter plot with various datasets types","what":"1 - Load libraries","title":"Using scatterplot","text":"","code":"library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets library(ggpmisc) library(ggExtra) library(colourpicker)"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-scatterplot.html","id":"create-data-sets","dir":"Articles","previous_headings":"teal application to use scatter plot with various datasets types","what":"2 - Create data sets","title":"Using scatterplot","text":"Inside app 4 datasets used ADSL wide data set subject data ADRS long data set response data subjects different time points study ADTTE long data set time event data ADLB long data set lab measurements subject","code":"data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.modules.general::rADRS ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ \"N\", CHG > 1 ~ \"P\", TRUE ~ \"-\" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-scatterplot.html","id":"create-an-app-variable","dir":"Articles","previous_headings":"teal application to use scatter plot with various datasets types","what":"3 - Create an app variable","title":"Using scatterplot","text":"important section. use teal::init() function create app. data handed using teal.data::teal_data(). app constructed multiple calls tm_g_scatterplot() using different combinations data sets.","code":"# configuration for the single wide datasets mod1 <- tm_g_scatterplot( label = \"Single wide dataset\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\", \"BMRKR2\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), color_by = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"RACE\", \"SEX\")), selected = NULL, multiple = TRUE, fixed = FALSE ) ) ) # configuration for the two wide datasets mod2 <- tm_g_scatterplot( label = \"Two wide datasets\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ), color_by = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"COUNTRY\", \"AGE\", \"RACE\")), selected = \"COUNTRY\", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the different long datasets mod3 <- tm_g_scatterplot( label = \"Different long datasets\", x = data_extract_spec( dataname = \"ADRS\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADRS\"]]), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ), filter = filter_spec( label = \"Select endpoint:\", vars = c(\"PARAMCD\", \"AVISIT\"), choices = value_choices(data[[\"ADRS\"]], c(\"PARAMCD\", \"AVISIT\"), c(\"PARAM\", \"AVISIT\")), selected = \"OVRINV - SCREENING\", multiple = FALSE ) ), y = data_extract_spec( dataname = \"ADTTE\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADTTE\"]]), selected = \"AVAL\", multiple = FALSE, fixed = FALSE ), filter = filter_spec( label = \"Select parameters:\", vars = c(\"PARAMCD\"), choices = value_choices(data[[\"ADTTE\"]], \"PARAMCD\", \"PARAM\"), selected = \"OS\", multiple = TRUE ) ), color_by = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the wide and long datasets mod4 <- tm_g_scatterplot( label = \"Wide and long datasets\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"AGE\", \"BMRKR1\", \"COUNTRY\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select measurement:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( label = \"Selected variable:\", choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), color_by = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"AGE\", \"RACE\", \"COUNTRY\")), selected = NULL, multiple = FALSE, fixed = FALSE ) ) ) # configuration for the same long datasets (same subsets) mod5 <- tm_g_scatterplot( label = \"Same long datasets (same subsets)\", x = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVAL\", \"BMRKR1\", \"BMRKR2\")), selected = \"AVAL\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), y = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AVAL\", \"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ), color_by = data_extract_spec( dataname = \"ADRS\", select = select_spec( choices = variable_choices(data[[\"ADRS\"]], c(\"AGE\", \"SEX\", \"RACE\")), selected = NULL, multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ) ) # configuration for the same long datasets (different subsets) mod6 <- tm_g_scatterplot( label = \"Same long datasets (different subsets)\", x = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), y = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = \"AVAL\", selected = \"AVAL\", multiple = FALSE, fixed = TRUE ) ), color_by = data_extract_spec( dataname = \"ADLB\", filter = list( filter_spec( vars = \"PARAMCD\", choices = value_choices(data[[\"ADLB\"]], \"PARAMCD\", \"PARAM\"), selected = levels(data[[\"ADLB\"]]$PARAMCD)[1], multiple = FALSE, label = \"Select lab:\" ), filter_spec( vars = \"AVISIT\", choices = levels(data[[\"ADLB\"]]$AVISIT), selected = levels(data[[\"ADLB\"]]$AVISIT)[1], multiple = FALSE, label = \"Select visit:\" ) ), select = select_spec( choices = variable_choices(data[[\"ADLB\"]], c(\"RACE\", \"SEX\")), selected = \"SEX\", multiple = FALSE, fixed = FALSE, label = \"Select variable:\" ) ) ) # initialize the app app <- init( data = data, modules = modules( modules( label = \"Scatterplot\", mod1, mod2, mod3, mod4, mod5, mod6 ) ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-scatterplot.html","id":"run-the-app","dir":"Articles","previous_headings":"teal application to use scatter plot with various datasets types","what":"4 - Run the app","title":"Using scatterplot","text":"simple shiny::shinyApp() call let run app. Note app displayed running code inside R session.","code":"shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))"},{"path":"https://insightsengineering.github.io/teal.modules.general/articles/using-scatterplot.html","id":"try-it-out-in-shinylive","dir":"Articles","previous_headings":"teal application to use scatter plot with various datasets types","what":"5 - Try it out in Shinylive","title":"Using scatterplot","text":"Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Dawid Kaledkowski. Author, maintainer. Pawel Rucki. Author. Mahmoud Hallal. Author. Ondrej Slama. Contributor. Maciej Nasinski. Author. Konrad Pagacz. Author. Nikolas Burkoff. Author. F. Hoffmann-La Roche AG. Copyright holder, funder.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Kaledkowski D, Rucki P, Hallal M, Nasinski M, Pagacz K, Burkoff N (2024). teal.modules.general: General Modules 'teal' Applications. R package version 0.3.0.9058, https://github.com/insightsengineering/teal.modules.general/, https://insightsengineering.github.io/teal.modules.general/.","code":"@Manual{, title = {teal.modules.general: General Modules for 'teal' Applications}, author = {Dawid Kaledkowski and Pawel Rucki and Mahmoud Hallal and Maciej Nasinski and Konrad Pagacz and Nikolas Burkoff}, year = {2024}, note = {R package version 0.3.0.9058, https://github.com/insightsengineering/teal.modules.general/}, url = {https://insightsengineering.github.io/teal.modules.general/}, }"},{"path":"https://insightsengineering.github.io/teal.modules.general/index.html","id":"tealmodulesgeneral","dir":"","previous_headings":"","what":"General Modules for teal Applications","title":"General Modules for teal Applications","text":"package contains set standard teal modules include applications. include modules : viewing data (including tm_variable_browser, tm_data_table, tm_file_viewer, …) visualizing data (tm_g_scatterplot, tm_g_association, …) understanding missing outlier values within data (tm_missing_data, tm_outliers, …) performing simple data analysis (tm_a_pca, tm_g_distribution, tm_a_regression, …). modules work CDISC data, independent datasets general relational data. Please see teal gallery TLG Catalog see examples teal apps modules package.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"General Modules for teal Applications","text":"Alternatively, might want use development version.","code":"install.packages('teal.modules.general') # install.packages(\"pak\") pak::pak(\"insightsengineering/teal.modules.general\")"},{"path":"https://insightsengineering.github.io/teal.modules.general/index.html","id":"usage","dir":"","previous_headings":"","what":"Usage","title":"General Modules for teal Applications","text":"understand use package, please refer Getting Started article, provides multiple examples code implementation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/index.html","id":"playground","dir":"","previous_headings":"","what":"Playground","title":"General Modules for teal Applications","text":"can try package without installing Shinylive: stable development","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/index.html","id":"getting-help","dir":"","previous_headings":"","what":"Getting help","title":"General Modules for teal Applications","text":"encounter bug feature request, please file issue. questions, discussions, staying date, please use teal channel pharmaverse slack workspace.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/index.html","id":"acknowledgment","dir":"","previous_headings":"","what":"Acknowledgment","title":"General Modules for teal Applications","text":"package result joint efforts many developers stakeholders. like thank everyone contributed far!","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/add_facet_labels.html","id":null,"dir":"Reference","previous_headings":"","what":"Add labels for facets to a ggplot2 object — add_facet_labels","title":"Add labels for facets to a ggplot2 object — add_facet_labels","text":"Enhances ggplot2 plot adding labels describe faceting variables along x y axes.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/add_facet_labels.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add labels for facets to a ggplot2 object — add_facet_labels","text":"","code":"add_facet_labels(p, xfacet_label = NULL, yfacet_label = NULL)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/add_facet_labels.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add labels for facets to a ggplot2 object — add_facet_labels","text":"p (ggplot2) object facet labels added. xfacet_label (character) Label facet along x-axis. NULL, label added. vector, labels joined \" & \". yfacet_label (character) Label facet along y-axis. Similar behavior xfacet_label.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/add_facet_labels.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add labels for facets to a ggplot2 object — add_facet_labels","text":"Returns grid grob object (drawn grid.draw)","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/add_facet_labels.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add labels for facets to a ggplot2 object — add_facet_labels","text":"","code":"library(ggplot2) library(grid) p <- ggplot(mtcars) + aes(x = mpg, y = disp) + geom_point() + facet_grid(gear ~ cyl) xfacet_label <- \"cylinders\" yfacet_label <- \"gear\" res <- add_facet_labels(p, xfacet_label, yfacet_label) grid.newpage() grid.draw(res) grid.newpage() grid.draw(add_facet_labels(p, xfacet_label = NULL, yfacet_label)) grid.newpage() grid.draw(add_facet_labels(p, xfacet_label, yfacet_label = NULL)) grid.newpage() grid.draw(add_facet_labels(p, xfacet_label = NULL, yfacet_label = NULL))"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/call_fun_dots.html","id":null,"dir":"Reference","previous_headings":"","what":"Call a function with a character vector for the ... argument — call_fun_dots","title":"Call a function with a character vector for the ... argument — call_fun_dots","text":"Call function character vector ... argument","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/call_fun_dots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Call a function with a character vector for the ... argument — call_fun_dots","text":"","code":"call_fun_dots(fun, str_args)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/call_fun_dots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Call a function with a character vector for the ... argument — call_fun_dots","text":"fun (character) Name function ... argument shall replaced values str_args. str_args (character) character vector function shall executed ","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/call_fun_dots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Call a function with a character vector for the ... argument — call_fun_dots","text":"Value call fun arguments specified str_args.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/create_sparklines.html","id":null,"dir":"Reference","previous_headings":"","what":"S3 generic for sparkline widget HTML — create_sparklines","title":"S3 generic for sparkline widget HTML — create_sparklines","text":"Generates sparkline HTML code corresponding input array. numeric variables creates box plot, character factors - bar plot. Produces empty string variables types.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/create_sparklines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"S3 generic for sparkline widget HTML — create_sparklines","text":"","code":"create_sparklines(arr, width = 150, ...) # S3 method for class 'logical' create_sparklines(arr, ...) # S3 method for class 'numeric' create_sparklines(arr, width = 150, ...) # S3 method for class 'character' create_sparklines(arr, ...) # S3 method for class 'factor' create_sparklines(arr, width = 150, bar_spacing = 5, bar_width = 20, ...) # S3 method for class 'Date' create_sparklines(arr, width = 150, bar_spacing = 5, bar_width = 20, ...) # S3 method for class 'POSIXct' create_sparklines(arr, width = 150, bar_spacing = 5, bar_width = 20, ...) # S3 method for class 'POSIXlt' create_sparklines(arr, width = 150, bar_spacing = 5, bar_width = 20, ...) # Default S3 method create_sparklines(arr, width = 150, ...)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/create_sparklines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"S3 generic for sparkline widget HTML — create_sparklines","text":"arr vector type length width numeric width sparkline widget (pixels) ... list additional options passed bar plots jquery.sparkline; see jquery.sparkline docs bar_spacing numeric spacing bars (pixels) bar_width numeric width bars (pixels)","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/create_sparklines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"S3 generic for sparkline widget HTML — create_sparklines","text":"Character string containing HTML code sparkline HTML widget.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/establish_updating_selection.html","id":null,"dir":"Reference","previous_headings":"","what":"Creates observers updating the currently selected column — establish_updating_selection","title":"Creates observers updating the currently selected column — establish_updating_selection","text":"created observers update column currently selected left-hand side tabset panel.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/establish_updating_selection.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Creates observers updating the currently selected column — establish_updating_selection","text":"","code":"establish_updating_selection(datanames, input, plot_var, columns_names)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/establish_updating_selection.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Creates observers updating the currently selected column — establish_updating_selection","text":"datanames (character) name dataset input (session$input) shiny session input plot_var (list) list containing currently selected dataset (tab) column names columns_names (environment) environment containing bindings dataset","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/establish_updating_selection.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Creates observers updating the currently selected column — establish_updating_selection","text":"Creates observer dataset (tab tabset panel).","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/get_scatterplotmatrix_stats.html","id":null,"dir":"Reference","previous_headings":"","what":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","title":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","text":"Uses stats::cor.test() per default numerical input variables converts results character vector. extended different stats different variable types needed. Meant called lattice::panel.text().","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/get_scatterplotmatrix_stats.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","text":"","code":"get_scatterplotmatrix_stats( x, y, .f = stats::cor.test, .f_args = list(), round_stat = 2, round_pval = 4 )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/get_scatterplotmatrix_stats.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","text":"x, y (numeric) vectors data values. x y must length. .f (function) function accepts x y formula input ~ x + y. Default stats::cor.test. .f_args (list) arguments passed .f. round_stat (integer(1)) optional, number decimal places use rounding estimate. round_pval (integer(1)) optional, number decimal places use rounding p-value.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/get_scatterplotmatrix_stats.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","text":"Character stats. stats::cor.test() correlation coefficient p-value.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/get_scatterplotmatrix_stats.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","text":"Presently need use formula input stats::cor.test na.fail gets evaluated formula passed (see ).","code":"x = c(1,3,5,7,NA) y = c(3,6,7,8,1) stats::cor.test(x, y, na.action = \"na.fail\") stats::cor.test(~ x + y, na.action = \"na.fail\")"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/get_scatterplotmatrix_stats.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get stats for x-y pairs in scatterplot matrix — get_scatterplotmatrix_stats","text":"","code":"set.seed(1) x <- runif(25, 0, 1) y <- runif(25, 0, 1) x[c(3, 10, 18)] <- NA get_scatterplotmatrix_stats(x, y, .f = stats::cor.test, .f_args = list(method = \"pearson\")) #> [1] \"cor:0.11\\nP:0.6255\" get_scatterplotmatrix_stats(x, y, .f = stats::cor.test, .f_args = list( method = \"pearson\", na.action = na.fail )) #> [1] \"NA\""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/include_css_files.html","id":null,"dir":"Reference","previous_headings":"","what":"Include CSS files from /inst/css/ package directory to application header — include_css_files","title":"Include CSS files from /inst/css/ package directory to application header — include_css_files","text":"system.file used access files packages, work devtools. Therefore, redefine method package needed. Thus, export method","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/include_css_files.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Include CSS files from /inst/css/ package directory to application header — include_css_files","text":"","code":"include_css_files(pattern = \"*\")"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/include_css_files.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Include CSS files from /inst/css/ package directory to application header — include_css_files","text":"pattern (character) optional, regular expression match file names included.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/include_css_files.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Include CSS files from /inst/css/ package directory to application header — include_css_files","text":"HTML code includes CSS files.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/is_tab_active_js.html","id":null,"dir":"Reference","previous_headings":"","what":"JavaScript condition to check if a specific tab is active — is_tab_active_js","title":"JavaScript condition to check if a specific tab is active — is_tab_active_js","text":"JavaScript condition check specific tab active","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/is_tab_active_js.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"JavaScript condition to check if a specific tab is active — is_tab_active_js","text":"","code":"is_tab_active_js(id, name)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/is_tab_active_js.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"JavaScript condition to check if a specific tab is active — is_tab_active_js","text":"id (character(1)) id tab panel tabs. name (character(1)) name tab.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/is_tab_active_js.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"JavaScript condition to check if a specific tab is active — is_tab_active_js","text":"JavaScript expression used shiny::conditionalPanel() determine specified tab active.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/normalize_decorators.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert flat list of teal_transform_module to named lists — normalize_decorators","title":"Convert flat list of teal_transform_module to named lists — normalize_decorators","text":"Convert flat list teal_transform_module named lists","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/normalize_decorators.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert flat list of teal_transform_module to named lists — normalize_decorators","text":"","code":"normalize_decorators(decorators)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/normalize_decorators.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert flat list of teal_transform_module to named lists — normalize_decorators","text":"decorators (list teal_transform_module) normalize.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/normalize_decorators.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert flat list of teal_transform_module to named lists — normalize_decorators","text":"named list lists teal_transform_module objects.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/plot_var_summary.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot variable — plot_var_summary","title":"Plot variable — plot_var_summary","text":"Creates summary plot statistics relevant data type.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/plot_var_summary.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot variable — plot_var_summary","text":"","code":"plot_var_summary( var, var_lab, wrap_character = NULL, numeric_as_factor, display_density = is.numeric(var), remove_NA_hist = FALSE, outlier_definition, records_for_factor, ggplot2_args )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/plot_var_summary.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot variable — plot_var_summary","text":"var vector type plotted. numeric variables produces histogram density line, factors creates frequency plot var_lab text describing selected variable displayed plot wrap_character (numeric) number characters wrap text values var numeric_as_factor (logical) numeric variable treated factor display_density (logical) density estimation displayed numeric values remove_NA_hist (logical) NA values removed histogram factor like variables outlier_definition 0 outliers removed, otherwise outliers (outlier_definition*IQR /Q1/Q3 removed) records_for_factor (numeric) number factor levels >= value graph factors shown, list values ggplot2_args (ggplot2_args) object created teal.widgets::ggplot2_args() settings module plot. argument merged options variable teal.ggplot2_args default module setup. details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\")","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/plot_var_summary.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot variable — plot_var_summary","text":"plot","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADAE.html","id":null,"dir":"Reference","previous_headings":"","what":"Random adverse events — rADAE","title":"Random adverse events — rADAE","text":"Random adverse events","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADAE.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Random adverse events — rADAE","text":"","code":"rADAE"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADAE.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Random adverse events — rADAE","text":"object class tbl_df (inherits tbl, data.frame) 1934 rows 92 columns.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADAE.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Random adverse events — rADAE","text":"internal","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADLB.html","id":null,"dir":"Reference","previous_headings":"","what":"Random lab analysis — rADLB","title":"Random lab analysis — rADLB","text":"Random lab analysis","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADLB.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Random lab analysis — rADLB","text":"","code":"rADLB"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADLB.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Random lab analysis — rADLB","text":"object class tbl_df (inherits tbl, data.frame) 8400 rows 102 columns.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADLB.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Random lab analysis — rADLB","text":"internal","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADRS.html","id":null,"dir":"Reference","previous_headings":"","what":"Random response — rADRS","title":"Random response — rADRS","text":"Random response","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADRS.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Random response — rADRS","text":"","code":"rADRS"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADRS.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Random response — rADRS","text":"object class tbl_df (inherits tbl, data.frame) 3200 rows 65 columns.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADRS.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Random response — rADRS","text":"internal","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADSL.html","id":null,"dir":"Reference","previous_headings":"","what":"Random patient listing — rADSL","title":"Random patient listing — rADSL","text":"Random patient listing","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADSL.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Random patient listing — rADSL","text":"","code":"rADSL"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADSL.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Random patient listing — rADSL","text":"object class tbl_df (inherits tbl, data.frame) 400 rows 55 columns.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADSL.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Random patient listing — rADSL","text":"internal","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADTTE.html","id":null,"dir":"Reference","previous_headings":"","what":"Random time to event analysis dataset — rADTTE","title":"Random time to event analysis dataset — rADTTE","text":"Random time event analysis dataset","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADTTE.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Random time to event analysis dataset — rADTTE","text":"","code":"rADTTE"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADTTE.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Random time to event analysis dataset — rADTTE","text":"object class tbl_df (inherits tbl, data.frame) 2000 rows 67 columns.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/rADTTE.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Random time to event analysis dataset — rADTTE","text":"internal","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/remove_outliers_from.html","id":null,"dir":"Reference","previous_headings":"","what":"Removes the outlier observation from an array — remove_outliers_from","title":"Removes the outlier observation from an array — remove_outliers_from","text":"Removes outlier observation array","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/remove_outliers_from.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Removes the outlier observation from an array — remove_outliers_from","text":"","code":"remove_outliers_from(var, outlier_definition)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/remove_outliers_from.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Removes the outlier observation from an array — remove_outliers_from","text":"var (numeric) numeric vector outlier_definition (numeric) 0 outliers removed, otherwise outliers (outlier_definition*IQR /Q1/Q3) removed","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/remove_outliers_from.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Removes the outlier observation from an array — remove_outliers_from","text":"(numeric) vector without outlier values","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/render_single_tab.html","id":null,"dir":"Reference","previous_headings":"","what":"Renders a single tab in the left-hand side tabset panel — render_single_tab","title":"Renders a single tab in the left-hand side tabset panel — render_single_tab","text":"Renders single tab left-hand side tabset panel. rendered tab contains information one dataset many presented module.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/render_single_tab.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Renders a single tab in the left-hand side tabset panel — render_single_tab","text":"","code":"render_single_tab( dataset_name, parent_dataname, output, data, input, columns_names, plot_var )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/render_single_tab.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Renders a single tab in the left-hand side tabset panel — render_single_tab","text":"dataset_name (character) name dataset contained rendered tab parent_dataname (character) name parent dataname filter variables output (session$output) shiny session output data (teal_data) object containing datasets input (session$input) shiny session input columns_names (environment) environment containing bindings dataset plot_var (list) list containing currently selected dataset (tab) column names","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/render_tab_header.html","id":null,"dir":"Reference","previous_headings":"","what":"Renders the text headlining a single tab in the left-hand side tabset panel — render_tab_header","title":"Renders the text headlining a single tab in the left-hand side tabset panel — render_tab_header","text":"Renders text headlining single tab left-hand side tabset panel","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/render_tab_header.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Renders the text headlining a single tab in the left-hand side tabset panel — render_tab_header","text":"","code":"render_tab_header(dataset_name, output, data)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/render_tab_header.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Renders the text headlining a single tab in the left-hand side tabset panel — render_tab_header","text":"dataset_name (character) name dataset tab output (session$output) shiny session output data (teal_data) object containing datasets","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/render_tab_table.html","id":null,"dir":"Reference","previous_headings":"","what":"Renders the table for a single dataset in the left-hand side tabset panel — render_tab_table","title":"Renders the table for a single dataset in the left-hand side tabset panel — render_tab_table","text":"table contains column names, column labels, small summary NA values sparkline (appropriate).","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/render_tab_table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Renders the table for a single dataset in the left-hand side tabset panel — render_tab_table","text":"","code":"render_tab_table( dataset_name, parent_dataname, output, data, input, columns_names, plot_var )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/render_tab_table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Renders the table for a single dataset in the left-hand side tabset panel — render_tab_table","text":"dataset_name (character) name dataset parent_dataname (character) name parent dataname filter variables output (session$output) shiny session output data (teal_data) object containing datasets input (session$input) shiny session input columns_names (environment) environment containing bindings dataset plot_var (list) list containing currently selected dataset (tab) column names","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/render_tabset_panel_content.html","id":null,"dir":"Reference","previous_headings":"","what":"Renders the left-hand side tabset panel of the module — render_tabset_panel_content","title":"Renders the left-hand side tabset panel of the module — render_tabset_panel_content","text":"Renders left-hand side tabset panel module","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/render_tabset_panel_content.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Renders the left-hand side tabset panel of the module — render_tabset_panel_content","text":"","code":"render_tabset_panel_content( datanames, parent_dataname, output, data, input, columns_names, plot_var )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/render_tabset_panel_content.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Renders the left-hand side tabset panel of the module — render_tabset_panel_content","text":"datanames (character) name dataset parent_dataname (character) name parent dataname filter variables output (session$output) shiny session output data (teal_data) object containing datasets input (session$input) shiny session input columns_names (environment) environment containing bindings dataset plot_var (list) list containing currently selected dataset (tab) column names","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/select_decorators.html","id":null,"dir":"Reference","previous_headings":"","what":"Subset decorators based on the scope — select_decorators","title":"Subset decorators based on the scope — select_decorators","text":"default protected decorator name always included output, exists","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/select_decorators.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Subset decorators based on the scope — select_decorators","text":"","code":"select_decorators(decorators, scope)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/select_decorators.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Subset decorators based on the scope — select_decorators","text":"decorators (named list) list decorators subset. scope (character) character vector decorator names include.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/select_decorators.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Subset decorators based on the scope — select_decorators","text":"flat list decorators include. can empty list none scope exists decorators argument.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/shared_params.html","id":null,"dir":"Reference","previous_headings":"","what":"Shared parameters documentation — shared_params","title":"Shared parameters documentation — shared_params","text":"Defines common arguments shared across multiple functions package avoid repetition using inheritParams.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/shared_params.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Shared parameters documentation — shared_params","text":"plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. rotate_xaxis_labels (logical) optional, whether rotate plot X axis labels. rotate default (FALSE). ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) object created teal.widgets::ggplot2_args() settings module plot. argument merged options variable teal.ggplot2_args default module setup. details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\") basic_table_args (basic_table_args) object created teal.widgets::basic_table_args() settings module table. argument merged options variable teal.basic_table_args default module setup. details see vignette: vignette(\"custom-basic-table-arguments\", package = \"teal.widgets\") pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. alpha (integer(1) integer(3)) optional, specifies point opacity. length alpha one: plot points fixed opacity. length alpha three: plot points opacity dynamically adjusted based vector value, min, max. size (integer(1) integer(3)) optional, specifies point size. length size one: plot point sizes fixed size. length size three: plot points size dynamically adjusted based vector value, min, max.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/shared_params.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Shared parameters documentation — shared_params","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/srv_decorate_teal_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Wrappers around srv_transform_teal_data that allows to decorate the data — srv_decorate_teal_data","title":"Wrappers around srv_transform_teal_data that allows to decorate the data — srv_decorate_teal_data","text":"Wrappers around srv_transform_teal_data allows decorate data","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/srv_decorate_teal_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Wrappers around srv_transform_teal_data that allows to decorate the data — srv_decorate_teal_data","text":"","code":"srv_decorate_teal_data(id, data, decorators, expr, expr_is_reactive = FALSE) ui_decorate_teal_data(id, decorators, ...)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/srv_decorate_teal_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Wrappers around srv_transform_teal_data that allows to decorate the data — srv_decorate_teal_data","text":"id (character(1)) Module id data (reactive teal_data) expr (expression reactive) evaluate output decoration. expression must inline code. See within() Default NULL evaluate appending code. expr_is_reactive (logical(1)) whether expr reactive expression skips defusing argument.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/srv_decorate_teal_data.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Wrappers around srv_transform_teal_data that allows to decorate the data — srv_decorate_teal_data","text":"srv_decorate_teal_data wrapper around srv_transform_teal_data allows decorate data additional expressions. original teal_data object error state, show error first. ui_decorate_teal_data wrapper around ui_transform_teal_data.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/teal.modules.general.html","id":null,"dir":"Reference","previous_headings":"","what":"teal.modules.general: General modules to add to a teal application — teal.modules.general","title":"teal.modules.general: General modules to add to a teal application — teal.modules.general","text":"modules package generic modules work data set (necessarily clinical trials data).","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/teal.modules.general.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"teal.modules.general: General modules to add to a teal application — teal.modules.general","text":"Maintainer: Dawid Kaledkowski dawid.kaledkowski@roche.com Authors: Pawel Rucki pawel.rucki@roche.com Mahmoud Hallal mahmoud.hallal@roche.com Maciej Nasinski Konrad Pagacz Nikolas Burkoff contributors: Ondrej Slama ondrej.slama@roche.com [contributor] F. Hoffmann-La Roche AG [copyright holder, funder]","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_pca.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Principal component analysis — tm_a_pca","title":"teal module: Principal component analysis — tm_a_pca","text":"Module conducts principal component analysis (PCA) given dataset offers different ways visualizing outcomes, including elbow plot, circle plot, biplot, eigenvector plot. Additionally, enables dynamic customization plot aesthetics, opacity, size, font size, UI inputs.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_pca.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Principal component analysis — tm_a_pca","text":"","code":"tm_a_pca( label = \"Principal Component Analysis\", dat, plot_height = c(600, 200, 2000), plot_width = NULL, ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), ggplot2_args = teal.widgets::ggplot2_args(), rotate_xaxis_labels = FALSE, font_size = c(12, 8, 20), alpha = c(1, 0, 1), size = c(2, 1, 8), pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_pca.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Principal component analysis — tm_a_pca","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. dat (data_extract_spec list multiple data_extract_spec) specifying columns used compute PCA. plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) optional, object created teal.widgets::ggplot2_args() settings plots named list ggplot2_args objects plot-specific settings. argument merged options variable teal.ggplot2_args default module setup. List names match following: c(\"default\", \"Elbow plot\", \"Circle plot\", \"Biplot\", \"Eigenvector plot\"). details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\"). rotate_xaxis_labels (logical) optional, whether rotate plot X axis labels. rotate default (FALSE). font_size (numeric) optional, specifies font size. controls font size plot titles, axis labels, legends. vector length == 1 font sizes fixed size. vector value, min, max allows dynamic adjustment. alpha (integer(1) integer(3)) optional, specifies point opacity. length alpha one: plot points fixed opacity. length alpha three: plot points opacity dynamically adjusted based vector value, min, max. size (integer(1) integer(3)) optional, specifies point size. length size one: plot point sizes fixed size. length size three: plot points size dynamically adjusted based vector value, min, max. pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_a_pca\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_pca.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Principal component analysis — tm_a_pca","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_pca.html","id":"decorating-tm-a-pca","dir":"Reference","previous_headings":"","what":"Decorating tm_a_pca","title":"teal module: Principal component analysis — tm_a_pca","text":"module generates following objects, can modified place using decorators: elbow_plot (ggplot2) circle_plot (ggplot2) biplot (ggplot2) eigenvector_plot (ggplot2) Decorators can applied outputs specific objects using named list teal_transform_module objects. \"default\" name reserved decorators applied outputs. See code snippet : additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal::teal_transform_module() documentation.","code":"tm_a_pca( ..., # arguments for module decorators = list( default = list(teal_transform_module(...)), # applied to all outputs elbow_plot = list(teal_transform_module(...)), # applied only to `elbow_plot` output circle_plot = list(teal_transform_module(...)) # applied only to `circle_plot` output biplot = list(teal_transform_module(...)) # applied only to `biplot` output eigenvector_plot = list(teal_transform_module(...)) # applied only to `eigenvector_plot` output ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_pca.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Principal component analysis — tm_a_pca","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_pca.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Principal component analysis — tm_a_pca","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) USArrests <- USArrests }) app <- init( data = data, modules = modules( tm_a_pca( \"PCA\", dat = data_extract_spec( dataname = \"USArrests\", select = select_spec( choices = variable_choices( data = data[[\"USArrests\"]], c(\"Murder\", \"Assault\", \"UrbanPop\", \"Rape\") ), selected = c(\"Murder\", \"Assault\"), multiple = TRUE ), filter = NULL ) ) ) ) #> Initializing tm_a_pca #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_a_pca( \"PCA\", dat = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices( data = data[[\"ADSL\"]], c(\"BMRKR1\", \"AGE\", \"EOSDY\") ), selected = c(\"BMRKR1\", \"AGE\"), multiple = TRUE ), filter = NULL ) ) ) ) #> Initializing tm_a_pca #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_regression.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Scatterplot and regression analysis — tm_a_regression","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"Module visualizing regression analysis, including scatterplots various regression diagnostics plots. allows users explore relationship set regressors response variable, visualize residuals, identify outliers.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_regression.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"","code":"tm_a_regression( label = \"Regression Analysis\", regressor, response, plot_height = c(600, 200, 2000), plot_width = NULL, alpha = c(1, 0, 1), size = c(2, 1, 8), ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), ggplot2_args = teal.widgets::ggplot2_args(), pre_output = NULL, post_output = NULL, default_plot_type = 1, default_outlier_label = \"USUBJID\", label_segment_threshold = c(0.5, 0, 10), decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_regression.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. regressor (data_extract_spec list multiple data_extract_spec) Regressor variables incoming dataset filtering selecting. response (data_extract_spec list multiple data_extract_spec) Response variables incoming dataset filtering selecting. plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. alpha (integer(1) integer(3)) optional, specifies point opacity. length alpha one: plot points fixed opacity. length alpha three: plot points opacity dynamically adjusted based vector value, min, max. size (integer(1) integer(3)) optional, specifies point size. length size one: plot point sizes fixed size. length size three: plot points size dynamically adjusted based vector value, min, max. ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) optional, object created teal.widgets::ggplot2_args() settings plots named list ggplot2_args objects plot-specific settings. argument merged options variable teal.ggplot2_args default module setup. List names match following: c(\"default\", \"Response vs Regressor\", \"Residuals vs Fitted\", \"Scale-Location\", \"Cook's distance\", \"Residuals vs Leverage\", \"Cook's dist vs Leverage\"). details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\"). pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. default_plot_type (numeric) optional, defaults \"Response vs Regressor\". Response vs Regressor Residuals vs Fitted Normal Q-Q Scale-Location Cook's distance Residuals vs Leverage Cook's dist vs Leverage default_outlier_label (character) optional, default column selected label outliers. label_segment_threshold (numeric(1) numeric(3)) Minimum distance label point plot triggers creation line segment two. may happen label placed next point overlaps another label point. value used min.segment.length parameter ggrepel::geom_text_repel() function. can take following forms: numeric(1): Fixed value used minimum distance slider presented UI. numeric(3): slider presented UI (\"Plot settings\") adjust minimum distance dynamically. takes form c(value, min, max) passed value_min_max argument teal.widgets::optionalSliderInputValMinMax. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_a_regression\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_regression.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_regression.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"examples, please see vignette \"Using regression plots\" via vignette(\"using-regression-plots\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_regression.html","id":"decorating-tm-a-regression","dir":"Reference","previous_headings":"","what":"Decorating tm_a_regression","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"module generates following objects, can modified place using decorators: plot (ggplot2) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal::teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_regression.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_a_regression.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Scatterplot and regression analysis — tm_a_regression","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) CO2 <- CO2 }) app <- init( data = data, modules = modules( tm_a_regression( label = \"Regression\", response = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = \"uptake\", selected = \"uptake\", multiple = FALSE, fixed = TRUE ) ), regressor = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"CO2\"]], c(\"conc\", \"Treatment\")), selected = \"conc\", multiple = TRUE, fixed = FALSE ) ) ) ) ) #> Initializing tm_a_regression #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_a_regression( label = \"Regression\", response = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = \"BMRKR1\", selected = \"BMRKR1\", multiple = FALSE, fixed = TRUE ) ), regressor = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"SEX\", \"RACE\")), selected = \"AGE\", multiple = TRUE, fixed = FALSE ) ) ) ) ) #> Initializing tm_a_regression #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_data_table.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Data table viewer — tm_data_table","title":"teal module: Data table viewer — tm_data_table","text":"Module provides dynamic interactive way view data.frames teal application. uses DT package display data tables paginated, searchable, sortable format, helps enhance data exploration analysis.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_data_table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Data table viewer — tm_data_table","text":"","code":"tm_data_table( label = \"Data Table\", variables_selected = list(), datasets_selected = character(0), dt_args = list(), dt_options = list(searching = FALSE, pageLength = 30, lengthMenu = c(5, 15, 30, 100), scrollX = TRUE), server_rendering = FALSE, pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_data_table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Data table viewer — tm_data_table","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. variables_selected (named list) Character vectors variables (.e. columns) initially shown dataset. Names list elements correspond names datasets available app. entry specified dataset, first six variables dataset initially shown. datasets_selected (character) vector datasets shown order. Names vector correspond datasets names. vector length == 0 (default) datasets shown. Note: datasets data.frame class compatible. dt_args (named list) Additional arguments passed DT::datatable() (must include data options). dt_options (named list) options argument DT::datatable. default list(searching = FALSE, pageLength = 30, lengthMenu = c(5, 15, 30, 100), scrollX = TRUE) server_rendering (logical) data table rendered server side (see server argument DT::renderDataTable()) pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_data_table\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_data_table.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Data table viewer — tm_data_table","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_data_table.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"teal module: Data table viewer — tm_data_table","text":"DT package option DT.TOJSON_ARGS show Inf NA data tables. Configure DT.TOJSON_ARGS option via options(DT.TOJSON_ARGS = list(na = \"string\")) running module. Note though sorting numeric columns NA/Inf lexicographic numerical.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_data_table.html","id":"decorating-tm-data-table","dir":"Reference","previous_headings":"","what":"Decorating tm_data_table","title":"teal module: Data table viewer — tm_data_table","text":"module generates following objects, can modified place using decorators: table (DT::datatable()) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal::teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_data_table.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Data table viewer — tm_data_table","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_data_table.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Data table viewer — tm_data_table","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) iris <- iris }) app <- init( data = data, modules = modules( tm_data_table( variables_selected = list( iris = c(\"Sepal.Length\", \"Sepal.Width\", \"Petal.Length\", \"Petal.Width\", \"Species\") ), dt_args = list(caption = \"IRIS Table Caption\") ) ) ) #> Initializing tm_data_table if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_data_table( variables_selected = list(ADSL = c(\"STUDYID\", \"USUBJID\", \"SUBJID\", \"SITEID\", \"AGE\", \"SEX\")), dt_args = list(caption = \"ADSL Table Caption\") ) ) ) #> Initializing tm_data_table if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_file_viewer.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: File viewer — tm_file_viewer","title":"teal module: File viewer — tm_file_viewer","text":"file viewer module provides tool view static files. Supported formats include text formats, PDF, PNG APNG, JPEG SVG, WEBP, GIF BMP.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_file_viewer.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: File viewer — tm_file_viewer","text":"","code":"tm_file_viewer( label = \"File Viewer Module\", input_path = list(`Current Working Directory` = \".\") )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_file_viewer.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: File viewer — tm_file_viewer","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. input_path (list) input paths, optional. element can : Paths can specified absolute paths relative running directory application. Default current working directory supplied.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_file_viewer.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: File viewer — tm_file_viewer","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_file_viewer.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: File viewer — tm_file_viewer","text":"example-1 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_file_viewer.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: File viewer — tm_file_viewer","text":"","code":"data <- teal_data() data <- within(data, { data <- data.frame(1) }) app <- init( data = data, modules = modules( tm_file_viewer( input_path = list( folder = system.file(\"sample_files\", package = \"teal.modules.general\"), png = system.file(\"sample_files/sample_file.png\", package = \"teal.modules.general\"), txt = system.file(\"sample_files/sample_file.txt\", package = \"teal.modules.general\"), url = \"https://fda.gov/files/drugs/published/Portable-Document-Format-Specifications.pdf\" ) ) ) ) #> Initializing tm_file_viewer #> Warning: Non-existent file or url path. Please provide valid paths for: #> https://fda.gov/files/drugs/published/Portable-Document-Format-Specifications.pdf if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_front_page.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Front page — tm_front_page","title":"teal module: Front page — tm_front_page","text":"Creates simple front page teal applications, displaying introductory text, tables, additional html shiny tags, footnotes.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_front_page.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Front page — tm_front_page","text":"","code":"tm_front_page( label = \"Front page\", header_text = character(0), tables = list(), additional_tags = tagList(), footnotes = character(0), show_metadata = FALSE )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_front_page.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Front page — tm_front_page","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. header_text (character vector) text shown top module, element, named name shown first bold header followed value. first element's header displayed larger others. tables (named list data.frames) tables shown module. additional_tags (shiny.tag.list html) additional shiny tags html included table, example include image, tagList(tags$img(src = \"image.png\")) include html, HTML(\"html text \"). footnotes (character vector) text shown bottom module, element, named name shown first bold, followed value. show_metadata (logical) indicating whether metadata datasets available module.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_front_page.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Front page — tm_front_page","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_front_page.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Front page — tm_front_page","text":"example-1 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_front_page.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Front page — tm_front_page","text":"","code":"data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL attr(ADSL, \"metadata\") <- list(\"Author\" = \"NEST team\", \"data_source\" = \"synthetic data\") }) join_keys(data) <- default_cdisc_join_keys[names(data)] table_1 <- data.frame(Info = c(\"A\", \"B\"), Text = c(\"A\", \"B\")) table_2 <- data.frame(`Column 1` = c(\"C\", \"D\"), `Column 2` = c(5.5, 6.6), `Column 3` = c(\"A\", \"B\")) table_3 <- data.frame(Info = c(\"E\", \"F\"), Text = c(\"G\", \"H\")) table_input <- list( \"Table 1\" = table_1, \"Table 2\" = table_2, \"Table 3\" = table_3 ) app <- init( data = data, modules = modules( tm_front_page( header_text = c( \"Important information\" = \"It can go here.\", \"Other information\" = \"Can go here.\" ), tables = table_input, additional_tags = HTML(\"Additional HTML or shiny tags go here
\"), footnotes = c(\"X\" = \"is the first footnote\", \"Y is the second footnote\"), show_metadata = TRUE ) ), header = tags$h1(\"Sample Application\"), footer = tags$p(\"Application footer\"), ) #> Initializing tm_front_page if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_association.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"Module provides functionality visualizing distribution variables association reference variable. supports configuring appearance plots, including themes whether show associations.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_association.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"","code":"tm_g_association( label = \"Association\", ref, vars, show_association = TRUE, plot_height = c(600, 400, 5000), plot_width = NULL, distribution_theme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), association_theme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), pre_output = NULL, post_output = NULL, ggplot2_args = teal.widgets::ggplot2_args(), decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_association.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. ref (data_extract_spec list multiple data_extract_spec) Reference variable, must accepts data_extract_spec select_spec(multiple = FALSE) ensure single selection option. vars (data_extract_spec list multiple data_extract_spec) Variables associated reference variable. show_association (logical) optional, whether show association vars reference variable. Defaults TRUE. plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. distribution_theme, association_theme (character) optional, ggplot2 themes used default. Default \"gray\". pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. ggplot2_args (ggplot2_args) optional, object created teal.widgets::ggplot2_args() settings plots named list ggplot2_args objects plot-specific settings. argument merged options variable teal.ggplot2_args default module setup. List names match following: c(\"default\", \"Bivariate1\", \"Bivariate2\"). details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\"). decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_g_association\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_association.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_association.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"examples, please see vignette \"Using association plot\" via vignette(\"using-association-plot\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_association.html","id":"decorating-tm-g-association","dir":"Reference","previous_headings":"","what":"Decorating tm_g_association","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"module generates following objects, can modified place using decorators: plot (grob created ggplot2::ggplotGrob()) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal::teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_association.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_association.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Stack plots of variables and show association with reference variable — tm_g_association","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) CO2 <- CO2 factors <- names(Filter(isTRUE, vapply(CO2, is.factor, logical(1L)))) CO2[factors] <- lapply(CO2[factors], as.character) }) app <- init( data = data, modules = modules( tm_g_association( ref = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"Plant\", \"Type\", \"Treatment\")), selected = \"Plant\", fixed = FALSE ) ), vars = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"CO2\"]], c(\"Plant\", \"Type\", \"Treatment\")), selected = \"Treatment\", multiple = TRUE, fixed = FALSE ) ) ) ) ) #> Initializing tm_g_association #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_g_association( ref = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices( data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\", \"ARM\", \"STRATA1\", \"STRATA2\", \"ITTFL\", \"BMRKR2\") ), selected = \"RACE\", fixed = FALSE ) ), vars = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices( data[[\"ADSL\"]], c(\"SEX\", \"RACE\", \"COUNTRY\", \"ARM\", \"STRATA1\", \"STRATA2\", \"ITTFL\", \"BMRKR2\") ), selected = \"BMRKR2\", multiple = TRUE, fixed = FALSE ) ) ) ) ) #> Initializing tm_g_association #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_bivariate.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"Module enables creation univariate bivariate plots, facilitating exploration data distributions relationships two variables.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_bivariate.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"","code":"tm_g_bivariate( label = \"Bivariate Plots\", x, y, row_facet = NULL, col_facet = NULL, facet = !is.null(row_facet) || !is.null(col_facet), color = NULL, fill = NULL, size = NULL, use_density = FALSE, color_settings = FALSE, free_x_scales = FALSE, free_y_scales = FALSE, plot_height = c(600, 200, 2000), plot_width = NULL, rotate_xaxis_labels = FALSE, swap_axes = FALSE, ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), ggplot2_args = teal.widgets::ggplot2_args(), pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_bivariate.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. x (data_extract_spec list multiple data_extract_spec) Variable names selected plot along x-axis default. Can numeric, factor character. empty selections allowed. y (data_extract_spec list multiple data_extract_spec) Variable names selected plot along y-axis default. Can numeric, factor character. row_facet (data_extract_spec list multiple data_extract_spec) optional, specification data variable(s) use faceting rows. col_facet (data_extract_spec list multiple data_extract_spec) optional, specification data variable(s) use faceting columns. facet (logical) optional, specifies whether facet encodings ui elements toggled shown user default. Defaults TRUE either row_facet column_facet supplied. color (data_extract_spec list multiple data_extract_spec) optional, specification data variable(s) selected outline color inside coloring settings. applied color_settings set TRUE. fill (data_extract_spec list multiple data_extract_spec) optional, specification data variable(s) selected fill color inside coloring settings. applied color_settings set TRUE. size (data_extract_spec list multiple data_extract_spec) optional, specification data variable(s) selected size geom_point plots inside coloring settings. applied color_settings set TRUE. use_density (logical) optional, indicates whether plot density (TRUE) frequency (FALSE). Defaults frequency (FALSE). color_settings (logical) Whether coloring, filling size applied UI tool offered user. free_x_scales (logical) optional, whether X scaling shall changeable. allow scaling changed default (FALSE). free_y_scales (logical) optional, whether Y scaling shall changeable. allow scaling changed default (FALSE). plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. rotate_xaxis_labels (logical) optional, whether rotate plot X axis labels. rotate default (FALSE). swap_axes (logical) optional, whether swap X Y axes. Defaults FALSE. ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) object created teal.widgets::ggplot2_args() settings module plot. argument merged options variable teal.ggplot2_args default module setup. details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\") pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_g_bivariate\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_bivariate.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_bivariate.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"general module visualize 1 & 2 dimensional data.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_bivariate.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"examples, please see vignette \"Using bivariate plot\" via vignette(\"using-bivariate-plot\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_bivariate.html","id":"decorating-tm-g-bivariate","dir":"Reference","previous_headings":"","what":"Decorating tm_g_bivariate","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"module generates following objects, can modified place using decorators: plot (ggplot2) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal::teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_bivariate.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_bivariate.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Univariate and bivariate visualizations — tm_g_bivariate","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) CO2 <- data.frame(CO2) }) app <- init( data = data, modules = tm_g_bivariate( x = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]]), selected = \"conc\", fixed = FALSE ) ), y = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]]), selected = \"uptake\", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]]), selected = \"Type\", fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]]), selected = \"Treatment\", fixed = FALSE ) ) ) ) #> Initializing tm_g_bivariate #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = tm_g_bivariate( x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"AGE\", fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"SEX\", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"ARM\", fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]]), selected = \"COUNTRY\", fixed = FALSE ) ) ) ) #> Initializing tm_g_bivariate #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_distribution.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Distribution analysis — tm_g_distribution","title":"teal module: Distribution analysis — tm_g_distribution","text":"Module designed explore distribution single variable within given dataset. offers several tools, histograms, Q-Q plots, various statistical tests visually statistically analyze variable's distribution.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_distribution.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Distribution analysis — tm_g_distribution","text":"","code":"tm_g_distribution( label = \"Distribution Module\", dist_var, strata_var = NULL, group_var = NULL, freq = FALSE, ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), ggplot2_args = teal.widgets::ggplot2_args(), bins = c(30L, 1L, 100L), plot_height = c(600, 200, 2000), plot_width = NULL, pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_distribution.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Distribution analysis — tm_g_distribution","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. dist_var (data_extract_spec list multiple data_extract_spec) Variable(s) distribution analyzed. strata_var (data_extract_spec list multiple data_extract_spec) Categorical variable used split distribution analysis. group_var (data_extract_spec list multiple data_extract_spec) Variable used faceting plot multiple panels. freq (logical) optional, whether display frequency (TRUE) density (FALSE). Defaults density (FALSE). ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) optional, object created teal.widgets::ggplot2_args() settings plots named list ggplot2_args objects plot-specific settings. argument merged options variable teal.ggplot2_args default module setup. List names match following: c(\"default\", \"Histogram\", \"QQplot\"). details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\"). bins (integer(1) integer(3)) optional, specifies number bins histogram. length bins one: histogram bins fixed size based bins provided. length bins three: histogram bins dynamically adjusted based vector value, min, max. Defaults c(30L, 1L, 100L). plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. pre_output (shiny.tag, optional) text placed output put output context. example title. post_output (shiny.tag, optional) text placed output put output context. example shiny::helpText() elements useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_g_distribution\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_distribution.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Distribution analysis — tm_g_distribution","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_distribution.html","id":"decorating-tm-g-distribution","dir":"Reference","previous_headings":"","what":"Decorating tm_g_distribution","title":"teal module: Distribution analysis — tm_g_distribution","text":"module generates following objects, can modified place using decorators:: histogram_plot (ggplot2) qq_plot (data.frame) summary_table (data.frame) test_table (data.frame) Decorators can applied outputs specific objects using named list teal_transform_module objects. \"default\" name reserved decorators applied outputs. See code snippet : additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal::teal_transform_module() documentation.","code":"tm_g_distribution( ..., # arguments for module decorators = list( default = list(teal_transform_module(...)), # applied to all outputs histogram_plot = list(teal_transform_module(...)), # applied only to `histogram_plot` output qq_plot = list(teal_transform_module(...)) # applied only to `qq_plot` output summary_table = list(teal_transform_module(...)) # applied only to `summary_table` output test_table = list(teal_transform_module(...)) # applied only to `test_table` output ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_distribution.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Distribution analysis — tm_g_distribution","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_distribution.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Distribution analysis — tm_g_distribution","text":"","code":"# general data example data <- teal_data() data <- within(data, { iris <- iris }) app <- init( data = data, modules = list( tm_g_distribution( dist_var = data_extract_spec( dataname = \"iris\", select = select_spec(variable_choices(\"iris\"), \"Petal.Length\") ) ) ) ) #> Initializing tm_g_distribution #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] vars1 <- choices_selected( variable_choices(data[[\"ADSL\"]], c(\"ARM\", \"COUNTRY\", \"SEX\")), selected = NULL ) app <- init( data = data, modules = modules( tm_g_distribution( dist_var = data_extract_spec( dataname = \"ADSL\", select = select_spec( choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), strata_var = data_extract_spec( dataname = \"ADSL\", filter = filter_spec( vars = vars1, multiple = TRUE ) ), group_var = data_extract_spec( dataname = \"ADSL\", filter = filter_spec( vars = vars1, multiple = TRUE ) ) ) ) ) #> Initializing tm_g_distribution #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_response.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Response plot — tm_g_response","title":"teal module: Response plot — tm_g_response","text":"Generates response plot given response x variables. module allows users customize add annotations plot depending module's arguments. supports showing counts grouped variable facets (row / column), swapping coordinates, show count annotations displaying response plot frequency density.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_response.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Response plot — tm_g_response","text":"","code":"tm_g_response( label = \"Response Plot\", response, x, row_facet = NULL, col_facet = NULL, coord_flip = FALSE, count_labels = TRUE, rotate_xaxis_labels = FALSE, freq = FALSE, plot_height = c(600, 400, 5000), plot_width = NULL, ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), ggplot2_args = teal.widgets::ggplot2_args(), pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_response.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Response plot — tm_g_response","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. response (data_extract_spec list multiple data_extract_spec) variable use response. can define one fixed column setting fixed = TRUE inside select_spec. data_extract_spec must allow multiple selection case. x (data_extract_spec list multiple data_extract_spec) Specifies variable use X-axis response plot. Allow user select multiple columns data allowed teal. data_extract_spec must allow multiple selection case. row_facet (data_extract_spec list multiple data_extract_spec) optional specification data variable(s) use faceting rows. col_facet (data_extract_spec list multiple data_extract_spec) optional specification data variable(s) use faceting columns. coord_flip (logical(1)) Indicates whether flip coordinates x response. default value FALSE show x variable x-axis response variable y-axis. count_labels (logical(1)) Indicates whether show count labels. Defaults TRUE. rotate_xaxis_labels (logical) optional, whether rotate plot X axis labels. rotate default (FALSE). freq (logical(1)) Indicates whether display frequency (TRUE) density (FALSE). Defaults density (FALSE). plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) object created teal.widgets::ggplot2_args() settings module plot. argument merged options variable teal.ggplot2_args default module setup. details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\") pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_g_response\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_response.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Response plot — tm_g_response","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_response.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Response plot — tm_g_response","text":"examples, please see vignette \"Using response plot\" via vignette(\"using-response-plot\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_response.html","id":"decorating-tm-g-response","dir":"Reference","previous_headings":"","what":"Decorating tm_g_response","title":"teal module: Response plot — tm_g_response","text":"module generates following objects, can modified place using decorators: plot (ggplot2) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal::teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_response.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Response plot — tm_g_response","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_response.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Response plot — tm_g_response","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) mtcars <- mtcars for (v in c(\"cyl\", \"vs\", \"am\", \"gear\")) { mtcars[[v]] <- as.factor(mtcars[[v]]) } }) app <- init( data = data, modules = modules( tm_g_response( label = \"Response Plots\", response = data_extract_spec( dataname = \"mtcars\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"mtcars\"]], c(\"cyl\", \"gear\")), selected = \"cyl\", multiple = FALSE, fixed = FALSE ) ), x = data_extract_spec( dataname = \"mtcars\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"mtcars\"]], c(\"vs\", \"am\")), selected = \"vs\", multiple = FALSE, fixed = FALSE ) ) ) ) ) #> Initializing tm_g_response #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_g_response( label = \"Response Plots\", response = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR2\", \"COUNTRY\")), selected = \"BMRKR2\", multiple = FALSE, fixed = FALSE ) ), x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"SEX\", \"RACE\")), selected = \"RACE\", multiple = FALSE, fixed = FALSE ) ) ) ) ) #> Initializing tm_g_response #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplot.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Scatterplot — tm_g_scatterplot","title":"teal module: Scatterplot — tm_g_scatterplot","text":"Generates customizable scatterplot using ggplot2. module allows users select variables x y axes, color size encodings, faceting options, . supports log transformations, trend line additions, dynamic adjustments point opacity size UI controls.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Scatterplot — tm_g_scatterplot","text":"","code":"tm_g_scatterplot( label = \"Scatterplot\", x, y, color_by = NULL, size_by = NULL, row_facet = NULL, col_facet = NULL, plot_height = c(600, 200, 2000), plot_width = NULL, alpha = c(1, 0, 1), shape = shape_names, size = c(5, 1, 15), max_deg = 5L, rotate_xaxis_labels = FALSE, ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), pre_output = NULL, post_output = NULL, table_dec = 4, ggplot2_args = teal.widgets::ggplot2_args(), decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Scatterplot — tm_g_scatterplot","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. x (data_extract_spec list multiple data_extract_spec) Specifies variable names selected plot along x-axis default. y (data_extract_spec list multiple data_extract_spec) Specifies variable names selected plot along y-axis default. color_by (data_extract_spec list multiple data_extract_spec) optional, defines color encoding. NULL color encoding option displayed. size_by (data_extract_spec list multiple data_extract_spec) optional, defines point size encoding. NULL size encoding option displayed. row_facet (data_extract_spec list multiple data_extract_spec) optional, specifies variable(s) faceting rows. col_facet (data_extract_spec list multiple data_extract_spec) optional, specifies variable(s) faceting columns. plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. alpha (integer(1) integer(3)) optional, specifies point opacity. length alpha one: plot points fixed opacity. length alpha three: plot points opacity dynamically adjusted based vector value, min, max. shape (character) optional, character vector names shape, e.g. c(\"triangle\", \"square\", \"circle\"). defaults shape_names. complete list vignette(\"ggplot2-specs\", package=\"ggplot2\"). size (integer(1) integer(3)) optional, specifies point size. length size one: plot point sizes fixed size. length size three: plot points size dynamically adjusted based vector value, min, max. max_deg (integer) optional, maximum degree polynomial trend line. Must less 1. rotate_xaxis_labels (logical) optional, whether rotate plot X axis labels. rotate default (FALSE). ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. table_dec (integer) optional, number decimal places used round numeric values table. ggplot2_args (ggplot2_args) object created teal.widgets::ggplot2_args() settings module plot. argument merged options variable teal.ggplot2_args default module setup. details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\") decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_g_scatterplot\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Scatterplot — tm_g_scatterplot","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplot.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Scatterplot — tm_g_scatterplot","text":"examples, please see vignette \"Using scatterplot\" via vignette(\"using-scatterplot\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplot.html","id":"decorating-tm-g-scatterplot","dir":"Reference","previous_headings":"","what":"Decorating tm_g_scatterplot","title":"teal module: Scatterplot — tm_g_scatterplot","text":"module generates following objects, can modified place using decorators: plot (ggplot2) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal::teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplot.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Scatterplot — tm_g_scatterplot","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplot.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Scatterplot — tm_g_scatterplot","text":"","code":"# general data example data <- teal_data() data <- within(data, { require(nestcolor) CO2 <- CO2 }) app <- init( data = data, modules = modules( tm_g_scatterplot( label = \"Scatterplot Choices\", x = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"conc\", \"uptake\")), selected = \"conc\", multiple = FALSE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"conc\", \"uptake\")), selected = \"uptake\", multiple = FALSE, fixed = FALSE ) ), color_by = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices( data[[\"CO2\"]], c(\"Plant\", \"Type\", \"Treatment\", \"conc\", \"uptake\") ), selected = NULL, multiple = FALSE, fixed = FALSE ) ), size_by = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"conc\", \"uptake\")), selected = \"uptake\", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"Plant\", \"Type\", \"Treatment\")), selected = NULL, multiple = FALSE, fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"Plant\", \"Type\", \"Treatment\")), selected = NULL, multiple = FALSE, fixed = FALSE ) ) ) ) ) #> Initializing tm_g_scatterplot #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_g_scatterplot( label = \"Scatterplot Choices\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\", \"BMRKR2\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\", \"BMRKR2\")), selected = \"BMRKR1\", multiple = FALSE, fixed = FALSE ) ), color_by = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices( data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\", \"BMRKR2\", \"RACE\", \"REGION1\") ), selected = NULL, multiple = FALSE, fixed = FALSE ) ), size_by = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR2\", \"RACE\", \"REGION1\")), selected = NULL, multiple = FALSE, fixed = FALSE ) ), col_facet = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"BMRKR2\", \"RACE\", \"REGION1\")), selected = NULL, multiple = FALSE, fixed = FALSE ) ) ) ) ) #> Initializing tm_g_scatterplot #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplotmatrix.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"Generates scatterplot matrix selected variables datasets. plot within matrix represents relationship two variables, providing overview correlations distributions across selected data.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplotmatrix.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"","code":"tm_g_scatterplotmatrix( label = \"Scatterplot Matrix\", variables, plot_height = c(600, 200, 2000), plot_width = NULL, pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplotmatrix.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. variables (data_extract_spec list multiple data_extract_spec) Specifies plotting variables incoming dataset filtering selecting. case data_extract_spec use select_spec(..., ordered = TRUE) plot elements rendered according selection order. plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_g_scatterplotmatrix\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplotmatrix.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplotmatrix.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"examples, please see vignette \"Using scatterplot matrix\" via vignette(\"using-scatterplot-matrix\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplotmatrix.html","id":"decorating-tm-g-scatterplotmatrix","dir":"Reference","previous_headings":"","what":"Decorating tm_g_scatterplotmatrix","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"module generates following objects, can modified place using decorators: plot (trellis - output lattice::splom) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal::teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplotmatrix.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_g_scatterplotmatrix.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Scatterplot matrix — tm_g_scatterplotmatrix","text":"","code":"# general data example data <- teal_data() data <- within(data, { countries <- data.frame( id = c(\"DE\", \"FR\", \"IT\", \"ES\", \"PT\", \"GR\", \"NL\", \"BE\", \"LU\", \"AT\"), government = factor( c(2, 2, 2, 1, 2, 2, 1, 1, 1, 2), labels = c(\"Monarchy\", \"Republic\") ), language_family = factor( c(1, 3, 3, 3, 3, 2, 1, 1, 3, 1), labels = c(\"Germanic\", \"Hellenic\", \"Romance\") ), population = c(83, 67, 60, 47, 10, 11, 17, 11, 0.6, 9), area = c(357, 551, 301, 505, 92, 132, 41, 30, 2.6, 83), gdp = c(3.4, 2.7, 2.1, 1.4, 0.3, 0.2, 0.7, 0.5, 0.1, 0.4), debt = c(2.1, 2.3, 2.4, 2.6, 2.3, 2.4, 2.3, 2.4, 2.3, 2.4) ) sales <- data.frame( id = 1:50, country_id = sample( c(\"DE\", \"FR\", \"IT\", \"ES\", \"PT\", \"GR\", \"NL\", \"BE\", \"LU\", \"AT\"), size = 50, replace = TRUE ), year = sort(sample(2010:2020, 50, replace = TRUE)), venue = sample(c(\"small\", \"medium\", \"large\", \"online\"), 50, replace = TRUE), cancelled = sample(c(TRUE, FALSE), 50, replace = TRUE), quantity = rnorm(50, 100, 20), costs = rnorm(50, 80, 20), profit = rnorm(50, 20, 10) ) }) join_keys(data) <- join_keys( join_key(\"countries\", \"countries\", \"id\"), join_key(\"sales\", \"sales\", \"id\"), join_key(\"countries\", \"sales\", c(\"id\" = \"country_id\")) ) app <- init( data = data, modules = modules( tm_g_scatterplotmatrix( label = \"Scatterplot matrix\", variables = list( data_extract_spec( dataname = \"countries\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"countries\"]]), selected = c(\"area\", \"gdp\", \"debt\"), multiple = TRUE, ordered = TRUE, fixed = FALSE ) ), data_extract_spec( dataname = \"sales\", filter = filter_spec( label = \"Select variable:\", vars = \"country_id\", choices = value_choices(data[[\"sales\"]], \"country_id\"), selected = c(\"DE\", \"FR\", \"IT\", \"ES\", \"PT\", \"GR\", \"NL\", \"BE\", \"LU\", \"AT\"), multiple = TRUE ), select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"sales\"]], c(\"quantity\", \"costs\", \"profit\")), selected = c(\"quantity\", \"costs\", \"profit\"), multiple = TRUE, ordered = TRUE, fixed = FALSE ) ) ) ) ) ) #> Initializing tm_g_scatterplotmatrix #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { ADSL <- rADSL ADRS <- rADRS }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_g_scatterplotmatrix( label = \"Scatterplot matrix\", variables = list( data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADSL\"]]), selected = c(\"AGE\", \"RACE\", \"SEX\"), multiple = TRUE, ordered = TRUE, fixed = FALSE ) ), data_extract_spec( dataname = \"ADRS\", filter = filter_spec( label = \"Select endpoints:\", vars = c(\"PARAMCD\", \"AVISIT\"), choices = value_choices(data[[\"ADRS\"]], c(\"PARAMCD\", \"AVISIT\"), c(\"PARAM\", \"AVISIT\")), selected = \"INVET - END OF INDUCTION\", multiple = TRUE ), select = select_spec( label = \"Select variables:\", choices = variable_choices(data[[\"ADRS\"]]), selected = c(\"AGE\", \"AVAL\", \"ADY\"), multiple = TRUE, ordered = TRUE, fixed = FALSE ) ) ) ) ) ) #> Initializing tm_g_scatterplotmatrix #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_missing_data.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Missing data analysis — tm_missing_data","title":"teal module: Missing data analysis — tm_missing_data","text":"module analyzes missing data data.frames help users explore missing observations gain insights completeness data. useful clinical data analysis within context CDISC standards adaptable general data analysis purposes.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_missing_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Missing data analysis — tm_missing_data","text":"","code":"tm_missing_data( label = \"Missing data\", plot_height = c(600, 400, 5000), plot_width = NULL, parent_dataname = \"ADSL\", ggtheme = c(\"classic\", \"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"void\"), ggplot2_args = list(`Combinations Hist` = teal.widgets::ggplot2_args(labs = list(caption = NULL)), `Combinations Main` = teal.widgets::ggplot2_args(labs = list(title = NULL))), pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_missing_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Missing data analysis — tm_missing_data","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. parent_dataname (character(1)) Specifies parent dataset name. Default ADSL CDISC data. provided exists, enables additional analysis \"subject\". non-CDISC data, parameter can ignored. ggtheme (character) optional, specifies default ggplot2 theme plots. Defaults classic. ggplot2_args (ggplot2_args) optional, object created teal.widgets::ggplot2_args() settings plots named list ggplot2_args objects plot-specific settings. argument merged options variable teal.ggplot2_args default module setup. List names match following: c(\"default\", \"Summary Obs\", \"Summary Patients\", \"Combinations Main\", \"Combinations Hist\", \"Subject\"). details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\"). pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_missing_data\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_missing_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Missing data analysis — tm_missing_data","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_missing_data.html","id":"decorating-tm-missing-data","dir":"Reference","previous_headings":"","what":"Decorating tm_missing_data","title":"teal module: Missing data analysis — tm_missing_data","text":"module generates following objects, can modified place using decorators: summary_plot (grob created ggplot2::ggplotGrob()) combination_plot (grob created ggplot2::ggplotGrob()) by_subject_plot (ggplot2) table (DT::datatable()) Decorators can applied outputs specific objects using named list teal_transform_module objects. \"default\" name reserved decorators applied outputs. See code snippet : additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal::teal_transform_module() documentation.","code":"tm_missing_data( ..., # arguments for module decorators = list( default = list(teal_transform_module(...)), # applied to all outputs summary_plot = list(teal_transform_module(...)), # applied only to `summary_plot` output combination_plot = list(teal_transform_module(...)) # applied only to `combination_plot` output by_subject_plot = list(teal_transform_module(...)) # applied only to `by_subject_plot` output table = list(teal_transform_module(...)) # applied only to `table` output ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_missing_data.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Missing data analysis — tm_missing_data","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_missing_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Missing data analysis — tm_missing_data","text":"","code":"# general example data data <- teal_data() data <- within(data, { require(nestcolor) add_nas <- function(x) { x[sample(seq_along(x), floor(length(x) * runif(1, .05, .17)))] <- NA x } iris <- iris mtcars <- mtcars iris[] <- lapply(iris, add_nas) mtcars[] <- lapply(mtcars, add_nas) mtcars[[\"cyl\"]] <- as.factor(mtcars[[\"cyl\"]]) mtcars[[\"gear\"]] <- as.factor(mtcars[[\"gear\"]]) }) app <- init( data = data, modules = modules( tm_missing_data() ) ) #> Initializing tm_missing_data #> Warning: 'package:rlang' may not be available when loading #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC example data data <- teal_data() data <- within(data, { require(nestcolor) ADSL <- rADSL ADRS <- rADRS }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_missing_data() ) ) #> Initializing tm_missing_data #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_outliers.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Outliers analysis — tm_outliers","title":"teal module: Outliers analysis — tm_outliers","text":"Module analyze identify outliers using different methods IQR, Z-score, Percentiles, offers visualizations including box plots, density plots, cumulative distribution plots help interpret outliers.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_outliers.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Outliers analysis — tm_outliers","text":"","code":"tm_outliers( label = \"Outliers Module\", outlier_var, categorical_var = NULL, ggtheme = c(\"gray\", \"bw\", \"linedraw\", \"light\", \"dark\", \"minimal\", \"classic\", \"void\"), ggplot2_args = teal.widgets::ggplot2_args(), plot_height = c(600, 200, 2000), plot_width = NULL, pre_output = NULL, post_output = NULL, decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_outliers.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Outliers analysis — tm_outliers","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. outlier_var (data_extract_spec list multiple data_extract_spec) Specifies variable(s) analyzed outliers. categorical_var (data_extract_spec list multiple data_extract_spec) optional, specifies categorical variable(s) split selected outlier variables . ggtheme (character) optional, ggplot2 theme used default. Defaults \"gray\". ggplot2_args (ggplot2_args) optional, object created teal.widgets::ggplot2_args() settings plots named list ggplot2_args objects plot-specific settings. argument merged options variable teal.ggplot2_args default module setup. List names match following: c(\"default\", \"Boxplot\", \"Density Plot\", \"Cumulative Distribution Plot\"). details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\"). plot_height (numeric) optional, specifies plot height three-element vector value, min, max intended use slider UI element. plot_width (numeric) optional, specifies plot width three-element vector value, min, max slider encoding plot width. pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_outliers\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_outliers.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Outliers analysis — tm_outliers","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_outliers.html","id":"decorating-tm-outliers","dir":"Reference","previous_headings":"","what":"Decorating tm_outliers","title":"teal module: Outliers analysis — tm_outliers","text":"module generates following objects, can modified place using decorators: box_plot (ggplot2) density_plot (ggplot2) cumulative_plot (ggplot2) table (DT::datatable()) Decorators can applied outputs specific objects using named list teal_transform_module objects. \"default\" name reserved decorators applied outputs. See code snippet : additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal::teal_transform_module() documentation.","code":"tm_outliers( ..., # arguments for module decorators = list( default = list(teal_transform_module(...)), # applied to all outputs box_plot = list(teal_transform_module(...)), # applied only to `box_plot` output density_plot = list(teal_transform_module(...)) # applied only to `density_plot` output cumulative_plot = list(teal_transform_module(...)) # applied only to `cumulative_plot` output table = list(teal_transform_module(...)) # applied only to `table` output ) )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_outliers.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Outliers analysis — tm_outliers","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_outliers.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Outliers analysis — tm_outliers","text":"","code":"# general data example data <- teal_data() data <- within(data, { CO2 <- CO2 CO2[[\"primary_key\"]] <- seq_len(nrow(CO2)) }) join_keys(data) <- join_keys(join_key(\"CO2\", \"CO2\", \"primary_key\")) vars <- choices_selected(variable_choices(data[[\"CO2\"]], c(\"Plant\", \"Type\", \"Treatment\"))) app <- init( data = data, modules = modules( tm_outliers( outlier_var = list( data_extract_spec( dataname = \"CO2\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"CO2\"]], c(\"conc\", \"uptake\")), selected = \"uptake\", multiple = FALSE, fixed = FALSE ) ) ), categorical_var = list( data_extract_spec( dataname = \"CO2\", filter = filter_spec( vars = vars, choices = value_choices(data[[\"CO2\"]], vars$selected), selected = value_choices(data[[\"CO2\"]], vars$selected), multiple = TRUE ) ) ) ) ) ) #> Initializing tm_outliers #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] fact_vars_adsl <- names(Filter(isTRUE, sapply(data[[\"ADSL\"]], is.factor))) vars <- choices_selected(variable_choices(data[[\"ADSL\"]], fact_vars_adsl)) app <- init( data = data, modules = modules( tm_outliers( outlier_var = list( data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], c(\"AGE\", \"BMRKR1\")), selected = \"AGE\", multiple = FALSE, fixed = FALSE ) ) ), categorical_var = list( data_extract_spec( dataname = \"ADSL\", filter = filter_spec( vars = vars, choices = value_choices(data[[\"ADSL\"]], vars$selected), selected = value_choices(data[[\"ADSL\"]], vars$selected), multiple = TRUE ) ) ) ) ) ) #> Initializing tm_outliers #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_t_crosstable.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Cross-table — tm_t_crosstable","title":"teal module: Cross-table — tm_t_crosstable","text":"Generates simple cross-table two variables dataset custom options showing percentages sub-totals.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_t_crosstable.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Cross-table — tm_t_crosstable","text":"","code":"tm_t_crosstable( label = \"Cross Table\", x, y, show_percentage = TRUE, show_total = TRUE, pre_output = NULL, post_output = NULL, basic_table_args = teal.widgets::basic_table_args(), decorators = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_t_crosstable.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Cross-table — tm_t_crosstable","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. x (data_extract_spec list multiple data_extract_spec) Object available choices pre-selected option variable X - row values. case data_extract_spec use select_spec(..., ordered = TRUE) table elements rendered according selection order. y (data_extract_spec list multiple data_extract_spec) Object available choices pre-selected option variable Y - column values. data_extract_spec must allow multiple selection case. show_percentage (logical(1)) Indicates whether show percentages (relevant x factor). Defaults TRUE. show_total (logical(1)) Indicates whether show total column. Defaults TRUE. pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. basic_table_args (basic_table_args) object created teal.widgets::basic_table_args() settings module table. argument merged options variable teal.basic_table_args default module setup. details see vignette: vignette(\"custom-basic-table-arguments\", package = \"teal.widgets\") decorators (list teal_transform_module, named list teal_transform_module NULL) optional, NULL, decorator tables plots included module. named list teal_transform_module, decorators applied respective output objects. Otherwise, decorators applied objects, equivalent using name default. See section \"Decorating tm_t_crosstable\" details.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_t_crosstable.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Cross-table — tm_t_crosstable","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_t_crosstable.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"teal module: Cross-table — tm_t_crosstable","text":"examples, please see vignette \"Using cross table\" via vignette(\"using-cross-table\", package = \"teal.modules.general\").","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_t_crosstable.html","id":"decorating-tm-t-crosstable","dir":"Reference","previous_headings":"","what":"Decorating tm_t_crosstable","title":"teal module: Cross-table — tm_t_crosstable","text":"module generates following objects, can modified place using decorators: table (ElementaryTable - output rtables::build_table) additional details examples decorators, refer vignette vignette(\"decorate-modules-output\", package = \"teal\") teal::teal_transform_module() documentation.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_t_crosstable.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Cross-table — tm_t_crosstable","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_t_crosstable.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Cross-table — tm_t_crosstable","text":"","code":"# general data example data <- teal_data() data <- within(data, { mtcars <- mtcars for (v in c(\"cyl\", \"vs\", \"am\", \"gear\")) { mtcars[[v]] <- as.factor(mtcars[[v]]) } mtcars[[\"primary_key\"]] <- seq_len(nrow(mtcars)) }) join_keys(data) <- join_keys(join_key(\"mtcars\", \"mtcars\", \"primary_key\")) app <- init( data = data, modules = modules( tm_t_crosstable( label = \"Cross Table\", x = data_extract_spec( dataname = \"mtcars\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"mtcars\"]], c(\"cyl\", \"vs\", \"am\", \"gear\")), selected = c(\"cyl\", \"gear\"), multiple = TRUE, ordered = TRUE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"mtcars\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"mtcars\"]], c(\"cyl\", \"vs\", \"am\", \"gear\")), selected = \"vs\", multiple = FALSE, fixed = FALSE ) ) ) ) ) #> Initializing tm_t_crosstable #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC data example data <- teal_data() data <- within(data, { ADSL <- rADSL }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_t_crosstable( label = \"Cross Table\", x = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], subset = function(data) { idx <- !vapply(data, inherits, logical(1), c(\"Date\", \"POSIXct\", \"POSIXlt\")) return(names(data)[idx]) }), selected = \"COUNTRY\", multiple = TRUE, ordered = TRUE, fixed = FALSE ) ), y = data_extract_spec( dataname = \"ADSL\", select = select_spec( label = \"Select variable:\", choices = variable_choices(data[[\"ADSL\"]], subset = function(data) { idx <- vapply(data, is.factor, logical(1)) return(names(data)[idx]) }), selected = \"SEX\", multiple = FALSE, fixed = FALSE ) ) ) ) ) #> Initializing tm_t_crosstable #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_variable_browser.html","id":null,"dir":"Reference","previous_headings":"","what":"teal module: Variable browser — tm_variable_browser","title":"teal module: Variable browser — tm_variable_browser","text":"Module provides provides detailed summary visualization variable distributions data.frame objects, interactive features customize analysis.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_variable_browser.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"teal module: Variable browser — tm_variable_browser","text":"","code":"tm_variable_browser( label = \"Variable Browser\", datasets_selected = character(0), parent_dataname = \"ADSL\", pre_output = NULL, post_output = NULL, ggplot2_args = teal.widgets::ggplot2_args() )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_variable_browser.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"teal module: Variable browser — tm_variable_browser","text":"label (character(1)) Label shown navigation item module module group. modules() defaults \"root\". See Details. datasets_selected (character) vector datasets shown, order. Names must correspond datasets names. vector length zero (default) datasets shown. Note: data.frame objects compatible; using types cause error. parent_dataname (character(1)) string specifying parent dataset. exists datasets_selectedthen extra checkbox shown allow users show variables datasets exist dataname. typically used remove ADSL columns CDISC data. non CDISC data can ignored. Defaults \"ADSL\". pre_output (shiny.tag) optional, text UI element displayed module's output, providing context title. text placed output put output context. example title. post_output (shiny.tag) optional, text UI element displayed module's output, adding context instructions. Elements like shiny::helpText() useful. ggplot2_args (ggplot2_args) object created teal.widgets::ggplot2_args() settings module plot. argument merged options variable teal.ggplot2_args default module setup. details see vignette: vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\")","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_variable_browser.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"teal module: Variable browser — tm_variable_browser","text":"Object class teal_module used teal applications.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_variable_browser.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"teal module: Variable browser — tm_variable_browser","text":"Numeric columns fewer 30 distinct values can treated either discrete continuous checkbox allowing users switch treated(< 6 unique values default discrete, otherwise continuous).","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_variable_browser.html","id":"examples-in-shinylive","dir":"Reference","previous_headings":"","what":"Examples in Shinylive","title":"teal module: Variable browser — tm_variable_browser","text":"example-1 Open Shinylive example-2 Open Shinylive","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/tm_variable_browser.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"teal module: Variable browser — tm_variable_browser","text":"","code":"# general data example data <- teal_data() data <- within(data, { iris <- iris mtcars <- mtcars women <- women faithful <- faithful CO2 <- CO2 }) app <- init( data = data, modules = modules( tm_variable_browser( label = \"Variable browser\" ) ) ) #> Initializing tm_variable_browser #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) } # CDISC example data library(sparkline) data <- teal_data() data <- within(data, { ADSL <- rADSL ADTTE <- rADTTE }) join_keys(data) <- default_cdisc_join_keys[names(data)] app <- init( data = data, modules = modules( tm_variable_browser( label = \"Variable browser\" ) ) ) #> Initializing tm_variable_browser #> Initializing reporter_previewer_module if (interactive()) { shinyApp(app$ui, app$server) }"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/validate_input.html","id":null,"dir":"Reference","previous_headings":"","what":"Validates the variable browser inputs — validate_input","title":"Validates the variable browser inputs — validate_input","text":"Validates variable browser inputs","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/validate_input.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Validates the variable browser inputs — validate_input","text":"","code":"validate_input(input, plot_var, data)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/validate_input.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Validates the variable browser inputs — validate_input","text":"input (session$input) shiny session input plot_var (list) list data frame array variable names data (teal_data) datasets passed module","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/validate_input.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Validates the variable browser inputs — validate_input","text":"logical TRUE validations pass; shiny validation error otherwise","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/var_missings_info.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarize NAs. — var_missings_info","title":"Summarize NAs. — var_missings_info","text":"Summarizes occurrence missing values vector.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/var_missings_info.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarize NAs. — var_missings_info","text":"","code":"var_missings_info(x)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/var_missings_info.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarize NAs. — var_missings_info","text":"x vector type length","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/var_missings_info.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarize NAs. — var_missings_info","text":"Character string describing NA occurrence.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/var_summary_table.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarizes variable — var_summary_table","title":"Summarizes variable — var_summary_table","text":"Creates html summary statistics relevant data type. numeric values returns central tendency measures, factor returns level counts, Date date range, just number levels.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/var_summary_table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarizes variable — var_summary_table","text":"","code":"var_summary_table(x, numeric_as_factor, dt_rows, outlier_definition)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/var_summary_table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarizes variable — var_summary_table","text":"x vector type numeric_as_factor logical numeric variable treated factor dt_rows numeric current/latest DT page length outlier_definition 0 outliers removed, otherwise outliers (outlier_definition*IQR /Q1/Q3 removed)","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/var_summary_table.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarizes variable — var_summary_table","text":"text simple statistics.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/variable_type_icons.html","id":null,"dir":"Reference","previous_headings":"","what":"Get icons to represent variable types in dataset — variable_type_icons","title":"Get icons to represent variable types in dataset — variable_type_icons","text":"Get icons represent variable types dataset","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/variable_type_icons.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get icons to represent variable types in dataset — variable_type_icons","text":"","code":"variable_type_icons(var_type)"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/variable_type_icons.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get icons to represent variable types in dataset — variable_type_icons","text":"var_type (character) R internal types (classes).","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/variable_type_icons.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get icons to represent variable types in dataset — variable_type_icons","text":"(character) vector HTML icons corresponding data type column.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/varname_w_label.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate a string for a variable including its label — varname_w_label","title":"Generate a string for a variable including its label — varname_w_label","text":"Generate string variable including label","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/varname_w_label.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate a string for a variable including its label — varname_w_label","text":"","code":"varname_w_label( var_names, dataset, wrap_width = 80, prefix = NULL, suffix = NULL )"},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/varname_w_label.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate a string for a variable including its label — varname_w_label","text":"var_names (character) Name variable extract labels . dataset (dataset) Name analysis dataset. wrap_width (numeric) Number characters wrap original label . Defaults 80. prefix, suffix (character) String paste beginning/end variable name label.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/reference/varname_w_label.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate a string for a variable including its label — varname_w_label","text":"(character) String variable name label.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tealmodulesgeneral-0309058","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.3.0.9058","title":"teal.modules.general 0.3.0.9058","text":"Removed Show Warnings modals modules.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"enhancements-0-3-0-9058","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.3.0.9058","text":"Added teal.logger functionality logging changes shiny inputs modules.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"bug-fixes-0-3-0-9058","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.3.0.9058","text":"Fixed bug tm_missing_data “Group Subject” using reactive data call.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tealmodulesgeneral-030","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.3.0","title":"teal.modules.general 0.3.0","text":"CRAN release: 2024-03-05","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"enhancements-0-3-0","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.3.0","text":"Updated package docs vignettes new way specifying data teal::init(). data argument accept teal_data object.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"bug-fixes-0-3-0","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.3.0","text":"Outlier labels longer appear bounds tm_a_regression. Fixed bug tm_outliers changing selected variable cause popup.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"miscellaneous-0-3-0","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.3.0","text":"Removed teal.slice dependencies. Specified minimal version package dependencies.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"breaking-changes-0-2-16","dir":"Changelog","previous_headings":"","what":"Breaking changes","title":"teal.modules.general 0.2.16","text":"Replaced chunks simpler qenv class. Replaced datasets argument containing FilteredData new arguments data (tdata object) filter_panel_api (FilterPanelAPI).","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"enhancements-0-2-16","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.16","text":"Added parent_dataname argument tm_variable_browser tm_missing_data allow specification parent dataset modules. Improved UI labels plot panel title tm_g_association. Added inputs tm_variable_browser module text size plot theme. Forced ggplot theme always selected modules. Updated encodings input checks use shinyvalidate::InputValidator instead shiny::validate better UI experience.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"bug-fixes-0-2-16","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.2.16","text":"Fixed bug tm_g_scatterplot selected x y facets . Fixed bug tm_g_distribution plot theoretical distribution newer ggplot2 version. Fixed bug tm_g_bivariate adding lines checkbox available one x y deselected. Fixed bug tm_variable_browser changing filters reset selected variable first list.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"miscellaneous-0-2-16","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.16","text":"Removed scda package dependency examples. Replaced deprecated ggplot2 functions ..count.., ..density.. ..prop... Version bump forcats dependency. Replaced scda data generation functions random.cdisc.data","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"enhancements-0-2-15","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.15","text":"Added teal.reporter functionality modules. Implemented nestcolor examples, refactored tm_a_pca tm_missing_data allow using nestcolor. Added log transformation options tm_g_scatterplot. Added server_rendering flag tm_data_table control whether table rendered server client side.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"bug-fixes-0-2-15","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.2.15","text":"Fixed overflow wide tm_a_pca tables. Fixed join type functionality tm_t_crosstable. Fixed bug tm_missing_data selecting variables missings. Fixed bug tm_missing_data using any_na.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"miscellaneous-0-2-15","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.15","text":"Moved packages used one module Imports Suggests DESCRIPTION file. Moved magrittr package Depends Imports DESCRIPTION file.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"enhancements-0-2-14","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.14","text":"New teal module tm_front_page simplify creating front page teal apps. Added slider widget control font size label tm_g_scatterplot. Output integers without decimal places selecting points tm_g_scatterplot. Improved names code chunks shown Debug Info. Improved validation message number regressors big tm_a_regression.R.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"bug-fixes-0-2-14","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.2.14","text":"Fixed wrong validation tm_a_pca. Fixed crash deselecting categorical factor tm_outliers.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"miscellaneous-0-2-14","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.14","text":"Added template pkgdown site. Updated package authors.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"enhancements-0-2-13","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.13","text":"Rewrote modules use moduleServer updated call plot_with_settings_srv changes teal.devel. Fixed tracking selection order data_extract_ui. selectors can return ordered selection one specifies ordered = TRUE select_spec. Switched order tm_missing_data combination plot show data descending order. Changed variable levels output tm_missing_data allow numerical sorting.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"miscellaneous-0-2-13","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.13","text":"Removed unneeded n row tm_t_crosstable. Replaced calls teal::root_modules teal::modules following deprecation teal::root_modules. Adjusted package imports take account changes teal framework. Added “Getting started teal.modules.general” vignette. Updated README file. Moved ggmosaic package Depends Imports DESCRIPTION file.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"enhancements-0-2-12","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.12","text":"Added support logging logger package added info level logs upon initialization module. Added support custom arguments ggplot2::labs ggplot2::theme plot based modules. Added support custom arguments rtables::basic_table tm_t_crosstable. Updated tm_outliers, tm_g_scatterplotmatrix, tm_g_association, tm_t_crosstable modules adopt new teal.transform::data_merge_srv teal.transform::data_extract_multiple_srv modules. Distinguished bars representing NA plot depicting counts tm_variable_browser different color fill. Modified summary statistics table numeric columns tm_variable_browser reflect plot outliers removed. Added option remove missing values tm_variable_browser histogram factor like variables. Added ability sort Variable Type tm_variable_browser separating variable type icons column. Updated Grouped Subject tab tm_missing_data module present data way Summary tab . Added support NA level grouping variable variable levels table tm_missing_data module. Added informative labels level grouping variable variable levels table tm_missing_data module. Added checkbox tm_g_scatterplot toggle option free x y axis scales whenever faceting arguments provided. Used browser-side processing tm_data_table Buttons extension download full table. Added example advanced usage DT module.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"bug-fixes-0-2-12","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.2.12","text":"Fixed error tm_variable_browser selected column logical(1). Fixed bugs modules’ vignette examples.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"miscellaneous-0-2-12","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.12","text":"Added R version requirement R >= 3.6. Removed input_id argument teal.transform::data_merge_module calls modules. Refactored defunct teal.devel::data_extract_input replacement teal.transform::data_extract_ui. Updated teal.transform::data_merge_srv use dplyr::inner_join instead dplyr::left_join tm_outliers module. Removed overlay statistics table tm_g_distribution module. Removed dependency test.nest package. Removed dependency utils.nest package replaced functions equivalents checkmate package.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"new-features-0-2-11","dir":"Changelog","previous_headings":"","what":"New features","title":"teal.modules.general 0.2.11","text":"new module, tm_file_viewer, added visualization static files. new module, tm_g_distribution, added distribution analysis.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"bug-fixes-0-2-11","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.2.11","text":"Fixed bar plot order factor variables tm_variable_browser.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_variable_browser-0-2-11","dir":"Changelog","previous_headings":"Enhancements","what":"tm_variable_browser","title":"teal.modules.general 0.2.11","text":"Added sparkline support Date/POSIXct/POSIXlt variable types. Fixed histograms contain least two bars.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_outliers-0-2-11","dir":"Changelog","previous_headings":"Enhancements","what":"tm_outliers","title":"teal.modules.general 0.2.11","text":"Added filter_spec support. Simplified returned R code. Support select_spec categorical variables.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_g_scatterplotmatrix-0-2-11","dir":"Changelog","previous_headings":"Enhancements","what":"tm_g_scatterplotmatrix","title":"teal.modules.general 0.2.11","text":"Added ordered select input support. Decoupled dataset list variables list parameters.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_g_association-0-2-11","dir":"Changelog","previous_headings":"Enhancements","what":"tm_g_association","title":"teal.modules.general 0.2.11","text":"Added ordered select input support.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_t_crosstable-0-2-11","dir":"Changelog","previous_headings":"Enhancements","what":"tm_t_crosstable","title":"teal.modules.general 0.2.11","text":"Added ordered select input support.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_g_scatterplot-0-2-11","dir":"Changelog","previous_headings":"Enhancements","what":"tm_g_scatterplot","title":"teal.modules.general 0.2.11","text":"Modified trend line feature scatterplot display raw equation equal actual y value actual x values plugged .","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"miscellaneous-0-2-11","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.11","text":"Updated LICENCE README new package references. Added error_on_lint: TRUE .lintr. Updated quantile type = 2 argument tm_variable_browser line STREAM.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"enhancements-0-2-10","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.10","text":"Refactored internal code modules optimize performance. Refactored tm_g_scatterplot compute trend line statistics using ggpmisc::stat_poly_eq simplify code labels group plot. Refactored tm_g_scatterplot enable filtering via Encoding Panel using new filter_spec functionality. Added support logical variables tm_variable_browser. Updated tm_outliers handle non-CDISC datasets. Updated UI tm_variable_browser factor character variables 30 levels. Updated sparklines remove NA values numeric variables. Added checkbox display number observations plot tm_g_scatterplot. Added validation statements tm_g_scatterplot handling users choosing one facet variable. Improved performance tm_variable_browser efficient sparkline generation. Added html code type datasets labels inside tm_missing_data. Improved styling tool tips tm_a_regression, tm_missing_data tm_variable_browser.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"enhancements-0-2-9","dir":"Changelog","previous_headings":"","what":"Enhancements","title":"teal.modules.general 0.2.9","text":"Added download, enlarge resize graph options tm_variable_browser module. Added download expand options table tm_t_crosstable. Enabled selection custom datasets tm_variable_browser datasets_selected argument. Allowed dataset variables used grouping variables variable levels tab tm_missing_data, just selected displayed rows table. Enabled brushing points NA categories facetting tm_g_scatterplot.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"bug-fixes-0-2-9","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"teal.modules.general 0.2.9","text":"Added persistence number entries displayed data tables. Removed ‘treat variable factor’ checkbox tm_variable_browser graph shown. Fixed DT length reset tm_variable_browser “Show parent dataset variables” checkbox tick.","code":""},{"path":[]},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_outliers-0-2-8","dir":"Changelog","previous_headings":"New Module","what":"tm_outliers","title":"teal.modules.general 0.2.8","text":"Added new module tm_outliers analyze outliers datasets.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_g_scatterplot-0-2-8","dir":"Changelog","previous_headings":"Enhancements","what":"tm_g_scatterplot","title":"teal.modules.general 0.2.8","text":"Added max_deg optional argument scatterplot allow users choose maximum smoothing degree trend line. Added column row facetting functionality scatterplot. Added possibility specify type join tm_t_crosstable. Incorporate missings resulting non inner join.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"bug-fixes-0-2-8","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"teal.modules.general 0.2.8","text":"Fixed edge case errors tm_missing_data caused input dataset categorical variables data.frame instead tibble. Fixed tm_a_pca biplot plot coloring factor/character/numeric < 6 values variable. Fixed typo outlier definition tm_variable_browser.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"miscellaneous-0-2-8","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.8","text":"Sparklines longer shown numeric variables 100000 rows. Colors legend plot. Replaced \"Show variables ADSL\" checkbox general \"Show parent dataset variables\". Capitalize default module labels. outputs tm_missing_data conditional data CDISC data. Added pre_output post_output arguments tm_data_table, tm_missing_data, tm_variable_browser. Fixed issue tm_data_table selecting “show distinct rows” variable names non-alphanumeric characters.","code":""},{"path":[]},{"path":[]},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_variable_browser-0-2-7","dir":"Changelog","previous_headings":"Enhancements","what":"tm_variable_browser","title":"teal.modules.general 0.2.7","text":"Introduced sparklines quick, inline variable summaries. Added option remove outliers. Histograms statistics tables now displayed variables type Date, POSIXct POSIXlt. Character variable summary statistics tables now displayed decreasing order occurrences instead alphabetical. Display number non-missing rows n statistics table numeric variables. Added ability treat numeric variables categorical. tm_variable_browser shows 30 50 levels divided 2 columns character/factor variables 30 unique levels.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_a_regression-0-2-7","dir":"Changelog","previous_headings":"Enhancements","what":"tm_a_regression","title":"teal.modules.general 0.2.7","text":"Added support outlier labels tm_a_regression provided additional optional argument, default_outlier_label can used specify default column used label outliers.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_g_scatterplot-0-2-7","dir":"Changelog","previous_headings":"Enhancements","what":"tm_g_scatterplot","title":"teal.modules.general 0.2.7","text":"Implemented trend line. Added marginal density plots. Added option display rug plot axes. Added shape point color arguments. latter users colourpicker::colourInput. Added size_by variable scatterplot allowed point size mapped numeric variable.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_missing_data-0-2-7","dir":"Changelog","previous_headings":"Enhancements","what":"tm_missing_data","title":"teal.modules.general 0.2.7","text":"Added bar chart missing data combination plot. Removed keys missing data combinations plot selected.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_g_bivariate-0-2-7","dir":"Changelog","previous_headings":"Enhancements","what":"tm_g_bivariate","title":"teal.modules.general 0.2.7","text":"Bivariate plots two continuous variables now allow adding lines. Show labels x axis selecting categorical variable fixed issues deselecting variables datasets encodings panel (including addition meaningful warnings).","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tm_a_pca-0-2-7","dir":"Changelog","previous_headings":"Enhancements","what":"tm_a_pca","title":"teal.modules.general 0.2.7","text":"Updated include Plot settings Plot specific settings.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"miscellaneous-0-2-7","dir":"Changelog","previous_headings":"","what":"Miscellaneous","title":"teal.modules.general 0.2.7","text":"Integrated is_single_dataset argument data_extract_input function calls simplify encodings panel UI. Moved code argument cdisc_dataset (cdisc_data) examples vignettes. Require ggmosaic version >= 0.3.0.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tealmodulesgeneral-026","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.6","title":"teal.modules.general 0.2.6","text":"Adds additional plot settings themes tm_g_association, tm_g_response, tm_g_scatterplot, well point size opacity settings tm_g_association tm_g_scatterplot. Replace pickerInput optionalSelectInput tm_data_table. Adds new facet parameter tm_g_bivariate specify whether facet encodings elements visible user default. Replace plot_with_height module new plot_with_settings module. Missing data module now uses chunks get reproducible R code. New theme missing data module new label positioning. tm_data_table: allow developers pass arguments DT::dataTable use pickerInput select variables. tm_g_response new argument count_labels. Counts might assessed frequency plot . Moved missing data module summary plot footer elements tool tip encodings panels. Replaced base plots tm_a_regression ggplot2. Added optional slider adjust width plot_with_settings. Handle Inf data gracefully. tm_variable_browser now outputs summary table factors missing values.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tealmodulesgeneral-025","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.5","title":"teal.modules.general 0.2.5","text":"Adds ggplot call inside chunks modules. Pass dataname get_rcode_srv. Uses utils function standardize plot label generation. Improved handling variable labels. Removed “Add filter variable” button variable browser module. Scatterplot matrix module now automatically converts characters factors message.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tealmodulesgeneral-024","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.4","title":"teal.modules.general 0.2.4","text":"New PCA module. Documentation fix cross table module. Display variable labels drop-menu data table (#393). Optional subsetting ordering datasets tm_data_table. Use teal.code::chunks_push_data_merge include merge code reproducibility code. consistent coloring behavior bivariate plots. Updates missing data module. Updated graph axis labels following modules: bivariate plot, missing data, response plot, regression module, scatterplot, scatterplot matrix. Simplify scatterplot matrix display plot within one dataset .","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tealmodulesgeneral-023","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.3","title":"teal.modules.general 0.2.3","text":"Fixed naming tm_variable_browser. Correlation added Scatter Plot Matrix. Opacity slider added tm_bivariate. Fixes due bug teal.devel#313. Performance enhancements missing data module. Fix bug reactivity scatterplot matrix module.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tealmodulesgeneral-022","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.2","title":"teal.modules.general 0.2.2","text":"New module summarize missing data. Refactor variable browser module. Correct display density / frequency option bivariate plot.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tealmodulesgeneral-021","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.1","title":"teal.modules.general 0.2.1","text":"Fix magrittr loading reproducible code.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tealmodulesgeneral-020","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.2.0","title":"teal.modules.general 0.2.0","text":"Refactor functions data extract data merge. Create sample_app.R demonstrating teal.modules.general modules. Rename tm_table tm_cross_table. Include show R code modules. Merge tm_cross_table tm_t_percentage_table one module.","code":""},{"path":"https://insightsengineering.github.io/teal.modules.general/news/index.html","id":"tealmodulesgeneral-010","dir":"Changelog","previous_headings":"","what":"teal.modules.general 0.1.0","title":"teal.modules.general 0.1.0","text":"Initial release.","code":""}]