From 8dae4e692b1d2bf61333e3d07bcc6b26065e9cd9 Mon Sep 17 00:00:00 2001 From: Zelos Zhu Date: Mon, 4 Mar 2024 20:00:31 +0000 Subject: [PATCH] move latex equations to reference pages --- R/proportion_ci.R | 27 +++++++++++++++++++++++++++ man/proportion_ci.Rd | 23 +++++++++++++++++++++++ 2 files changed, 50 insertions(+) diff --git a/R/proportion_ci.R b/R/proportion_ci.R index 059e3d071..7c88b4f31 100644 --- a/R/proportion_ci.R +++ b/R/proportion_ci.R @@ -23,6 +23,8 @@ NULL #' @describeIn proportion_ci Calculates the Wald interval by following the usual textbook definition #' for a single proportion confidence interval using the normal approximation. #' +#' \deqn{\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}} +#' #' @param correct (`logical`)\cr apply continuity correction. #' #' @export @@ -62,6 +64,10 @@ proportion_ci_wald <- function(x, conf.level = 0.95, correct = FALSE) { #' @describeIn proportion_ci Calculates the Wilson interval by calling [stats::prop.test()]. #' Also referred to as Wilson score interval. #' +#' \deqn{\frac{\hat{p} + +#' \frac{z^2_{\alpha/2}}{2n} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n} + +#' \frac{z^2_{\alpha/2}}{4n^2}}}{1 + \frac{z^2_{\alpha/2}}{n}}} +#' #' @export proportion_ci_wilson <- function(x, conf.level = 0.95, correct = FALSE) { cards::check_pkg_installed("broom", reference_pkg = "cards") @@ -90,6 +96,12 @@ proportion_ci_wilson <- function(x, conf.level = 0.95, correct = FALSE) { #' @describeIn proportion_ci Calculates the Clopper-Pearson interval by calling [stats::binom.test()]. #' Also referred to as the `exact` method. +#' +#' \deqn{ +#' \left( \frac{k}{n} \pm z_{\alpha/2} \sqrt{\frac{\frac{k}{n}(1-\frac{k}{n})}{n} + +#' \frac{z^2_{\alpha/2}}{4n^2}} \right) +#' \div \left( 1 + \frac{z^2_{\alpha/2}}{n} \right)} +#' #' @export proportion_ci_clopper_pearson <- function(x, conf.level = 0.95) { cards::check_pkg_installed("broom", reference_pkg = "cards") @@ -111,6 +123,12 @@ proportion_ci_clopper_pearson <- function(x, conf.level = 0.95) { #' @describeIn proportion_ci Calculates the `Agresti-Coull` interval (created by `Alan Agresti` and `Brent Coull`) by #' (for 95% CI) adding two successes and two failures to the data and then using the Wald formula to construct a CI. +#' +#' \deqn{ +#' \left( \frac{\tilde{p} + z^2_{\alpha/2}/2}{n + z^2_{\alpha/2}} \pm +#' z_{\alpha/2} \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n} + +#' \frac{z^2_{\alpha/2}}{4n^2}} \right)} +#' #' @export proportion_ci_agresti_coull <- function(x, conf.level = 0.95) { # check inputs --------------------------------------------------------------- @@ -148,6 +166,10 @@ proportion_ci_agresti_coull <- function(x, conf.level = 0.95) { #' @describeIn proportion_ci Calculates the Jeffreys interval, an equal-tailed interval based on the #' non-informative Jeffreys prior for a binomial proportion. +#' +#' \deqn{\left( \text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_\alpha, +#' \text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_{1-\alpha} \right)} +#' #' @export proportion_ci_jeffreys <- function(x, conf.level = 0.95) { # check inputs --------------------------------------------------------------- @@ -189,6 +211,11 @@ proportion_ci_jeffreys <- function(x, conf.level = 0.95) { #' Xin YA, Su XG. Stratified Wilson and Newcombe confidence intervals #' for multiple binomial proportions. _Statistics in Biopharmaceutical Research_. 2010;2(3). #' +#' \deqn{\frac{\hat{p}_j + \frac{z^2_{\alpha/2}}{2n_j} \pm +#' z_{\alpha/2} \sqrt{\frac{\hat{p}_j(1 - \hat{p}_j)}{n_j} + +#' \frac{z^2_{\alpha/2}}{4n_j^2}}}{1 + \frac{z^2_{\alpha/2}}{n_j}}} +#' +#' #' @param strata (`factor`)\cr variable with one level per stratum and same length as `x`. #' @param weights (`numeric` or `NULL`)\cr weights for each level of the strata. If `NULL`, they are #' estimated using the iterative algorithm that diff --git a/man/proportion_ci.Rd b/man/proportion_ci.Rd index d19e9dbe5..736bcd4c3 100644 --- a/man/proportion_ci.Rd +++ b/man/proportion_ci.Rd @@ -59,23 +59,46 @@ Functions to calculate different proportion confidence intervals for use in \cod \item \code{proportion_ci_wald()}: Calculates the Wald interval by following the usual textbook definition for a single proportion confidence interval using the normal approximation. +\deqn{\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}} + \item \code{proportion_ci_wilson()}: Calculates the Wilson interval by calling \code{\link[stats:prop.test]{stats::prop.test()}}. Also referred to as Wilson score interval. +\deqn{\frac{\hat{p} + +\frac{z^2_{\alpha/2}}{2n} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n} + +\frac{z^2_{\alpha/2}}{4n^2}}}{1 + \frac{z^2_{\alpha/2}}{n}}} + \item \code{proportion_ci_clopper_pearson()}: Calculates the Clopper-Pearson interval by calling \code{\link[stats:binom.test]{stats::binom.test()}}. Also referred to as the \code{exact} method. +\deqn{ +\left( \frac{k}{n} \pm z_{\alpha/2} \sqrt{\frac{\frac{k}{n}(1-\frac{k}{n})}{n} + +\frac{z^2_{\alpha/2}}{4n^2}} \right) +\div \left( 1 + \frac{z^2_{\alpha/2}}{n} \right)} + \item \code{proportion_ci_agresti_coull()}: Calculates the \code{Agresti-Coull} interval (created by \verb{Alan Agresti} and \verb{Brent Coull}) by (for 95\% CI) adding two successes and two failures to the data and then using the Wald formula to construct a CI. +\deqn{ +\left( \frac{\tilde{p} + z^2_{\alpha/2}/2}{n + z^2_{\alpha/2}} \pm +z_{\alpha/2} \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n} + +\frac{z^2_{\alpha/2}}{4n^2}} \right)} + \item \code{proportion_ci_jeffreys()}: Calculates the Jeffreys interval, an equal-tailed interval based on the non-informative Jeffreys prior for a binomial proportion. +\deqn{\left( \text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_\alpha, +\text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_{1-\alpha} \right)} + \item \code{proportion_ci_strat_wilson()}: Calculates the stratified Wilson confidence interval for unequal proportions as described in Xin YA, Su XG. Stratified Wilson and Newcombe confidence intervals for multiple binomial proportions. \emph{Statistics in Biopharmaceutical Research}. 2010;2(3). +\deqn{\frac{\hat{p}_j + \frac{z^2_{\alpha/2}}{2n_j} \pm +z_{\alpha/2} \sqrt{\frac{\hat{p}_j(1 - \hat{p}_j)}{n_j} + +\frac{z^2_{\alpha/2}}{4n_j^2}}}{1 + \frac{z^2_{\alpha/2}}{n_j}}} + }} \examples{ x <- c(