diff --git a/DESCRIPTION b/DESCRIPTION index 8dca0f8a9..760f487f5 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -30,6 +30,7 @@ Suggests: broom.helpers (>= 1.15.0), car (>= 3.0-11), effectsize (>= 0.6.0), + emmeans (>= 1.7.3), geepack (>= 1.3.2), ggsurvfit (>= 1.0.0), lme4 (>= 1.1-31), diff --git a/NAMESPACE b/NAMESPACE index b971519aa..d1e1abdba 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -15,6 +15,7 @@ export(ard_effectsize_cohens_d) export(ard_effectsize_hedges_g) export(ard_effectsize_paired_cohens_d) export(ard_effectsize_paired_hedges_g) +export(ard_emmeans_mean_difference) export(ard_proportion_ci) export(ard_regression) export(ard_regression_basic) diff --git a/R/ard_emmeans_mean_difference.R b/R/ard_emmeans_mean_difference.R new file mode 100644 index 000000000..8a56c2227 --- /dev/null +++ b/R/ard_emmeans_mean_difference.R @@ -0,0 +1,132 @@ +#' ARD for LS Mean Difference +#' +#' @description +#' This function calculates least-squares mean differences using the 'emmeans' +#' package using the following +#' +#' ```r +#' emmeans::emmeans(object = , specs = ~ ) |> +#' emmeans::contrast(method = "pairwise") |> +#' summary(infer = TRUE, level = ) +#' ``` +#' +#' The arguments `data`, `formula`, `method`, `method.args`, `package` are used +#' to construct the regression model via `cardx::construct_model()`. +#' +#' @param data (`data.frame`/`survey.design`)\cr +#' a data frame or survey design object +#' @inheritParams construct_model +#' @param response_type (`string`) +#' string indicating whether the model outcome is `'continuous'` +#' or `'binary'`. When `'binary'`, the call to `emmeans::emmeans()` is +#' supplemented with argument `regrid="response"`. +#' @param conf.level (scalar `numeric`)\cr +#' confidence level for confidence interval. Default is `0.95`. +#' @param primary_covariate (`string`)\cr +#' string indicating the primary covariate (typically the dichotomous treatment variable). +#' Default is the first covariate listed in the formula. +#' +#' @return ARD data frame +#' @export +#' +#' @examplesIf do.call(asNamespace("cardx")$is_pkg_installed, list(pkg = "emmeans", reference_pkg = "cardx")) +#' ard_emmeans_mean_difference( +#' data = mtcars, +#' formula = mpg ~ am + cyl, +#' method = "lm" +#' ) +#' +#' ard_emmeans_mean_difference( +#' data = mtcars, +#' formula = vs ~ am + mpg, +#' method = "glm", +#' method.args = list(family = binomial), +#' response_type = "binary" +#' ) +ard_emmeans_mean_difference <- function(data, formula, method, + method.args = list(), + package = "base", + response_type = c("continuous", "binary"), + conf.level = 0.95, + primary_covariate = + stats::terms(formula) |> attr("term.labels") |> getElement(1L)) { + set_cli_abort_call() + + # check package installation ------------------------------------------------- + check_pkg_installed(c("emmeans", package), reference_pkg = "cardx") + check_not_missing(data) + check_not_missing(formula) + check_not_missing(method) + check_class(data, c("data.frame", "survey.design")) + check_class(formula, cls = "formula") + check_string(package) + check_string(primary_covariate) + check_scalar(conf.level) + check_range(conf.level, range = c(0, 1)) + response_type <- arg_match(response_type, error_call = get_cli_abort_call()) + + # construct primary model ---------------------------------------------------- + mod <- + construct_model( + x = data, formula = formula, method = method, + method.args = {{ method.args }}, + package = package, env = caller_env() + ) + + # emmeans -------------------------------------------------------------------- + emmeans_args <- list(object = mod, specs = reformulate2(primary_covariate)) + if (response_type %in% "binary") emmeans_args <- c(emmeans_args, list(regrid = "response")) + emmeans <- + withr::with_namespace( + package = "emmeans", + code = do.call("emmeans", args = emmeans_args) + ) + + df_results <- + emmeans |> + emmeans::contrast(method = "pairwise") |> + summary(infer = TRUE, level = conf.level) + + # convert results to ARD format ---------------------------------------------- + df_results |> + dplyr::as_tibble() |> + dplyr::rename( + conf.low = any_of("asymp.LCL"), + conf.high = any_of("asymp.UCL"), + conf.low = any_of("lower.CL"), + conf.high = any_of("upper.CL") + ) %>% + dplyr::select( + variable_level = "contrast", + "estimate", + std.error = "SE", "df", + "conf.low", "conf.high", "p.value" + ) %>% + dplyr::mutate( + conf.level = .env$conf.level, + method = + ifelse( + length(attr(stats::terms(formula), "term.labels") |> discard(~startsWith(., "1 |"))) == 1L, + "Least-squares mean difference", + "Least-squares adjusted mean difference" + ), + across(everything(), as.list), + variable = "contrast", + group1 = .env$primary_covariate + ) |> + tidyr::pivot_longer( + cols = -c("group1", "variable", "variable_level"), + names_to = "stat_name", + values_to = "stat" + ) |> + dplyr::left_join(.df_ttest_stat_labels(primary_covariate), by = "stat_name") |> + dplyr::mutate( + context = "emmeans_mean_difference", + stat_label = dplyr::coalesce(.data$stat_label, .data$stat_name), + warning = list(NULL), + error = list(NULL), + fmt_fn = map(.data$stat, \(.x) if (is.numeric(.x)) 1L else NULL) # styler: off + ) |> + cards::tidy_ard_column_order() %>% + {structure(., class = c("card", class(.)))} # styler: off +} diff --git a/inst/WORDLIST b/inst/WORDLIST index 9ffe51b9f..073fb6ff4 100644 --- a/inst/WORDLIST +++ b/inst/WORDLIST @@ -24,6 +24,7 @@ clopper coull de deff +emmeans funder jeffreys pearson diff --git a/man/ard_emmeans_mean_difference.Rd b/man/ard_emmeans_mean_difference.Rd new file mode 100644 index 000000000..2a7c9ffa9 --- /dev/null +++ b/man/ard_emmeans_mean_difference.Rd @@ -0,0 +1,80 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/ard_emmeans_mean_difference.R +\name{ard_emmeans_mean_difference} +\alias{ard_emmeans_mean_difference} +\title{ARD for LS Mean Difference} +\usage{ +ard_emmeans_mean_difference( + data, + formula, + method, + method.args = list(), + package = "base", + response_type = c("continuous", "binary"), + conf.level = 0.95, + primary_covariate = getElement(attr(stats::terms(formula), "term.labels"), 1L) +) +} +\arguments{ +\item{data}{(\code{data.frame}/\code{survey.design})\cr +a data frame or survey design object} + +\item{formula}{(\code{formula})\cr +a formula} + +\item{method}{(\code{string})\cr +string naming the function to be called, e.g. \code{"glm"}. +If function belongs to a library that is not attached, the package name +must be specified in the \code{package} argument.} + +\item{method.args}{(named \code{list})\cr +named list of arguments that will be passed to \code{fn}.} + +\item{package}{(\code{string})\cr +string of package name that will be temporarily loaded when function +specified in \code{method} is executed.} + +\item{response_type}{(\code{string}) +string indicating whether the model outcome is \code{'continuous'} +or \code{'binary'}. When \code{'binary'}, the call to \code{emmeans::emmeans()} is +supplemented with argument \code{regrid="response"}.} + +\item{conf.level}{(scalar \code{numeric})\cr +confidence level for confidence interval. Default is \code{0.95}.} + +\item{primary_covariate}{(\code{string})\cr +string indicating the primary covariate (typically the dichotomous treatment variable). +Default is the first covariate listed in the formula.} +} +\value{ +ARD data frame +} +\description{ +This function calculates least-squares mean differences using the 'emmeans' +package using the following + +\if{html}{\out{
}}\preformatted{emmeans::emmeans(object = , specs = ~ ) |> + emmeans::contrast(method = "pairwise") |> + summary(infer = TRUE, level = ) +}\if{html}{\out{
}} + +The arguments \code{data}, \code{formula}, \code{method}, \code{method.args}, \code{package} are used +to construct the regression model via \code{cardx::construct_model()}. +} +\examples{ +\dontshow{if (do.call(asNamespace("cardx")$is_pkg_installed, list(pkg = "emmeans", reference_pkg = "cardx"))) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} +ard_emmeans_mean_difference( + data = mtcars, + formula = mpg ~ am + cyl, + method = "lm" +) + +ard_emmeans_mean_difference( + data = mtcars, + formula = vs ~ am + mpg, + method = "glm", + method.args = list(family = binomial), + response_type = "binary" +) +\dontshow{\}) # examplesIf} +} diff --git a/tests/testthat/test-ard_emmeans_mean_difference.R b/tests/testthat/test-ard_emmeans_mean_difference.R new file mode 100644 index 000000000..f7c54cf8d --- /dev/null +++ b/tests/testthat/test-ard_emmeans_mean_difference.R @@ -0,0 +1,86 @@ +skip_if_not(is_pkg_installed(c("emmeans", "survey", "lme4"), reference_pkg = "cardx")) + +test_that("ard_emmeans_mean_difference() works", { + expect_error( + ard_emmeans_mean_difference <- + ard_emmeans_mean_difference( + data = mtcars, + formula = vs ~ am + mpg, + method = "glm", + method.args = list(family = binomial), + response_type = "binary" + ), + NA + ) + expect_equal( + cards::get_ard_statistics(ard_emmeans_mean_difference, stat_name %in% "method"), + list(method = "Least-squares adjusted mean difference") + ) + expect_equal( + cards::get_ard_statistics(ard_emmeans_mean_difference, stat_name %in% "estimate") |> + unlist() |> + unname(), + glm(vs ~ am + mpg, data = mtcars, family = binomial) |> + emmeans::emmeans(specs = ~am, regrid = "response") |> + emmeans::contrast(method = "pairwise") |> + summary(infer = TRUE) |> + getElement("estimate") + ) + + + expect_error( + ard_emmeans_mean_difference_lme4 <- + ard_emmeans_mean_difference( + data = mtcars, + formula = vs ~ am + (1 | cyl), + method = "glmer", + method.args = list(family = binomial), + package = "lme4", + response_type = "binary" + ), + NA + ) + expect_equal( + cards::get_ard_statistics(ard_emmeans_mean_difference_lme4, stat_name %in% "method"), + list(method = "Least-squares mean difference") + ) + expect_equal( + cards::get_ard_statistics(ard_emmeans_mean_difference_lme4, stat_name %in% "estimate") |> + unlist() |> + unname(), + lme4::glmer(vs ~ am + (1 | cyl), data = mtcars, family = binomial) |> + emmeans::emmeans(specs = ~am, regrid = "response") |> + emmeans::contrast(method = "pairwise") |> + summary(infer = TRUE) |> + getElement("estimate") + ) + + + #styler: off + expect_error({ + data(api, package = "survey") + ard_emmeans_mean_difference_svy <- + survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc) |> + ard_emmeans_mean_difference( + formula = api00 ~ sch.wide, + method = "svyglm", + package = "survey" + )}, + NA + ) + #styler: on + expect_equal( + cards::get_ard_statistics(ard_emmeans_mean_difference_svy, stat_name %in% "method"), + list(method = "Least-squares mean difference") + ) + expect_equal( + cards::get_ard_statistics(ard_emmeans_mean_difference_svy, stat_name %in% "estimate") |> + unlist() |> + unname(), + survey::svyglm(api00 ~ sch.wide, design = survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)) |> + emmeans::emmeans(specs = ~sch.wide, regrid = "response") |> + emmeans::contrast(method = "pairwise") |> + summary(infer = TRUE) |> + getElement("estimate") + ) +})