-
Notifications
You must be signed in to change notification settings - Fork 44
/
train_mpi.py
480 lines (429 loc) · 22.6 KB
/
train_mpi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# -*- coding: utf-8 -*-
"""
Created on Sat Dec 8 16:16:04 2018
@author: initial-h
"""
import random
import numpy as np
import os,shutil
import time
from mpi4py import MPI
from collections import defaultdict, deque
from game_board import Board,Game
from mcts_pure import MCTSPlayer as MCTS_Pure
from mcts_alphaZero import MCTSPlayer
from policy_value_net_tensorlayer import PolicyValueNet
# import sys
# sys.stdout.flush()
# or just
# mpiexec -np 43 python -u train_mpi.py
# MPI setting
comm = MPI.COMM_WORLD
# size = comm.Get_size()
rank = comm.Get_rank() # processing ID
class TrainPipeline():
def __init__(self, init_model=None,transfer_model=None):
self.game_count = 0 # count total game have played
self.resnet_block = 19 # num of block structures in resnet
# params of the board and the game
self.board_width = 11
self.board_height = 11
self.n_in_row = 5
self.board = Board(width=self.board_width,
height=self.board_height,
n_in_row=self.n_in_row)
self.game = Game(self.board)
# training params
self.learn_rate = 1e-3
self.n_playout = 400 # num of simulations for each move
self.c_puct = 5
self.buffer_size = 500000
# memory size, should be larger with bigger board
# in paper it can stores 500,000 games, here with 11x11 board can store only around 2000 games
self.batch_size = 512 # mini-batch size for training
self.data_buffer = deque(maxlen=self.buffer_size)
self.play_batch_size = 1
self.game_batch_num = 10000000 # total game to train
# num of simulations used for the pure mcts, which is used as
# the opponent to evaluate the trained policy
# only for monitoring the progress of training
self.pure_mcts_playout_num = 200
# record the win rate against pure mcts
# once the win ratio risen to 1,
# pure mcts playout num will plus 100 and win ratio reset to 0
self.best_win_ratio = 0.0
# GPU setting
# be careful to set your GPU using depends on GPUs' and CPUs' memory
if rank in {0,1,2}:
cuda = True
elif rank in range(10,30):
cuda = True
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
else:
cuda = False
# cuda = True
if (init_model is not None) and os.path.exists(init_model+'.index'):
# start training from an initial policy-value net
self.policy_value_net = PolicyValueNet(self.board_width,self.board_height,block=self.resnet_block,init_model=init_model,cuda=cuda)
elif (transfer_model is not None) and os.path.exists(transfer_model+'.index'):
# start training from a pre-trained policy-value net
self.policy_value_net = PolicyValueNet(self.board_width,self.board_height,block=self.resnet_block,transfer_model=transfer_model,cuda=cuda)
else:
# start training from a new policy-value net
self.policy_value_net = PolicyValueNet(self.board_width,self.board_height,block=self.resnet_block,cuda=cuda)
self.mcts_player = MCTSPlayer(policy_value_function=self.policy_value_net.policy_value_fn_random,
action_fc=self.policy_value_net.action_fc_test,
evaluation_fc=self.policy_value_net.evaluation_fc2_test,
c_puct=self.c_puct,
n_playout=self.n_playout,
is_selfplay=True)
def get_equi_data(self, play_data):
'''
augment the data set by rotation and flipping
play_data: [(state, mcts_prob, winner_z), ..., ...]
'''
extend_data = []
for state, mcts_porb, winner in play_data:
for i in [1, 2, 3, 4]:
# rotate counterclockwise
equi_state = np.array([np.rot90(s, i) for s in state])
#rotate counterclockwise 90*i
equi_mcts_prob = np.rot90(np.flipud(
mcts_porb.reshape(self.board_height, self.board_width)), i)
#np.flipud like A[::-1,...]
#https://docs.scipy.org/doc/numpy-1.6.0/reference/generated/numpy.flipud.html
# change the reshaped numpy
# 0,1,2,
# 3,4,5,
# 6,7,8,
# as
# 6 7 8
# 3 4 5
# 0 1 2
extend_data.append((equi_state,
np.flipud(equi_mcts_prob).flatten(),
winner))
# flip horizontally
equi_state = np.array([np.fliplr(s) for s in equi_state])
#这个np.fliplr like m[:, ::-1]
#https://docs.scipy.org/doc/numpy/reference/generated/numpy.fliplr.html
equi_mcts_prob = np.fliplr(equi_mcts_prob)
extend_data.append((equi_state,
np.flipud(equi_mcts_prob).flatten(),
winner))
return extend_data
def collect_selfplay_data(self, n_games=1):
'''
collect self-play data for training
'''
for i in range(n_games):
winner, play_data = self.game.start_self_play(self.mcts_player)
play_data = list(play_data)[:]
self.episode_len = len(play_data)
# augment the data
play_data = self.get_equi_data(play_data)
self.data_buffer_tmp.extend(play_data)
if rank%10==0:
print('rank: {}, n_games: {}, data length: {}'.format(rank, i, self.episode_len))
def policy_update(self,print_out):
'''
update the policy-value net
'''
#play_data: [(state, mcts_prob, winner_z), ..., ...]
# train an epoch
tmp_buffer = np.array(self.data_buffer)
np.random.shuffle(tmp_buffer)
steps = len(tmp_buffer)//self.batch_size
if print_out:
print('tmp buffer: {}, steps: {}'.format(len(tmp_buffer),steps))
for i in range(steps):
mini_batch = tmp_buffer[i*self.batch_size:(i+1)*self.batch_size]
state_batch = [data[0] for data in mini_batch]
mcts_probs_batch = [data[1] for data in mini_batch]
winner_batch = [data[2] for data in mini_batch]
old_probs, old_v = self.policy_value_net.policy_value(state_batch=state_batch,
actin_fc=self.policy_value_net.action_fc_test,
evaluation_fc=self.policy_value_net.evaluation_fc2_test)
loss, entropy = self.policy_value_net.train_step(state_batch,
mcts_probs_batch,
winner_batch,
self.learn_rate)
new_probs, new_v = self.policy_value_net.policy_value(state_batch=state_batch,
actin_fc=self.policy_value_net.action_fc_test,
evaluation_fc=self.policy_value_net.evaluation_fc2_test)
kl = np.mean(np.sum(old_probs * (
np.log(old_probs + 1e-10) - np.log(new_probs + 1e-10)),
axis=1)
)
explained_var_old = (1 -
np.var(np.array(winner_batch) - old_v.flatten()) /
np.var(np.array(winner_batch)))
explained_var_new = (1 -
np.var(np.array(winner_batch) - new_v.flatten()) /
np.var(np.array(winner_batch)))
if print_out and (steps<10 or (i%(steps//10)==0)):
# print some information, not too much
print('batch: {},length: {}'
'kl:{:.5f},'
'loss:{},'
'entropy:{},'
'explained_var_old:{:.3f},'
'explained_var_new:{:.3f}'.format(i,
len(mini_batch),
kl,
loss,
entropy,
explained_var_old,
explained_var_new))
return loss, entropy
def policy_evaluate(self, n_games=10,num=0,self_evaluate = 0):
'''
Evaluate the trained policy by
playing against the pure MCTS player or play with itself
pure MCTS only for monitoring the progress of training
play with itself (last best net) for evaluating the best model so as to collect data
'''
# fix the playout times to 400
current_mcts_player = MCTSPlayer(policy_value_function=self.policy_value_net.policy_value_fn_random,
action_fc=self.policy_value_net.action_fc_test,
evaluation_fc=self.policy_value_net.evaluation_fc2_test,
c_puct=self.c_puct,
n_playout=400,
is_selfplay=False)
if self_evaluate:
self.policy_value_net.load_numpy(self.policy_value_net.network_oppo_all_params)
mcts_player_oppo = MCTSPlayer(policy_value_function=self.policy_value_net.policy_value_fn_random,
action_fc=self.policy_value_net.action_fc_test_oppo,
evaluation_fc=self.policy_value_net.evaluation_fc2_test_oppo,
c_puct=self.c_puct,
n_playout=400,
is_selfplay=False)
else:
test_player = MCTS_Pure(c_puct=5,n_playout=self.pure_mcts_playout_num)
win_cnt = defaultdict(int)
for i in range(n_games):
if self_evaluate:
print('+' * 80 + 'rank: {}, epoch:{}, game:{} , now situation : {} , self evaluating ...'.format(rank, num,i,win_cnt))
winner = self.game.start_play(player1=current_mcts_player,
player2=mcts_player_oppo,
start_player=i%2,
is_shown=0,
print_prob =False)
else:
print('+'*80+'pure mcts playout: {}, rank: {}, epoch:{}, game:{} evaluating ...'.format(self.pure_mcts_playout_num,rank,num,i))
print()
winner = self.game.start_play(player1=current_mcts_player,
player2=test_player,
start_player=i % 2,
is_shown=0,
print_prob=False)
win_cnt[winner] += 1
win_ratio = 1.0*(win_cnt[1] + 0.5*win_cnt[-1]) / n_games
#win for 1,tie for 0.5
if self_evaluate:
print("-"*150+"win: {}, lose: {}, tie:{}".format(win_cnt[1], win_cnt[2], win_cnt[-1]))
else:
print("-"*80+"num_playouts:{}, win: {}, lose: {}, tie:{}".format(
self.pure_mcts_playout_num,
win_cnt[1], win_cnt[2], win_cnt[-1]))
return win_ratio
def mymovefile(self,srcfile, dstfile):
'''
move file to another dirs
'''
if not os.path.isfile(srcfile):
print("%s not exist!" % (srcfile))
else:
fpath, fname = os.path.split(dstfile)
if not os.path.exists(fpath):
os.makedirs(fpath)
shutil.move(srcfile, dstfile)
# print("move %s -> %s" % (srcfile, dstfile))
def mycpfile(self,srcfile, dstfile):
'''
copy file to another dirs
'''
if not os.path.isfile(srcfile):
print("%s not exist!" % (srcfile))
else:
fpath, fname = os.path.split(dstfile)
if not os.path.exists(fpath):
os.makedirs(fpath)
shutil.copy(srcfile, dstfile)
# print("move %s -> %s" % (srcfile, dstfile))
def run(self):
'''
run the training pipeline
for MPI,
rank 0: train collected data
rank 1: evaluate current network and save best model
rank 2: play with pure mcts just for monitoring
other ranks for collecting data
'''
# make dirs first
if not os.path.exists('tmp'):
os.makedirs('tmp')
if not os.path.exists('model'):
os.makedirs('model')
if not os.path.exists('kifu_new'):
os.makedirs('kifu_new')
if not os.path.exists('kifu_train'):
os.makedirs('kifu_train')
if not os.path.exists('kifu_old'):
os.makedirs('kifu_old')
# record time for each part
start_time = time.time()
retore_model_time = 0
collect_data_time = 0
save_data_time = 0
try:
for num in range(self.game_batch_num):
# print('begin!!!!!!!!!!!!!!!!!!!!!!!!!!!!!batch{}'.format(i),)
if rank not in {0,1,2}:
# self-play to collect data
if os.path.exists('model/best_policy.model.index'):
try:
# try to load current best model
retore_model_start_time = time.time()
self.policy_value_net.restore_model('model/best_policy.model')
retore_model_time += time.time()-retore_model_start_time
except:
# if the model are under written, then load model from last best model
# wait for some seconds is also ok
print('!'*100)
print('rank {} restore model failed,model is under written now...'.format(rank))
print()
self.policy_value_net.restore_model('tmp/best_policy.model')
print('^'*100)
print('model loaded from tmp model ...')
print()
# tmp buffer to collect self-play data
self.data_buffer_tmp = []
# print('rank {} begin to selfplay,ronud {}'.format(rank,i+1))
# collect self-play data
collect_data_start_time = time.time()
self.collect_selfplay_data(self.play_batch_size)
collect_data_time += time.time()-collect_data_start_time
# save data to file
# it's very useful if program break off for some reason
# we can load the data and continue to train
save_data_satrt_time = time.time()
np.save('kifu_new/rank_'+str(rank)+'game_'+str(num)+'.npy',np.array(self.data_buffer_tmp))
save_data_time += time.time()-save_data_satrt_time
if rank == 3:
# print some self-play information
# one rank is enough
print()
print('current policy model loaded! rank:{},game batch num :{}'.format(rank, num))
print('now time : {}'.format((time.time() - start_time) / 3600))
print('rank : {}, restore model time : {}, collect_data_time : {}, save_data_time : {}'.format(
rank, retore_model_time/3600,collect_data_time/3600,save_data_time/3600))
print()
if rank ==0:
# train collected data
before = time.time()
# here I move data from a dir to another in order to avoid I/O conflict
# it's stupid and must have a better way to do it
dir_kifu_new = os.listdir('kifu_new')
for file in dir_kifu_new:
try:
# try to move file from kifu_new to kifu_train, if is under written now, just pass
self.mymovefile('kifu_new/'+file,'kifu_train/'+file)
except:
print('!'*100)
print('{} is being written now...'.format(file))
dir_kifu_train = os.listdir('kifu_train')
for file in dir_kifu_train:
try:
# load data
# try to move file from kifu_train to kifu_old, if is under written now, just pass
data = np.load('kifu_train/'+file)
self.data_buffer.extend(data.tolist())
self.mymovefile('kifu_train/'+file,'kifu_old/'+file)
self.game_count+=1
except:
pass
# print train epoch and total game num
print('-' * 100 + 'train epoch :{},total game :{}'.format(num,self.game_count))
if len(self.data_buffer)>self.batch_size*5:
# training
# print('`'*50+'data buffer length:{}'.format(len(self.data_buffer)))
# print()
print_out = True
if print_out:
# print some training information
print('now time : {}'.format((time.time()-start_time)/3600))
print('training ...',)
print()
loss,entropy = self.policy_update(print_out=print_out)
# save model to tmp dir, wait for evaluating
self.policy_value_net.save_model('tmp/best_policy.model')
after = time.time()
# do not train too frequent in the beginning
if after-before<60*10:
time.sleep(60*10-after+before)
if rank ==1:
# play with last best model and update it to collect data if current model is better
if os.path.exists('tmp/best_policy.model.index'):
try:
# load current model
# if the model are under written, wait for some seconds and reload it
retore_model_start_time = time.time()
self.policy_value_net.restore_model('tmp/best_policy.model')
retore_model_time += time.time()-retore_model_start_time
except:
print('!'*100)
print('rank {} restore model failed,model is under written now...'.format(rank))
time.sleep(5)# wait for 5 seconds
print()
# reload model
self.policy_value_net.restore_model('tmp/best_policy.model')
print('^'*100)
print('model loaded again ...')
print()
if not os.path.exists('tmp/model.npy'):
# if no current trained model to evaluate,
# save its own parameters and evaluate with itself
self.policy_value_net.save_numpy(self.policy_value_net.network_all_params)
# evaluate current model
win_ratio = self.policy_evaluate(n_games=10,num=num,self_evaluate=1)
if win_ratio >0.55:
print('New best policy!' + '!' * 50)
# save the new best model in numpy form for next time's comparision
self.policy_value_net.save_numpy(self.policy_value_net.network_all_params)
# save the new best model in ckpt form for self-play data collecting
self.policy_value_net.save_model('model/best_policy.model')
if rank ==2:
# play with pure MCTS only for monitoring the progress of training
if os.path.exists('model/best_policy.model.index'):
try:
# load current model
# if the model are under written, wait for some seconds and reload it
self.policy_value_net.restore_model('model/best_policy.model')
# print('-' * 50 + 'epoch :{},rank {} evaluate ...'.format(num,rank))
except:
print('!' * 100)
print('rank {} restore model failed,model is under written now...'.format(rank))
time.sleep(5) # wait for 5 seconds
print()
# reload model
self.policy_value_net.restore_model('model/best_policy.model')
print('^' * 100)
print('model loaded again ...')
print()
win_ratio = self.policy_evaluate(n_games=10,num=num,self_evaluate=0)
if win_ratio > self.best_win_ratio:
# print('New best policy!'+'!'*50)
self.best_win_ratio = win_ratio
if (self.best_win_ratio == 1.0 and self.pure_mcts_playout_num < 10000):
# increase playout num and reset the win ratio
self.pure_mcts_playout_num += 100
self.best_win_ratio = 0.0
except KeyboardInterrupt:
print('\n\rquit')
if __name__ == '__main__':
# training_pipeline = TrainPipeline(init_model='model/best_policy.model',transfer_model=None)
# training_pipeline = TrainPipeline(init_model=None, transfer_model='transfer_model/best_policy.model')
training_pipeline = TrainPipeline()
training_pipeline.run()