Skip to content

Latest commit

 

History

History

arithexpr

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Typed arithmetic expressions with dynamic type checking

First, initialize this project by running the following command from the expr directory:

make arithexpr

Extend the language of boolean expressions with arithmetic expressions on natural numbers, according to the following AST:

type expr =
    True
  | False
  | Not of expr
  | And of expr * expr
  | Or of expr * expr
  | If of expr * expr * expr
  | Zero
  | Succ of expr
  | Pred of expr
  | IsZero of expr

The meaning of the new constructs is the following:

  • Zero represents the natural number 0;
  • Succ e evaluates to the successor of e;
  • Pred e evaluates to the predecessor of e (defined only if e is not zero);
  • IsZero e evaluates to true iff e evaluates to 0.

Concrete syntax

Follow the unit tests in arithexpr.ml for the concrete syntax of the language. To run the tests, execute the following command from the project directory:

dune test

For example, the following is a syntactically correct expression:

iszero pred succ 0 and not iszero succ pred succ 0

You can check its AST via dune utop lib as follows:

"iszero pred succ 0 and not iszero succ pred succ 0" |> ArithexprLib.Main.parse;;

Big-step semantics

The big-step semantics extends that of boolean expressions with the following rules:

---------------------------- [B-Zero]
Zero => 0

e => n
---------------------------- [B-Succ]
Succ(e) => n+1

e => n   n>0
---------------------------- [B-Pred]
Pred(e) => n-1

e => 0
---------------------------- [B-IsZeroZero]
IsZero(e) => true

e => n   n>0
---------------------------- [B-IsZeroSucc]
IsZero(e) => false

The eval function must have the following type:

eval : expr -> exprval

where the type exprval, used to wrap booleans and naturals, must be defined as follows (in lib/main.ml):

type exprval = Bool of bool | Nat of int

Note that some expressions in this language are not well-typed, because they improperly mix natural numbers with booleans. For instance, this is the case for the expressions:

iszero true
succ iszero 0
not 0

In all these cases, the evaluation should produce a run-time error specifying the cause of the error. Run-time errors should also be raised for the expressions which evaluate to negative values, like the following:

pred 0
pred pred succ 0

Small-step semantics

The small-step semantics extends that of boolean expressions with the following rules:

nv ::= Zero | Succ(nv)

e -> e'
----------------------------- [S-Succ]
Succ(e) -> Succ(e') 

----------------------------- [S-PredSucc]
Pred(Succ(nv)) -> nv 

e -> e'
----------------------------- [S-Pred]
Pred(e) -> Pred(e') 

----------------------------- [S-IsZeroZero]
IsZero(Zero) -> True

----------------------------- [S-IsZeroSucc]
IsZero(Succ(nv)) -> False 

e -> e'
----------------------------- [S-IsZero]
IsZero(e) -> IsZero(e') 

For example, this semantics should give rise to the following execution trace:

dune exec arithexpr trace test/test1
iszero(pred(succ(pred(succ(0)))))   
 -> iszero(pred(succ(0)))
 -> iszero(0)
 -> true