Skip to content

Latest commit

 

History

History
957 lines (821 loc) · 29.1 KB

README.md

File metadata and controls

957 lines (821 loc) · 29.1 KB

flux-dsl

Features

Function properties

There are four possibilities how to add properties to the functions.

Use built-in constructor

Flux flux = Flux
    .from("telegraf")
    .window(15L, ChronoUnit.MINUTES, 20L, ChronoUnit.SECONDS)
    .sum();

Use built-in properties

Flux.from("telegraf")
    .window()
        .withEvery(15L, ChronoUnit.MINUTES)
        .withPeriod(20L, ChronoUnit.SECONDS)
    .sum();

Specify the property name and value

Flux.from("telegraf")
    .window()
        .withPropertyValue("every", 15L, ChronoUnit.MINUTES)
        .withPropertyValue("period", 20L, ChronoUnit.SECONDS)
    .sum();

Specify the named properties

Map<String, Object> properties = new HashMap<>();
properties.put("every", new TimeInterval(15L, ChronoUnit.MINUTES));
properties.put("period", new TimeInterval(20L, ChronoUnit.SECONDS));

Flux flux = Flux
    .from("telegraf")
    .window()
        .withPropertyNamed("every")
        .withPropertyNamed("period")
    .sum();

String query = flux.toString(properties);

Supported functions

from

Starting point for all queries. Get data from the specified database [doc].

  • bucket - The name of the bucket to query. [string]
  • hosts - [array of strings]
Flux flux = Flux.from("telegraf");
Flux flux = Flux
    .from("telegraf", new String[]{"192.168.1.200", "192.168.1.100"})
    .last();

custom expressions

Flux flux = Flux.from("telegraf")
    .expression("map(fn: (r) => r._value * r._value)")
    .expression("sum()");

aggregateWindow

Applies an aggregate or selector function (any function with a column parameter) to fixed windows of time [doc].

  • every - The duration of windows. [duration]
  • fn - The aggregate function used in the operation. [function]
  • column - The column on which to operate. Defaults to _value. [string]
  • timeSrc - The time column from which time is copied for the aggregate record. Defaults to _stop. [string]
  • timeDst - The “time destination” column to which time is copied for the aggregate record. Defaults to _time. [string]
  • createEmpty - For windows without data, this will create an empty window and fill it with a null aggregate value. Defaults to true. [boolean]
Flux flux = Flux
    .from("telegraf")
    .aggregateWindow(10L, ChronoUnit.SECONDS, "mean");
Flux flux = Flux
    .from("telegraf")
        .aggregateWindow()
            .withEvery("10s")
            .withAggregateFunction("sum")
            .withColumn("_value")
            .withTimeSrc("_stop")
            .withTimeDst("_time")
            .withCreateEmpty(true);
Flux flux = Flux
    .from("telegraf")
        .aggregateWindow()
            .withEvery(5L, ChronoUnit.MINUTES)
            .withFunction("tables |> quantile(q: 0.99, column:column)");

columns

The columns() function lists the column labels of input tables [doc].

  • column - The name of the output column in which to store the column labels. Defaults to _value. [string]
Flux flux = Flux
    .from("telegraf")
    .range(-12L, ChronoUnit.HOURS)
    .window(10L, ChronoUnit.MINUTES)
    .columns();

count

Counts the number of results [doc].

  • column - The column to aggregate. Defaults to _value. [string]
Flux flux = Flux
    .from("telegraf")
    .count();

covariance

Covariance is an aggregate operation. Covariance computes the covariance between two columns [doc].

  • columns - List of columns on which to compute the covariance. Exactly two columns must be provided. [array of strings]
  • pearsonr - Indicates whether the result should be normalized to be the Pearson R coefficient. [boolean]
  • valueDst - The column into which the result will be placed. Defaults to _value. [string]
Flux flux = Flux
    .from("telegraf")
    .covariance(new String[]{"_value", "_valueSquare"});
Flux flux = Flux
    .from("telegraf")
    .covariance()
        .withColumns(new String[]{"columnA", "columnB"})
        .withPearsonr(true)
        .withValueDst("_newColumn");

cumulativeSum

Cumulative sum computes a running sum for non null records in the table. The output table schema will be the same as the input table [doc].

  • columns - a list of columns on which to operate [array of strings]
Flux flux = Flux
    .from("telegraf")
    .cumulativeSum(new String[]{"_value"});

derivative

Computes the time based difference between subsequent non null records [doc].

  • unit - The time duration to use for the result. [duration]
  • nonNegative - Indicates if the derivative is allowed to be negative. [boolean]
  • columns - List of columns on which to compute the derivative. [array of strings]
  • timeColumn - The source column for the time values. Defaults to _time. [string]
Flux flux = Flux
    .from("telegraf")
    .derivative(1L, ChronoUnit.MINUTES);
Flux flux = Flux
    .from("telegraf")
    .derivative()
        .withUnit(10L, ChronoUnit.DAYS)
        .withNonNegative(true)
        .withColumns(new String[]{"columnCompare_1", "columnCompare_2"})
        .withTimeColumn("_timeColumn");

difference

Difference computes the difference between subsequent non null records [doc].

  • nonNegative - Indicates if the derivative is allowed to be negative. If a value is encountered which is less than the previous value then it is assumed the previous value should have been a zero. [boolean]
  • columns - The list of columns on which to compute the difference. Defaults ["_value"]. [array of strings]
Flux flux = Flux
    .from("telegraf")
    .groupBy("_measurement")
    .difference();
Flux flux = Flux
    .from("telegraf")
    .range(-5L, ChronoUnit.MINUTES)
    .difference(new String[]{"_value", "_time"}, false);

distinct

Distinct produces the unique values for a given column [doc].

  • column - The column on which to track unique values. [string]
Flux flux = Flux
    .from("telegraf")
    .groupBy("_measurement")
    .distinct("_measurement");

drop

Drop will exclude specified columns from a table. Columns to exclude can be specified either through a list, or a predicate function. When a dropped column is part of the group key it will also be dropped from the key [doc].

  • columns - The list of columns which should be excluded from the resulting table. Cannot be used with fn. [array of strings]
  • fn - The function which takes a column name as a parameter and returns a boolean indicating whether or not the column should be excluded from the resulting table. Cannot be used with columns. [function(column)]
Flux flux = Flux
    .from("telegraf")
    .drop(new String[]{"host", "_measurement"});
Flux flux = Flux
    .from("telegraf")
    .drop()
        .withFunction("column =~ /free*/");

duplicate

Duplicate will duplicate a specified column in a table [doc].

  • column - The column to duplicate. [string]
  • as The name that should be assigned to the duplicate column. [string]
Flux flux = Flux
    .from("telegraf")
    .duplicate("host", "server");

filter

Filters the results using an expression [doc].

  • fn - Function to when filtering the records. The function must accept a single parameter which will be the records and return a boolean value. Records which evaluate to true, will be included in the results. [function(record) bool]

Supported Record columns:

  • _measurement
  • _field
  • _start
  • _stop
  • _time
  • _value
  • custom - the custom column value by Restrictions.column("_id").notEqual(5)

Supported Record restrictions:

  • equal
  • not
  • notEqual
  • less
  • greater
  • greater
  • exists
  • lessOrEqual
  • greaterOrEqual
  • custom - the custom restriction by Restrictions.value().custom(15L, "=~")
Restrictions restrictions = Restrictions.and(
    Restrictions.measurement().equal("mem"),
    Restrictions.field().equal("usage_system"),
    Restrictions.value().exists(),
    Restrictions.tag("service").equal("app-server")
);

Flux flux = Flux
    .from("telegraf")
    .filter(restrictions)
    .range(-4L, ChronoUnit.HOURS)
    .count();
Restrictions restriction = Restrictions.and(
    Restrictions.tag("instance_type").equal(Pattern.compile("/prod/")),
    Restrictions.field().greater(10.5D),
    Restrictions.time().lessOrEqual(new TimeInterval(-15L, ChronoUnit.HOURS))
);

Flux flux = Flux
    .from("telegraf")
    .filter(restriction)
    .range(-4L, 2L, ChronoUnit.HOURS)
    .count();

first

Returns the first result of the query [doc].

Flux flux = Flux
    .from("telegraf")
    .first();

group

Groups results by a user-specified set of tags [doc].

  • columns - List of columns used to calculate the new group key. Default []. [array of strings]
  • mode - The grouping mode, can be one of by or except. The default is by.
    • by - the specified columns are the new group key [string]
    • except - the new group key is the difference between the columns of the table under exam and columns. [string]
Flux.from("telegraf")
    .range(-30L, ChronoUnit.MINUTES)
    .groupBy(new String[]{"tag_a", "tag_b"});

Flux.from("telegraf")
    .range(-30L, ChronoUnit.MINUTES)
    .groupBy("tag_a"});
// except mode
Flux.from("telegraf")
    .range(-30L, ChronoUnit.MINUTES)
    .groupExcept(new String[]{"tag_c"});

integral

For each aggregate column, it outputs the area under the curve of non null records. The curve is defined as function where the domain is the record times and the range is the record values. [doc].

  • unit - Time duration to use when computing the integral. [duration]
Flux flux = Flux
    .from("telegraf")
    .integral(1L, ChronoUnit.MINUTES);

join

Join two time series together on time and the list of on keys [doc].

  • tables - Map of tables to join. Currently only two tables are allowed. [map of tables]
  • on - List of tag keys that when equal produces a result set. [array of strings]
  • method - An optional parameter that specifies the type of join to be performed. When not specified, an inner join is performed. [string]

The method parameter may take on any one of the following values:

  • inner - inner join
  • cross - cross product
  • left - left outer join
  • right - right outer join
  • outer - full outer join

The on parameter and the cross method are mutually exclusive.

Flux cpu = Flux.from("telegraf")
    .filter(Restrictions.and(Restrictions.measurement().equal("cpu"), Restrictions.field().equal("usage_user")))
    .range(-30L, ChronoUnit.MINUTES);

Flux mem = Flux.from("telegraf")
    .filter(Restrictions.and(Restrictions.measurement().equal("mem"), Restrictions.field().equal("used_percent")))
    .range(-30L, ChronoUnit.MINUTES);

Flux flux = Flux.join()
    .withTable("cpu", cpu)
    .withTable("mem", mem)
    .withOn("host");

keep

Keep is the inverse of drop. It will return a table containing only columns that are specified, ignoring all others. Only columns in the group key that are also specified in keep will be kept in the resulting group key [doc].

  • columns - The list of columns that should be included in the resulting table. Cannot be used with fn. [array of strings]
  • fn - The function which takes a column name as a parameter and returns a boolean indicating whether or not the column should be included in the resulting table. Cannot be used with columns. [function(column)]
Flux flux = Flux
    .from("telegraf")
    .keep(new String[]{"_time", "_value"});
Flux flux = Flux
    .from("telegraf")
    .keep()
        .withFunction("column =~ /inodes*/");

last

Returns the last result of the query [doc].

  • column - The column used to verify the existence of a value. Defaults to _value. [string]
Flux flux = Flux
    .from("telegraf")
    .last();

limit

Restricts the number of rows returned in the results [doc].

  • n - The maximum number of records to output. [int]
  • offset - The number of records to skip per table. Default to 0. [int]
Flux flux = Flux
    .from("telegraf")
    .limit(5);
Flux flux = Flux
    .from("telegraf")
    .limit(100, 10);

map

Applies a function to each row of the table [doc].

  • fn - The function to apply to each row. The return value of the function may be a single value or an object.
// Square the value

Restrictions restriction = Restrictions.and(
    Restrictions.measurement().equal("cpu"),
    Restrictions.field().equal("usage_system"),
    Restrictions.tag("service").equal("app-server")
);

Flux flux = Flux
    .from("telegraf")
    .filter(restriction)
    .range(-12L, ChronoUnit.HOURS)
    .map("r._value * r._value");
// Square the value and keep the original value

Restrictions restriction = Restrictions.and(
    Restrictions.measurement().equal("cpu"),
    Restrictions.field().equal("usage_system"),
    Restrictions.tag("service").equal("app-server")
);

Flux flux = Flux
    .from("telegraf")
    .filter(restriction)
    .range(-12L, ChronoUnit.HOURS)
    .map("{value: r._value, value2:r._value * r._value}");

max

Returns the max value within the results [doc].

  • column - The column to use to calculate the maximum value. Defaults to _value. [string]
Flux flux = Flux
    .from("telegraf")
    .range(-12L, ChronoUnit.HOURS)
    .window(10L, ChronoUnit.MINUTES)
    .max();

mean

Returns the mean of the values within the results [doc].

  • column - The column to use to compute the mean. Defaults to _value. [string]
Flux flux = Flux
    .from("telegraf")
    .range(-12L, ChronoUnit.HOURS)
    .window(10L, ChronoUnit.MINUTES)
    .mean();

min

Returns the min value within the results [doc].

  • column - The column to use to calculate the minimum value. Defaults to _value. [string]
Flux flux = Flux
    .from("telegraf")
    .range(-12L, ChronoUnit.HOURS)
    .window(10L, ChronoUnit.MINUTES)
    .min();

percentile

Percentile is both an aggregate operation and a selector operation depending on selected options. In the aggregate methods, it outputs the value that represents the specified percentile of the non null record as a float [doc].

  • columns - specifies a list of columns to aggregate. Defaults to _value. [array of strings]
  • percentile - value between 0 and 1 indicating the desired percentile. [float]
  • method - percentile provides 3 methods for computation:
    • estimate_tdigest - an aggregate result that uses a tdigest data structure to compute an accurate percentile estimate on large data sources.
    • exact_mean - an aggregate result that takes the average of the two points closest to the percentile value.
    • exact_selector - Percentile
  • compression - Compression indicates how many centroids to use when compressing the dataset. A larger number produces a more accurate result at the cost of increased memory requirements. Defaults to 1000. [float]
Flux flux = Flux
    .from("telegraf")
    .percentile(0.80F);

Flux flux = Flux
    .from("telegraf")
    .percentile()
        .withColumns(new String[]{"value2"})
        .withPercentile(0.75F)
        .withMethod(MethodType.EXACT_MEAN)
        .withCompression(2_000F);

pivot

Pivot collects values stored vertically (column-wise) in a table and aligns them horizontally (row-wise) into logical sets [doc].

  • rowKey - List of columns used to uniquely identify a row for the output. [array of strings]
  • columnKey - List of columns used to pivot values onto each row identified by the rowKey. [array of strings]
  • valueColumn - Identifies the single column that contains the value to be moved around the pivot [string]
Flux flux = Flux.from("telegraf")
    .pivot()
        .withRowKey(new String[]{"_time"})
        .withColKey(new String[]{"_field"})
        .withValueCol("_value");

range

Filters the results by time boundaries [doc].

  • start - Specifies the oldest time to be included in the results. [duration or timestamp]
  • stop - Specifies the exclusive newest time to be included in the results. Defaults to "now". [duration or timestamp]
// by interval
Flux flux = Flux
    .from("telegraf")
    .range(-12L, -1L, ChronoUnit.HOURS)
// by Instant
Flux flux = Flux
    .from("telegraf")
    .range(Instant.now().minus(4, ChronoUnit.HOURS),
           Instant.now().minus(15, ChronoUnit.MINUTES)
    );

reduce

Reduce aggregates records in each table according to the reducer fn. The output for each table will be the group key of the table, plus columns corresponding to each field in the reducer object [doc].

If the reducer record contains a column with the same name as a group key column, then the group key column's value is overwritten, and the outgoing group key is changed. However, if two reduced tables write to the same destination group key, then the function will error.

  • fn - Function to apply to each record with a reducer object of type 'a. [(r: record, accumulator: 'a) -> 'a]
  • identity - an initial value to use when creating a reducer ['a]
Flux flux = Flux
    .from("telegraf")
    .range(-12L, ChronoUnit.HOURS)
    .reduce("{ sum: r._value + accumulator.sum }", "{sum: 0.0}");    
Flux flux = Flux
    .from("telegraf")
    .range(-12L, ChronoUnit.HOURS)
    .reduce()
        .withFunction("{sum: r._value + accumulator.sum,\ncount: accumulator.count + 1.0}")
        .withIdentity("{sum: 0.0, count: 0.0}");

rename

Rename will rename specified columns in a table. If a column is renamed and is part of the group key, the column name in the group key will be updated [doc].

  • columns - The map of columns to rename and their corresponding new names. Cannot be used with fn. [map of columns]
  • fn - The function which takes a single string parameter (the old column name) and returns a string representing the new column name. Cannot be used with columns. [function(column)]
Map<String, String> map = new HashMap<>();
map.put("host", "server");
map.put("_value", "val");

Flux flux = Flux
    .from("telegraf")
    .rename(map);
Flux flux = Flux
    .from("telegraf")
    .rename("\"{col}_new\"");

sample

Sample values from a table [doc].

  • n - Sample every Nth element. [int]
  • pos - Position offset from start of results to begin sampling. pos must be less than n. If pos less than 0, a random offset is used. Default is -1 (random offset). [int]
Flux flux = Flux.from("telegraf")
    .filter(and(measurement().equal("cpu"), field().equal("usage_system")))
    .range(-1L, ChronoUnit.DAYS)
    .sample(10);
Flux flux = Flux.from("telegraf")
    .filter(and(measurement().equal("cpu"), field().equal("usage_system")))
    .range(-1L, ChronoUnit.DAYS)
    .sample(5, 1);

set

Assigns a static value to each record [doc].

  • key - Label for the column to set. [string]
  • value - Value for the column to set. [string]
Flux flux = Flux
    .from("telegraf")
    .set("location", "Carolina");

timeShift

Shift add a fixed duration to time columns [doc].

  • duration - The amount to add to each time value. [duration]
  • columns - The list of all columns that should be shifted. Defaults ["_start", "_stop", "_time"]. [array of strings]
Flux flux = Flux
    .from("telegraf")
    .timeShift(10L, ChronoUnit.HOURS);
Flux flux = Flux
    .from("telegraf")
    .timeShift(10L, ChronoUnit.HOURS, new String[]{"_time", "custom"});

skew

Skew of the results [doc].

  • column - The column on which to operate. Defaults to _value. [string]
Flux flux = Flux
    .from("telegraf")
    .range(-30L, -15L, ChronoUnit.MINUTES)
    .skew();

sort

Sorts the results by the specified columns. Default sort is ascending [doc].

  • columns - List of columns used to sort. Precedence from left to right. Default is "value". [array of strings]
  • desc - Sort results descending. Default false. [boolean]
Flux flux = Flux
    .from("telegraf")
    .sort(new String[]{"region", "value"});
 Flux flux = Flux
    .from("telegraf")
    .sort(true);

spread

Difference between min and max values [doc].

  • column - The column on which to operate. Defaults to _value. [string]
Flux flux = Flux
    .from("telegraf")
    .spread();

stddev

Standard Deviation of the results [doc].

  • column - The column on which to operate. Defaults to _value. [string]
Flux flux = Flux
    .from("telegraf")
    .stddev();

sum

Sum of the results [doc].

  • column - The column on which to operate. Defaults to _value. [string]
Flux flux = Flux
    .from("telegraf")
    .sum();

tail

Tail caps the number of records in output tables to a fixed size [doc].

  • n - The maximum number of records to output. [int]
  • offset - The number of records to skip per table. Default to 0. [int]
Flux flux = Flux
    .from("telegraf")
    .tail(5);
Flux flux = Flux
    .from("telegraf")
    .tail(100, 10);

to

The To operation takes data from a stream and writes it to a bucket [doc].

  • bucket - The bucket to which data will be written. [string]
  • bucketID - The ID of the bucket to which data will be written. [string]
  • org - The organization name of the above bucket. [string]
  • orgID - The organization ID of the above bucket. [string]
  • host - The remote host to write to. [string]
  • token - The authorization token to use when writing to a remote host. [string]
  • timeColumn - The time column of the output. [string]
  • tagColumns - The tag columns of the output. Default: All columns of type string, excluding all value columns and the _field column if present. [array of strings]
  • fieldFn - Function that takes a record from the input table and returns an object. For each record from the input table fieldFn returns on object that maps output field key to output value. Default: (r) => ({ [r._field]: r._value }) [function(record) object]
Flux flux = Flux
    .from("telegraf")
    .to("my-bucket", "my-org");

toBool

Convert a value to a bool [doc].

Flux flux = Flux
    .from("telegraf")
    .filter(and(measurement().equal("mem"), field().equal("used")))
    .toBool();

toInt

Convert a value to a int [doc].

Flux flux = Flux
    .from("telegraf")
    .filter(and(measurement().equal("mem"), field().equal("used")))
    .toInt();

toFloat

Convert a value to a float [doc].

Flux flux = Flux
    .from("telegraf")
    .filter(and(measurement().equal("mem"), field().equal("used")))
    .toFloat();

toDuration

Convert a value to a duration [doc].

Flux flux = Flux
    .from("telegraf")
    .filter(and(measurement().equal("mem"), field().equal("used")))
    .toDuration();

toString

Convert a value to a string [doc].

Flux flux = Flux
    .from("telegraf")
    .filter(and(measurement().equal("mem"), field().equal("used")))
    .toString();

toTime

Convert a value to a time [doc].

Flux flux = Flux
    .from("telegraf")
    .filter(and(measurement().equal("mem"), field().equal("used")))
    .toTime();

toUInt

Convert a value to a uint [doc].

Flux flux = Flux
    .from("telegraf")
    .filter(and(measurement().equal("mem"), field().equal("used")))
    .toUInt();

window

Groups the results by a given time range [doc].

  • every - Duration of time between windows. Defaults to period's value. [duration]
  • period - Duration of the windowed partition. Defaults to period's value. [duration]
  • offset - The offset duration relative to the location offset. It can be negative, indicating that the offset goes backwards in time. The default aligns the window boundaries to line up with the now option time. [time]
  • timeColumn - Name of the time column to use. Defaults to _time. [string]
  • startColumn - Name of the column containing the window start time. Defaults to _start. [string]
  • stopColumn - Name of the column containing the window stop time. Defaults to _stop. [string]
Flux flux = Flux
    .from("telegraf")
    .window(15L, ChronoUnit.MINUTES)
    .max();
Flux flux = Flux
    .from("telegraf")
    .window(15L, ChronoUnit.MINUTES,
            20L, ChronoUnit.SECONDS,
            -50L, ChronoUnit.WEEKS,
            1L, ChronoUnit.SECONDS)
    .max();

yield

Yield a query results to yielded results [doc].

  • name - The unique name to give to yielded results. [string]
Flux flux = Flux
    .from("telegraf")
    .yield("0");

Custom function

We assume that exist custom function measurement that filter measurement by their name. The Flux implementation looks like this:

// Define measurement function which accepts table as the piped argument.
measurement = (m, table=<-) => table |> filter(fn: (r) => r._measurement == m)

The Java implementation:

public class FilterMeasurement extends AbstractParametrizedFlux {

    public FilterMeasurement(@Nonnull final Flux source) {
        super(source);
    }

    @Nonnull
    @Override
    protected String operatorName() {
        // name of the Flux function
        return "measurement";
    }

    /**
     * @param measurement the measurement name. Has to be defined.
     * @return this
     */
    @Nonnull
    public FilterMeasurement withName(@Nonnull final String measurement) {

        Arguments.checkNonEmpty(measurement, "Measurement name");

        // name of parameter from the Flux function
        withPropertyValueEscaped("m", measurement);

        return this;
    }
}

Using the measurement function:

Flux flux = Flux
    .from("telegraf")
    .operator(FilterMeasurement.class)
        .withName("cpu")
    .sum();

The Flux script:

from(bucket:"telegraf")
    |> measurement(m: "cpu")
    |> sum()

Time zones

The Flux option sets the default time zone of all times in the script. The default value is timezone.utc.

You can construct a timezone with a fixed offset:

Flux flux = Flux
    .from("telegraf")
    .withLocationFixed("-8h")
    .count();

The Flux script:

import "timezone"

option location = timezone.fixed(offset: -8h)

from(bucket:"telegraf")
    |> count()

or you can construct a timezone based on a location name:

Flux flux = Flux
    .from("telegraf")
    .withLocationNamed("America/Los_Angeles")
    .count();

The Flux script:

import "timezone"

option location = timezone.location(name: "America/Los_Angeles")

from(bucket:"telegraf")
    |> count()

Version

The latest version for Maven dependency:

<dependency>
  <groupId>com.influxdb</groupId>
  <artifactId>flux-dsl</artifactId>
  <version>6.1.0</version>
</dependency>

Or when using with Gradle:

dependencies {
    implementation "com.influxdb:flux-dsl:6.1.0"
}

Snapshot Repository

The snapshots are deployed into OSS Snapshot repository.

Maven

<repository>
    <id>ossrh</id>
    <name>OSS Snapshot repository</name>
    <url>https://oss.sonatype.org/content/repositories/snapshots/</url>
    <releases>
        <enabled>false</enabled>
    </releases>
    <snapshots>
        <enabled>true</enabled>
    </snapshots>
</repository>

Gradle

repositories {
    maven { url "https://oss.sonatype.org/content/repositories/snapshots" }
}