diff --git a/docs/source/index.rst b/docs/source/index.rst index 9c8c886d2502..bb5ea430a321 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -89,6 +89,7 @@ To get started, see user-guide/expressions user-guide/sql/index user-guide/configs + user-guide/explain-usage user-guide/faq .. _toc.library-user-guide: diff --git a/docs/source/user-guide/explain-usage.md b/docs/source/user-guide/explain-usage.md new file mode 100644 index 000000000000..a65fad92d104 --- /dev/null +++ b/docs/source/user-guide/explain-usage.md @@ -0,0 +1,365 @@ + + +# Reading Explain Plans + +## Introduction + +This section describes of how to read a DataFusion query plan. While fully +comprehending all details of these plans requires significant expertise in the +DataFusion engine, this guide will help you get started with the basics. + +Datafusion executes queries using a `query plan`. To see the plan without +running the query, add the keyword `EXPLAIN` to your SQL query or call the +[DataFrame::explain] method + +[dataframe::explain]: https://docs.rs/datafusion/latest/datafusion/dataframe/struct.DataFrame.html#method.explain + +## Example: Select and filter + +In this section, we run example queries against the `hits.parquet` file. See +[below](#data-in-this-example)) for information on how to get this file. + +Let's see how DataFusion runs a query that selects the top 5 watch lists for the +site `http://domcheloveplanet.ru/`: + +```sql +EXPLAIN SELECT "WatchID" AS wid, "hits.parquet"."ClientIP" AS ip +FROM 'hits.parquet' +WHERE starts_with("URL", 'http://domcheloveplanet.ru/') +ORDER BY wid ASC, ip DESC +LIMIT 5; +``` + +The output will look like + +``` ++---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +| plan_type | plan | ++---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +| logical_plan | Sort: wid ASC NULLS LAST, ip DESC NULLS FIRST, fetch=5 | +| | Projection: hits.parquet.WatchID AS wid, hits.parquet.ClientIP AS ip | +| | Filter: starts_with(hits.parquet.URL, Utf8("http://domcheloveplanet.ru/")) | +| | TableScan: hits.parquet projection=[WatchID, ClientIP, URL], partial_filters=[starts_with(hits.parquet.URL, Utf8("http://domcheloveplanet.ru/"))] | +| physical_plan | SortPreservingMergeExec: [wid@0 ASC NULLS LAST,ip@1 DESC], fetch=5 | +| | SortExec: TopK(fetch=5), expr=[wid@0 ASC NULLS LAST,ip@1 DESC], preserve_partitioning=[true] | +| | ProjectionExec: expr=[WatchID@0 as wid, ClientIP@1 as ip] | +| | CoalesceBatchesExec: target_batch_size=8192 | +| | FilterExec: starts_with(URL@2, http://domcheloveplanet.ru/) | +| | ParquetExec: file_groups={16 groups: [[hits.parquet:0..923748528], ...]}, projection=[WatchID, ClientIP, URL], predicate=starts_with(URL@13, http://domcheloveplanet.ru/) | ++---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +2 row(s) fetched. +Elapsed 0.060 seconds. +``` + +There are two sections: logical plan and physical plan + +- **Logical Plan:** is a plan generated for a specific SQL query, DataFrame, or other language without the + knowledge of the underlying data organization. +- **Physical Plan:** is a plan generated from a logical plan along with consideration of the hardware + configuration (e.g number of CPUs) and the underlying data organization (e.g number of files). + This physical plan is specific to your hardware configuration and your data. If you load the same + data to different hardware with different configurations, the same query may generate different query plans. + +Understanding a query plan can help to you understand its performance. For example, when the plan shows your query reads +many files, it signals you to either add more filter in the query to read less data or to modify your file +design to make fewer but larger files. This document focuses on how to read a query plan. How to make a +query run faster depends on the reason it is slow and beyond the scope of this document. + +## Query plans are trees + +A query plan is an upside down tree, and we always read from bottom up. The +physical plan in Figure 1 in tree format will look like + +``` + ▲ + │ + │ +┌─────────────────────────────────────────────────┐ +│ SortPreservingMergeExec │ +│ [wid@0 ASC NULLS LAST,ip@1 DESC] │ +│ fetch=5 │ +└─────────────────────────────────────────────────┘ + ▲ + │ +┌─────────────────────────────────────────────────┐ +│ SortExec TopK(fetch=5), │ +│ expr=[wid@0 ASC NULLS LAST,ip@1 DESC], │ +│ preserve_partitioning=[true] │ +└─────────────────────────────────────────────────┘ + ▲ + │ +┌─────────────────────────────────────────────────┐ +│ ProjectionExec │ +│ expr=[WatchID@0 as wid, ClientIP@1 as ip] │ +└─────────────────────────────────────────────────┘ + ▲ + │ +┌─────────────────────────────────────────────────┐ +│ CoalesceBatchesExec │ +└─────────────────────────────────────────────────┘ + ▲ + │ +┌─────────────────────────────────────────────────┐ +│ FilterExec │ +│ starts_with(URL@2, http://domcheloveplanet.ru/) │ +└─────────────────────────────────────────────────┘ + ▲ + │ +┌────────────────────────────────────────────────┐ +│ ParquetExec │ +│ hits.parquet (filter = ...) │ +└────────────────────────────────────────────────┘ +``` + +Each node in the tree/plan ends with `Exec` and is sometimes also called an `operator` or `ExecutionPlan` where data is +processed, transformed and sent up. + +1. First, data in parquet the `hits.parquet` file us read in parallel using 16 cores in 16 "partitions" (more on this later) from `ParquetExec`, which applies a first pass at filtering during the scan. +2. Next, the output is filtered using `FilterExec` to ensure only rows where `starts_with(URL, 'http://domcheloveplanet.ru/')` evaluates to true are passed on +3. The `CoalesceBatchesExec` then ensures that the data is grouped into larger batches for processing +4. The `ProjectionExec` then projects the data to rename the `WatchID` and `ClientIP` columns to `wid` and `ip` respectively. +5. The `SortExec` then sorts the data by `wid ASC, ip DESC`. The `Topk(fetch=5)` indicates that a special implementation is used that only tracks and emits the top 5 values in each partition. +6. Finally the `SortPreservingMergeExec` merges the sorted data from all partitions and returns the top 5 rows overall. + +## Understanding large query plans + +A large query plan may look intimidating, but you can quickly understand what it does by following these steps + +1. As always, read from bottom up, one operator at a time. +2. Understand the job of this operator by reading + the [Physical Plan documentation](https://docs.rs/datafusion/latest/datafusion/physical_plan/index.html). +3. Understand the input data of the operator and how large/small it may be. +4. Understand how much data that operator produces and what it would look like. + +If you can answer those questions, you will be able to estimate how much work +that plan has to do and thus how long it will take. However, the `EXPLAIN` just +shows you the plan without executing it. + +If you want to know more about how much work each operator in query plan does, +you can use the `EXPLAIN ANALYZE` to get the explain with runtime added (see +next section) + +## More Debugging Information: `EXPLAIN VERBOSE` + +If the plan has to read too many files, not all of them will be shown in the +`EXPLAIN`. To see them, use `EXPLAIN VEBOSE`. Like `EXPLAIN`, `EXPLAIN VERBOSE` +does not run the query. Instead it shows the full explain plan, with information +that is omitted from the default explain, as well as all intermediate physical +plans DataFusion generates before returning. This mode can be very helpful for +debugging to see why and when DataFusion added and removed operators from a plan. + +## Execution Counters: `EXPLAIN ANALYZE` + +During execution, DataFusion operators collect detailed metrics. You can access +them programmatically via [`ExecutionPlan::metrics`] as well as with the +`EXPLAIN ANALYZE` command. For example here is the same query query as +above but with `EXPLAIN ANALYZE` (note the output is edited for clarity) + +[`executionplan::metrics`]: https://docs.rs/datafusion/latest/datafusion/physical_plan/trait.ExecutionPlan.html#method.metrics + +``` +> EXPLAIN ANALYZE SELECT "WatchID" AS wid, "hits.parquet"."ClientIP" AS ip +FROM 'hits.parquet' +WHERE starts_with("URL", 'http://domcheloveplanet.ru/') +ORDER BY wid ASC, ip DESC +LIMIT 5; ++-------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +| plan_type | plan | ++-------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +| Plan with Metrics | SortPreservingMergeExec: [wid@0 ASC NULLS LAST,ip@1 DESC], fetch=5, metrics=[output_rows=5, elapsed_compute=2.375µs] | +| | SortExec: TopK(fetch=5), expr=[wid@0 ASC NULLS LAST,ip@1 DESC], preserve_partitioning=[true], metrics=[output_rows=75, elapsed_compute=7.243038ms, row_replacements=482] | +| | ProjectionExec: expr=[WatchID@0 as wid, ClientIP@1 as ip], metrics=[output_rows=811821, elapsed_compute=66.25µs] | +| | FilterExec: starts_with(URL@2, http://domcheloveplanet.ru/), metrics=[output_rows=811821, elapsed_compute=1.36923816s] | +| | ParquetExec: file_groups={16 groups: [[hits.parquet:0..923748528], ...]}, projection=[WatchID, ClientIP, URL], predicate=starts_with(URL@13, http://domcheloveplanet.ru/), metrics=[output_rows=99997497, elapsed_compute=16ns, ... bytes_scanned=3703192723, ... time_elapsed_opening=308.203002ms, time_elapsed_scanning_total=8.350342183s, ...] | ++-------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +1 row(s) fetched. +Elapsed 0.720 seconds. +``` + +In this case, DataFusion actually ran the query, but discarded any results, and +instead returned an annotated plan with a new field, `metrics=[...]` + +Most operators have the common metrics `output_rows` and `elapsed_compute` and +some have operator specific metrics such as `ParquetExec` which has +`bytes_scanned=3703192723`. Note that times and counters are reported across all +cores, so if you have 16 cores, the time reported is the sum of the time taken +by all 16 cores. + +Again, reading from bottom up: + +- `ParquetExec` + - `output_rows=99997497`: A total 99.9M rows were produced + - `bytes_scanned=3703192723`: Of the 14GB file, 3.7GB were actually read (due to projection pushdown) + - `time_elapsed_opening=308.203002ms`: It took 300ms to open the file and prepare to read it + - `time_elapsed_scanning_total=8.350342183s`: It took 8.3 seconds of CPU time (across 16 cores) to actually decode the parquet data +- `FilterExec` + - `output_rows=811821`: Of the 99.9M rows at its input, only 811K rows passed the filter and were produced at the output + - `elapsed_compute=1.36923816s`: In total, 1.36s of CPU time (across 16 cores) was spend evaluating the filter +- `CoalesceBatchesExec` + - `output_rows=811821`, `elapsed_compute=12.873379ms`: Produced 811K rows in 13ms +- `ProjectionExec` + - `output_rows=811821, elapsed_compute=66.25µs`: Produced 811K rows in 66µs (microseconds). This projection is almost instantaneous as it does not manipulate any data +- `SortExec` + - `output_rows=75`: Produced 75 rows in total. Each of 16 cores could produce up to 5 rows, but in this case not all cores did. + - `elapsed_compute=7.243038ms`: 7ms was used to determine the top 5 rows + - `row_replacements=482`: Internally, the TopK operator updated its top list 482 times +- `SortPreservingMergeExec` + - `output_rows=5`, `elapsed_compute=2.375µs`: Produced the final 5 rows in 2.375µs (microseconds) + +## Partitions and Execution + +DataFusion determines the optimal number of cores to use as part of query +planning. Roughly speaking, each "partition" in the plan is run independently using +a separate core. Data crosses between cores only within certain operators such as +`RepartitionExec`, `CoalescePartitions` and `SortPreservingMergeExec` + +You can read more about this in the [Partitoning Docs]. + +[partitoning docs]: https://docs.rs/datafusion/latest/datafusion/physical_expr/enum.Partitioning.html + +## Example of an Aggregate Query + +Let us delve into an example query that aggregates data from the `hits.parquet` +file. For example, this query from ClickBench finds the top 10 users by their +number of hits: + +```sql +SELECT "UserID", COUNT(*) +FROM 'hits.parquet' +GROUP BY "UserID" +ORDER BY COUNT(*) DESC +LIMIT 10; +``` + +We can again see the query plan by using `EXPLAIN`: + +``` +> EXPLAIN SELECT "UserID", COUNT(*) FROM 'hits.parquet' GROUP BY "UserID" ORDER BY COUNT(*) DESC LIMIT 10; ++---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +| plan_type | plan | ++---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +| logical_plan | Limit: skip=0, fetch=10 | +| | Sort: count(*) DESC NULLS FIRST, fetch=10 | +| | Aggregate: groupBy=[[hits.parquet.UserID]], aggr=[[count(Int64(1)) AS count(*)]] | +| | TableScan: hits.parquet projection=[UserID] | +| physical_plan | GlobalLimitExec: skip=0, fetch=10 | +| | SortPreservingMergeExec: [count(*)@1 DESC], fetch=10 | +| | SortExec: TopK(fetch=10), expr=[count(*)@1 DESC], preserve_partitioning=[true] | +| | AggregateExec: mode=FinalPartitioned, gby=[UserID@0 as UserID], aggr=[count(*)] | +| | CoalesceBatchesExec: target_batch_size=8192 | +| | RepartitionExec: partitioning=Hash([UserID@0], 10), input_partitions=10 | +| | AggregateExec: mode=Partial, gby=[UserID@0 as UserID], aggr=[count(*)] | +| | ParquetExec: file_groups={10 groups: [[hits.parquet:0..1477997645], [hits.parquet:1477997645..2955995290], [hits.parquet:2955995290..4433992935], [hits.parquet:4433992935..5911990580], [hits.parquet:5911990580..7389988225], ...]}, projection=[UserID] | +| | | ++---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +``` + +For this query, let's again read the plan from the bottom to the top: + +**Logical plan operators** + +- `TableScan` + - `hits.parquet`: Scans data from the file `hits.parquet`. + - `projection=[UserID]`: Reads only the `UserID` column +- `Aggregate` + - `groupBy=[[hits.parquet.UserID]]`: Groups by `UserID` column. + - `aggr=[[count(Int64(1)) AS count(*)]]`: Applies the `COUNT` aggregate on each distinct group. +- `Sort` + - `count(*) DESC NULLS FIRST`: Sorts the data in descending count order. + - `fetch=10`: Returns only the first 10 rows. +- `Limit` + - `skip=0`: Does not skip any data for the results. + - `fetch=10`: Limits the results to 10 values. + +**Physical plan operators** + +- `ParquetExec` + - `file_groups={10 groups: [...]}`: Reads 10 groups in parallel from `hits.parquet`file. (The example above was run on a machine with 10 cores.) + - `projection=[UserID]`: Pushes down projection of the `UserID` column. The parquet format is columnar and the DataFusion reader only decodes the columns required. +- `AggregateExec` + - `mode=Partial` Runs a [partial aggregation] in parallel across each of the 10 partitions from the `ParquetExec` immediately after reading. + - `gby=[UserID@0 as UserID]`: Represents `GROUP BY` in the [physical plan] and groups together the same values of `UserID`. + - `aggr=[count(*)]`: Applies the `COUNT` aggregate on all rows for each group. +- `RepartitionExec` + - `partitioning=Hash([UserID@0], 10)`: Divides the input into into 10 (new) output partitions based on the value of `hash(UserID)`. You can read more about this in the [partitioning] documentation. + - `input_partitions=10`: Number of input partitions. +- `CoalesceBatchesExec` + - `target_batch_size=8192`: Combines smaller batches in to larger batches. In this case approximately 8192 rows in each batch. +- `AggregateExec` + - `mode=FinalPartitioned`: Performs the final aggregation on each group. See the [documentation on multi phase grouping] for more information. + - `gby=[UserID@0 as UserID]`: Groups by `UserID`. + - `aggr=[count(*)]`: Applies the `COUNT` aggregate on all rows for each group. +- `SortExec` + - `TopK(fetch=10)`: Use a special "TopK" sort that keeps only the largest 10 values in memory at a time. You can read more about this in the [TopK] documentation. + - `expr=[count(*)@1 DESC]`: Sorts all rows in descending order. Note this represents the `ORDER BY` in the physical plan. + - `preserve_partitioning=[true]`: The sort is done in parallel on each partition. In this case the top 10 values are found for each of the 10 partitions, in parallel. +- `SortPreservingMergeExec` + - `[count(*)@1 DESC]`: This operator merges the 10 distinct streams into a single stream using this expression. + - `fetch=10`: Returns only the first 10 rows +- `GlobalLimitExec` + - `skip=0`: Does not skip any rows + - `fetch=10`: Returns only the first 10 rows, denoted by `LIMIT 10` in the query. + +[partial aggregation]: https://docs.rs/datafusion/latest/datafusion/physical_plan/aggregates/enum.AggregateMode.html#variant.Partial +[physical plan]: https://docs.rs/datafusion/latest/datafusion/physical_plan/aggregates/struct.PhysicalGroupBy.html +[partitioning]: https://docs.rs/datafusion/latest/datafusion/physical_plan/repartition/struct.RepartitionExec.html +[topk]: https://docs.rs/datafusion/latest/datafusion/physical_plan/struct.TopK.html +[documentation on multi phase grouping]: https://docs.rs/datafusion/latest/datafusion/physical_plan/trait.Accumulator.html#tymethod.state + +### Data in this Example + +The examples in this section use data from [ClickBench], a benchmark for data +analytics. The examples are in terms of the 14GB [`hits.parquet`] file and can be +downloaded from the website or using the following commands: + +```shell +cd benchmarks +./bench.sh data clickbench_1 +*************************** +DataFusion Benchmark Runner and Data Generator +COMMAND: data +BENCHMARK: clickbench_1 +DATA_DIR: /Users/andrewlamb/Software/datafusion2/benchmarks/data +CARGO_COMMAND: cargo run --release +PREFER_HASH_JOIN: true +*************************** +Checking hits.parquet...... found 14779976446 bytes ... Done +``` + +Then you can run `datafusion-cli` to get plans: + +```shell +cd datafusion/benchmarks/data +datafusion-cli + +DataFusion CLI v41.0.0 +> select count(*) from 'hits.parquet'; ++----------+ +| count(*) | ++----------+ +| 99997497 | ++----------+ +1 row(s) fetched. +Elapsed 0.062 seconds. +> +``` + +[clickbench]: https://benchmark.clickhouse.com/ +[`hits.parquet`]: https://datasets.clickhouse.com/hits_compatible/hits.parquet diff --git a/docs/source/user-guide/sql/explain.md b/docs/source/user-guide/sql/explain.md index 22f73e3d76d7..45bb3a57aa7c 100644 --- a/docs/source/user-guide/sql/explain.md +++ b/docs/source/user-guide/sql/explain.md @@ -21,6 +21,8 @@ The `EXPLAIN` command shows the logical and physical execution plan for the specified SQL statement. +See the [Reading Explain Plans](../explain-usage.md) page for more information on how to interpret these plans. +
EXPLAIN [ANALYZE] [VERBOSE] statement