forked from TeamBCP5/image-reconstruction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_preprocessing.py
98 lines (88 loc) · 3.49 KB
/
demo_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import argparse
import os
from glob import glob
from tqdm import tqdm
import cv2
import albumentations as A
from data import cut_img
from utils import set_seed
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_dir", type=str, default="./camera_dataset/", help="이미지 데이터 경로"
)
parser.add_argument("--num_samples", type=int, default=5, help="생성할 샘플 수")
parser.add_argument(
"--save_dir",
type=str,
default="./sample_preprocessing/",
help="Preprocessing 결과를 저장할 디렉토리 경로",
)
parser.add_argument(
"--stride", type=int, default=256, help="Sliding Window 시 사용할 stride"
)
parser.add_argument(
"--patch_size", type=int, default=512, help="Sliding Window 시 사용할 patch 사이즈"
)
args = parser.parse_args()
set_seed(41)
os.makedirs(args.save_dir, exist_ok=True) # 원본 이미지가 저장될 디렉토리 경로
original_dir = os.path.join(args.save_dir, "original") # 원본 이미지가 저장될 디렉토리 경로
pix2pix_preprocessing_dir = os.path.join(
args.save_dir, "pix2pix"
) # Pix2Pix 전처리(sliding window) 결과가 저장될 디렉토리 경로
hinet_preprocessing_dir = os.path.join(
args.save_dir, "hinet"
) # HINet 전처리(resize) 결과가 저장될 디렉토리 경로
os.makedirs(original_dir, exist_ok=True)
os.makedirs(pix2pix_preprocessing_dir, exist_ok=True)
os.makedirs(hinet_preprocessing_dir, exist_ok=True)
os.makedirs(os.path.join(original_dir, "train_input_img"), exist_ok=True)
os.makedirs(os.path.join(original_dir, "train_label_img"), exist_ok=True)
os.makedirs(os.path.join(hinet_preprocessing_dir, "train_input_img"), exist_ok=True)
os.makedirs(os.path.join(hinet_preprocessing_dir, "train_label_img"), exist_ok=True)
train_input_paths = sorted(
glob(os.path.join(args.data_dir, "train_input_img", "*"))
)[: args.num_samples]
train_label_paths = sorted(
glob(os.path.join(args.data_dir, "train_label_img", "*"))
)[: args.num_samples]
# Pix2Pix
cut_img(
train_input_paths,
train_label_paths,
save_dir=pix2pix_preprocessing_dir,
stride=args.stride,
patch_size=args.patch_size,
)
# HINet
for input_path, label_path in tqdm(
zip(train_input_paths, train_label_paths), "[Resize]"
):
input_img = cv2.imread(input_path)
input_name = os.path.basename(input_path).split(".png")[0]
label_img = cv2.imread(label_path)
label_name = os.path.basename(label_path).split(".png")[0]
cv2.imwrite(
os.path.join(original_dir, "train_input_img", f"{input_name}.png"),
input_img,
)
cv2.imwrite(
os.path.join(original_dir, "train_label_img", f"{label_name}.png"),
label_img,
)
input_img = A.Resize(1224, 1632, p=1.0)(image=input_img)["image"]
label_img = A.Resize(1224, 1632, p=1.0)(image=label_img)["image"]
cv2.imwrite(
os.path.join(
hinet_preprocessing_dir, "train_input_img", f"{input_name}_resized.png"
),
input_img,
)
cv2.imwrite(
os.path.join(
hinet_preprocessing_dir, "train_label_img", f"{label_name}_resized.png"
),
label_img,
)
print(f"Preprocessing samples saved in '{args.save_dir}'.")