-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbilateral_utils.py
160 lines (152 loc) · 6.1 KB
/
bilateral_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os, sys
import tensorflow as tf
import numpy as np
def normalizeimg(im, simpleclip=False):
img = np.array(im)
if len(img.shape) == 3 and img.shape[2] == 2:
img = np_2channel_to_3channel(img,2)
goalsize = 200*200
if simpleclip:
im[im<0.0] = 0.0
im[im>1.0] = 1.0
theim = im
else:
if True:
if True:
centered = img - np.median(img,axis=(0,1),keepdims=True)
istdv = np.std(centered,axis=(0,1),keepdims=True)
else:
centered = img - np.median(img)
istdv = np.std(centered)
theim = np.clip(0.5 + centered / (8.0*istdv), 0.0, 1.0)
else:
imin = np.amin(img)
imax = np.amax(img)
theim = (img-imin)/(imax-imin)
#if im.size < goalsize:
# fsc = np.ceil(np.sqrt(float(goalsize) / float(im.size)))
# theim = cv2.resize(theim,(0,0),fx=fsc,fy=fsc,interpolation=cv2.INTER_NEAREST)
return theim
def load_func_from_lib():
path2file = os.path.dirname(os.path.realpath(__file__))
builtlibpath_dir = os.path.join(path2file, 'build/lib')
if True:
builtlibpath = os.path.join(builtlibpath_dir, 'libtfgaussiancrf.so')
libtfgaussiancrf = tf.load_op_library(builtlibpath)
print("-----------------------------------")
from inspect import getmembers, isfunction
functions_list = [o for o in getmembers(libtfgaussiancrf) if isfunction(o[1])]
print(str(functions_list))
print("-----------------------------------")
bilateral_filters = libtfgaussiancrf.bilateral_filters
else:
sys.path.insert(1, os.path.join(sys.path[0], builtlibpath_dir))
import bilateral_op_and_grad
bilateral_filters = bilateral_op_and_grad.bilateral_filters
return bilateral_filters
def load_4channel_truth_img(filepath):
import cv2
# cv2 image read shape: (height, width, channels)
# tensorflow conv2d image shape: (batch, height, width, channels)
fullim4ch = cv2.imread(filepath,cv2.IMREAD_UNCHANGED).astype(np.float32) / 255.0
assert len(fullim4ch.shape) == 3 and fullim4ch.shape[2] == 4
train_x = fullim4ch[:,:,:3]
trainy1 = fullim4ch[:,:,3]
train_x = train_x.reshape([1,]+list(train_x.shape)) # 4 channels: NHWC
trainy1 = trainy1.reshape([1,]+list(trainy1.shape)) # 3 channels: NHW
# make one-hot labels
train_y = np.zeros(list(trainy1.shape)+[2,], dtype=np.float32)
train_y[:,:,:,0] = 1.0 - trainy1
train_y[:,:,:,1] = trainy1
return train_x, train_y
def conv1x1(input, chansin, chansout, activation_fn, scopename="", bias=True,
weights_init_value=None, bias_init_value=None, kernelwidth=1):
chansin = int(chansin)
chansout = int(chansout)
with tf.variable_scope("conv1x1"+scopename) as scope:
initstdv = 1.1368468 * np.float32(1.0*np.sqrt(1.0/float(chansin+chansout)))
print("1x1conv: initstdv "+str(initstdv) \
+", chansin "+str(chansin)+", chansout "+str(chansout))
if weights_init_value is not None:
wshape = None
weightinit = tf.constant(weights_init_value)
else:
wshape = (kernelwidth,kernelwidth,chansin,chansout)
weightinit = tf.truncated_normal_initializer(stddev=initstdv)
weights = tf.get_variable(shape=wshape,
initializer=weightinit,
name='weights')
convresult = tf.nn.conv2d(input, weights, strides=[1,1,1,1], padding='VALID')
if bias:
if bias_init_value is not None:
bshape = None
biasinit = tf.constant(bias_init_value)
else:
bshape = (1,1,1,chansout)
biasinit = tf.constant_initializer(value=0)
biases = tf.get_variable(shape=bshape,
initializer=biasinit,
name='biases')
convresult += biases
if activation_fn is None:
return convresult
else:
return activation_fn(convresult)
def np_2channel_to_3channel(arr, chanidx):
chanidx = int(chanidx)
assert(arr.shape[chanidx] == 2)
arrsh = [int(arr.shape[ii]) for ii in range(len(arr.shape))]
arrsh[chanidx] = 1
return np.concatenate((arr,np.zeros(arrsh,dtype=arr.dtype)),axis=chanidx)
# supports numpy arrays and tensorflow tensors
def NHWC_to_NCHW(arr):
try:
return tf.transpose(arr, perm=(0,3,1,2))
except:
return arr.transpose((0,3,1,2))
def NCHW_to_NHWC(arr):
try:
return tf.transpose(arr, perm=(0,2,3,1))
except:
return arr.transpose((0,2,3,1))
# print information about a Python variable,
# with more detailed information if it is a Numpy or Tensorflow array
def describe(name,arr,extranewline=None):
name = str(name)
try:
shapestr = ", shape "+str(arr.shape)
except:
try:
shapestr = ", shape "+str(arr.get_shape())
except:
shapestr = ""
try:
print(name+": dtype "+str(arr.dtype)+shapestr \
+", (min,max) = ("+str(np.amin(arr))+", "+str(np.amax(arr))+")" \
+", (mean,std) = ("+str(np.mean(arr))+", "+str(np.std( arr))+")" \
+", median "+str(np.median(arr)))
if arr.size <= 4:
print(str(arr))
except:
try:
arrlen = len(arr)
print(name+": type "+str(type(arr))+shapestr+", len = "+str(arrlen))
MAXLEN = 8
if arrlen <= MAXLEN:
ps1 = None
for ii in range(min(arrlen,MAXLEN)):
if ps1 is None:
ps1 = ""
else:
ps1 += ", "
ps1 += str(arr[ii])
if len(ps1) <= 150:
print(" "+ps1)
ps2 = ""
for ii in range(min(arrlen,MAXLEN)):
ps2 += "["+str(ii)+"]:"+str(type(arr[ii]))+" "
print(" "+ps2)
except:
print(name+": type "+str(type(arr))+shapestr)
if extranewline is not None:
print(str(extranewline))