-
Notifications
You must be signed in to change notification settings - Fork 0
/
Orville Bennett Master's Thesis.txt
3232 lines (2542 loc) · 88.5 KB
/
Orville Bennett Master's Thesis.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Expressing human Orai3 in insect cells for
pharmacological studies
A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science
by
Orville R. Bennett
B.S., University of Hartford, 2005
2011
Wright State University
Wright State University
SCHOOL OF GRADUATE STUDIES
December 17, 2011
I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Orville R. Bennett ENTITLED Expressing human Orai3 in insect cells for
pharmacological studies BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science.
J. Ashot Kozak, Ph. D.
Thesis Director
Timothy Cope, Ph. D.
Chair, Department of Neuroscience,
Cell Biology and Physiology
Committee on
Final Examination
J. Ashot Kozak, Ph. D.
Thomas Brown, Ph. D.
Adrian Corbett, Ph. D.
Robert Putnam, Ph. D.
Andrew Hsu, Ph.D.
Dean, School of Graduate Studies
ABSTRACT
Bennett, Orville. M.S., Department of Neuroscience, Cell Biology and Physiology, Wright State
University, 2011. Expressing human Orai3 in insect cells for pharmacological studies.
The Orai3 protein, forms a Ca2+ channel with a pharmacological profile distinct from
its close relative, the store-operated Ca2+ channel Orai1. Though closely related to Orai1,
the function of Orai3 in humans is still unclear. This study attempts to contribute to the
body of knowledge by undertaking a pharmacological analysis of Orai3 in insect cells. We
describe here the creation of a vector capable of expressing the mammalian Orai3 gene
on an insect background. We demonstrate the ability to induce gene expression of Orai3
in these insect cells, and then assess the effectiveness of this system by characterizing the
pharmacological properties with the drug 2-Aminoethyl diphenylborinate (2-APB). The results show that the current strategy used to express Orai3 will require additional refinement
before the system can be considered generally useful for pharmacological studies, because
expression of Orai3 may be affected by native proteins. The interference of expression
seems confined to Orai Ca2+ channels, as mammalian STIM1 was also expressed and a
response to 2-APB, albeit unexpected, was observed.
iii
Contents
1
2
Introduction
1.1 Background . . . . . . . . . . . . . . .
1.1.1 Calcium Signaling . . . . . . .
1.1.2 Store-Operated Calcium Entry .
1.2 STIM1 . . . . . . . . . . . . . . . . . .
1.3 Orai3 . . . . . . . . . . . . . . . . . .
1.4 Drosophila S2 cells . . . . . . . . . . .
1.5 Metallothionein . . . . . . . . . . . . .
1.6 Chemical reagents used . . . . . . . . .
1.6.1 2-Aminoethoxyphenyl Borate .
1.6.2 Cyclopiazonic Acid . . . . . . .
1.6.3 Ethylene glycol tetraacetic acid
1.6.4 Fura-2 . . . . . . . . . . . . . .
1.6.5 Probenecid . . . . . . . . . . .
1.7 Specific Aims . . . . . . . . . . . . . .
1.7.1 Specific Aim #1 . . . . . . . .
1.7.2 Specific Aim #2 . . . . . . . .
1.7.3 Specific Aim #3 . . . . . . . .
1.8 Significance . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Materials and Methods
2.1 Materials . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Restriction enzymes . . . . . . . . . . . . .
2.1.2 Primers . . . . . . . . . . . . . . . . . . . .
2.1.3 Drosophila resources . . . . . . . . . . . . .
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Maintenance of cell lines . . . . . . . . . . .
2.2.2 Creation of Drosophila expression constructs
2.2.3 Transfection of S2 cells . . . . . . . . . . . .
2.2.4 RT-PCR and cDNA synthesis . . . . . . . .
2.2.5 Ca2+ imaging experiments . . . . . . . . . .
iv
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
2
2
3
4
5
6
7
8
8
9
10
10
12
13
13
13
14
14
.
.
.
.
.
.
.
.
.
.
15
15
16
16
17
19
19
19
22
22
23
3
Results
3.1 Creating inducible vectors . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Demonstrating inducible expression . . . . . . . . . . . . . . . . . . . . .
3.3 Effective measurement of Ca2+ transients . . . . . . . . . . . . . . . . . .
4
Discussion
47
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Bibliography
26
26
31
35
51
v
List of Figures
1.1
Structures of chemical reagents used in this study. . . . . . . . . . . . . . .
2.1
Map of the puc-HygroMT vector . . . . . . . . . . . . . . . . . . . . . . . 17
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
Restriction digests confirm the insertion of Orai3 into puc-HygroMT .
Restriction digests confirm the insertion of STIM1 into puc-HygroMT
Orai3 expression is inducible in S2 cells . . . . . . . . . . . . . . . .
STIM1 expression is inducible in S2 cells . . . . . . . . . . . . . . .
Absence of probenecid gives poor Ca2+ imaging results in S2 cells . .
Probenecid improves Ca2+ imaging in S2 cells . . . . . . . . . . . . .
Addition of Probenecid improves Ca2+ recordings . . . . . . . . . . .
Ca2+ measurements in transfected S2 cells perfused with 2-APB . . .
Cytoplasmic Ca2+ content in transfected S2 cells . . . . . . . . . . .
vi
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8
27
29
31
33
35
37
39
41
45
List of Tables
2.1
2.2
2.3
2.4
2.5
2.6
List of Cloning Reagents . .
List of PCR Cloning Primers
List of RT-PCR Primers . . .
List of Cell Culture Reagents
List of Chemical Reagents .
List of Instruments . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
vii
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
15
16
16
16
18
18
Acknowledgement
I would like to extend my thanks to yada yada yada (maybe your parents?)
More thankful yada...
Even more yada...
viii
Dedicated to
Laura Bennett. This one’s fer you kid.
ix
Introduction
In 1983, Streb et al. (40) showed that stimulation with inositol (1,4,5)-trisphosphate (IP3)
triggered calcium (Ca2+ ) release from the endoplasmic reticulum (ER). Later, in 1986, Putney (32), proposed that depletion of intracellular Ca2+ concentration ([Ca2+ ]i ) signaled the
plasma membrane Ca2+ entry channels to open (41). This and other early studies (17, 51)
formed the basis for what we now refer to as store-operated calcium entry (SOCE). Initially, the more popular term used was capacitive calcium entry (CCE). Over 20 years later,
other major players in this story were revealed. Stromal interaction molecule 1 (STIM1),
was found to affect SOC influx in an RNAi screen and identified as the ER calcium sensor
(34, 22, 50). Shortly thereafter the store-operated calcium channel, Orai1, was found and
identified (14, 30, 43, 49, 38).
There are two mammalian homologs of Orai1, Orai2 and Orai3, whose functions have
not yet been ascertained (34, 43, 41, 38). It is possible that Orai2 and Orai3 are expressed
in a tissue-specific manner. This seems to be the case with estrogen receptor-positive (ER+)
breast cancer cells, which have been shown to use Orai3 as their store-operated Ca2+ channel (28, 10). The demonstrable involvement of Orai3 in a disease state as prevalent as
breast cancer, underscores the importance of further studies of these Orai channels whose
function in the body is not yet understood. The presented study sets the foundation for
pharmacological characterization of the Orai3 Ca2+ channel, using Drosophila S2 cells as
a heterologous expression system. This system is expected to be of more general use for
physiological and pharmacological studies of all Orai channels. We begin by introducing
1
calcium signaling through store-operated channels in non-excitable cells.
1.1
Background
1.1.1
Calcium Signaling
Ca2+ is an incredibly versatile signaling molecule, affecting all parts of the cellular signaling machinery. Ca2+ signaling is critical to such processes as exocytosis, transcription,
cardiac function, mitosis and apoptosis (4, 5, 16, 38). The speed of these processes range
from seconds to days (4).
Since Ca2+ can enter the cell’s cytoplasm by influx at the plasma membrane or release
from internal stores, such as those within the ER (4, 5, 38), it is necessary to maintain
a balance between the two pathways. This is to prevent Ca2+ from accumulating where
it should not, which would activate or deactivate cellular processes at inopportune times.
Ca2+ concentration is regulated through activation of different ion channels. The most
studied Ca2+ ion channels in the ER are the IP3 and ryanodine receptors (IP3R, RYR)
(5, 6, 21, 33). These channels are activated by additional second messengers.
“On” mechanisms are the means by which Ca2+ is released from internal stores into
the cytoplasm. “On” mechanisms depend on Ca2+ channels (5) which may be voltageoperated channels (VOCs), receptor-operated channels (ROCs), and/or store-operated channels (SOCs) (5).
“Off” mechanisms also exist to quickly lower [Ca2+ ]i , and this is done through various
pumps and exchangers (5). The plasma membrane Ca2+ -ATPase and Na+ /Ca2+ exchanger
(if present) move Ca2+ out of the cell, while the sarco-endoplasmic reticulum Ca2+ ATPase
(SERCA) will pump Ca2+ back into the ER, replenishing the cell’s internal stores (5).
Orai1, the recently identified Calcium-Release Activated Calcium (CRAC) channel,
is a store-operated Ca2+ channel (30, 43, 14, 49, 38). Orai3 is closely related to Orai1
2
(14, 41, 16), and is thought to be involved in store-operated calcium entry (SOCE). When
SOCs open they allow Ca2+ into the cytosol. This leads to [Ca2+ ]i increasing from nanomolar to micromolar levels (5). This Ca2+ is both stimulatory and inhibitory (5) since Ca2+
acts as a signal for such a wide array of cellular processes. Spatial regulation becomes
very important in allowing for control of stimulatory and inhibitory Ca2+ -dependent mechanisms. Ca2+ -binding proteins act as buffers and allow the cell to control the local [Ca2+ ]i .
Cytosolic Ca2+ buffers such as parvalbumin, calbindin-D, and calreticulin (5), along with
Ca2+ pumps and exchangers are important in regulation of [Ca2+ ]i .
In addition to their buffering capacity, cytosolic Ca2+ binding proteins can also act
as Ca2+ sensors (5). Ca2+ sensors, such as troponin C, calmodulin, phospholipase C and
recoverin respond to changes in [Ca2+ ]i . They do so with the aid of four EF hand motifs and
will bind Ca2+ to undergo conformational changes, and then activate downstream processes
(5). This mechanism of detecting changes in [Ca2+ ]i should be emphasized, as it will
become relevant for another player in the SOCE mechanism, STIM1.
1.1.2