-
Notifications
You must be signed in to change notification settings - Fork 496
/
quick_sort.py
65 lines (57 loc) · 1.71 KB
/
quick_sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def median(a, i, j, k):
"""
Return median of 3 integers from array a.
:param a: Iterable of elements
:param i: start element index
:param j: end element index
:param k: middle element index
:return: return median of values at indices i, j and k.
"""
ai, aj, ak = a[i], a[j], a[k]
med_val = ai + aj + ak - max(ai, aj, ak) - min(ai, aj, ak)
if ai == med_val:
return i
elif aj == med_val:
return j
return k
def partition(array, l, r):
"""
Perform Partition Operation on array.
Time Complexity: Theta(nLogn)
Auxiliary Space: O(n)
:param array: Iterable of elements
:param l: pivot value for array
:param r: right limit of array
:return: return q value for function, used in partitioning of array.
"""
i = l - 1
pivot_index = median(array, l, r, (l+r) // 2)
array[pivot_index], array[r] = array[r], array[pivot_index]
pivot = array[r]
for j in range(l, r):
if array[j] <= pivot:
i += 1
array[i], array[j] = array[j], array[i]
i += 1
array[r], array[i] = array[i], array[r]
return i
def quick_sort(array, left, right):
"""
Perform sort using partition function.
Time Complexity : O(nlog(n)).
Space Complexity : O(n).
:param array: Iterable of elements
:param left: used as left limit of quick sort
:param right: right limit for quick sort
:return: no returns, sorts array
"""
if left < right:
q = partition(array, left, right)
quick_sort(array, left, q - 1)
quick_sort(array, q + 1, right)
def main():
a = [1, 2, 1, 2, 3, 1, 2, 2, 1]
quick_sort(a, 0, len(a) - 1)
print(a)
if __name__ == '__main__':
main()