-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain_signet.py
251 lines (206 loc) · 8.85 KB
/
train_signet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# coding=utf-8
from __future__ import absolute_import, print_function
import argparse
import datetime
import logging
import math
import random
import time
import torch
import wandb
from os import path as osp
import numpy as np
from data import create_dataloader, create_dataset, create_sampler
from methods import create_model
from utils.options import dict2str, parse
from utils import (MessageLogger, get_env_info, get_root_logger,
init_tb_logger, init_wandb_logger, check_resume,
make_exp_dirs, set_random_seed, get_time_str, Timer)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'-opt',type=str, required=True, help='Path to option YAML file.')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
opt = parse(args.opt, is_train=True)
rank = 0
opt['rank'] = 0
opt['world_size'] = 1
# load resume states if exists
if opt['path'].get('resume_state'):
device_id = torch.cuda.current_device()
resume_state = torch.load(
opt['path']['resume_state'],
map_location=lambda storage, loc: storage.cuda(device_id))
else:
resume_state = None
# mkdir and loggers
if resume_state is None:
make_exp_dirs(opt)
log_file = osp.join(opt['path']['log'],
f"train_{opt['name']}_{get_time_str()}.log")
logger = get_root_logger(
logger_name='FS-IL', log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(opt))
# initialize tensorboard logger and wandb logger
tb_logger = None
if opt['logger'].get('use_tb_logger') and 'debug' not in opt['name']:
log_dir = './tb_logger_{}/'.format(opt['datasets']['train']['name']) + opt['name']
tb_logger = init_tb_logger(log_dir=log_dir)
wandb_logger = None
opt['wandb_logger'] = wandb_logger
# set random seed
seed = opt['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
opt['manual_seed'] = seed
logger.info(f'Random seed: {seed}')
set_random_seed(seed + rank)
torch.set_num_threads(1)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# calculate the number of tasks for each new task
bases = opt['train']['bases']
total_classes = opt['datasets']['train']['total_classes']
if opt.get('Random', True):
random_class_perm = np.random.permutation(total_classes)
else:
random_class_perm = np.arange(total_classes)
# randomly generate the sorting of categories
num_classes = bases
# select the classes for training
selected_classes = random_class_perm[:bases]
# create train and val dataloaders
train_loader, val_loader = None, None
for phase, dataset_opt in opt['datasets'].items():
dataset_opt['all_classes'] = random_class_perm
dataset_opt['selected_classes'] = selected_classes
sampler_opt = dataset_opt['sampler']
if sampler_opt.get('num_classes', None) is None:
sampler_opt['num_classes'] = num_classes
if phase == 'train':
dataset_opt['batch_size'] = dataset_opt['batch_size_base_classes']
dataset_opt['task_id'] = 0
train_set = create_dataset(dataset_opt)
opt['train_set'] = train_set
train_sampler = create_sampler(train_set, sampler_opt)
train_loader = create_dataloader(
train_set,
dataset_opt,
sampler=train_sampler,
seed=seed)
logger.info(
'Training statistics:'
f'\n\tNumber of train classes: {num_classes}'
f'\n\tBatch size: {dataset_opt["batch_size"]}'
f'\n\tTotal epochs: {opt["train"]["epoch"]}')
elif phase == 'val':
dataset_opt['task_id'] = 0
val_set = create_dataset(dataset_opt)
val_set.set_aug(False)
val_loader = create_dataloader(
val_set,
dataset_opt,
sampler=None,
seed=seed)
logger.info(
f'Number of val images/folders in {dataset_opt["name"]}: '
f'{len(val_set)}')
else:
raise ValueError(f'Dataset phase {phase} is not recognized.')
assert train_loader is not None
# create model
if resume_state:
check_resume(opt, resume_state['iter']) # modify pretrain_model paths
model = create_model(opt)
# TODO resume training
if resume_state:
logger.info(f"Resuming training from epoch: {resume_state['epoch']}, "
f"iter: {resume_state['iter']}.")
start_epoch = resume_state['epoch']
current_iter = resume_state['iter']
model.resume_training(resume_state) # handle optimizers and schedulers
else:
start_epoch = 0
current_iter = 0
# create message logger (formatted outputs)
msg_logger = MessageLogger(opt, current_iter, tb_logger, wandb_logger)
# training
logger.info(
f'Start training from epoch: {start_epoch}, iter: {current_iter}')
total_epoch = opt['train']['epoch']
max_acc, acc = 0.0, 0.0
timer = Timer()
model.init_training(train_set)
per_task_masks, consolidated_masks = {}, {}
per_task_masks[0] = None
for epoch in range(start_epoch, total_epoch + 1):
if epoch == 0 :
pass
for i, data in enumerate(train_loader, 0):
current_iter += 1
# update learning rate
model.update_learning_rate(
current_iter, warmup_iter=opt['train'].get('warmup_iter', -1))
# training
model.feed_data(data)
sparsity=True if epoch > opt['train']['s_epoch'] else None # miniImageNet
if True:
model.optimize_parameters(current_iter, mask=per_task_masks[0],
sparsity=sparsity)
else:
''' try to learn f2m'''
model.optimize_f2m_parameters(current_iter,
mask=per_task_masks[0],
sparsity=sparsity)
# get model masks
per_task_masks[0] = model.get_masks(0)
# log
if current_iter % opt['logger']['print_freq'] == 0:
log_vars = {'epoch': epoch, 'iter': current_iter}
log_vars.update({'lrs': model.get_current_learning_rate()})
log_vars.update(model.get_current_log())
msg_logger(log_vars)
# save models and training states
if current_iter % opt['logger']['save_checkpoint_freq'] == 0:
logger.info('Saving models and training states.')
model.save(epoch, current_iter, mask=per_task_masks, task_id=0)
# validation
if opt['val']['val_freq'] is not None and current_iter % opt['val']['val_freq'] == 0:
train_set.set_aug(False)
mask = per_task_masks[0]
if mask is None:
mask = model.get_masks(0)
acc = model.validation(train_set, val_loader,
current_iter, tb_logger,
mask=mask)
if acc > max_acc:
max_acc = acc
model.save(epoch, -1, name='best_net',
mask=per_task_masks, task_id=0)
model.save_mask(per_task_masks, task_id=0,
net_label='best_net',
current_iter=-1)
train_set.set_aug(True)
logger.info(f'ETA:{timer.measure()}/{timer.measure((epoch + 1)/ total_epoch)}')
# end of epoch
logger.info('Save the latest model if the best')
train_set.set_aug(False)
acc = model.validation(train_set, val_loader,
current_iter, tb_logger,
mask=per_task_masks[0])
if acc > max_acc:
model.save(epoch, -1, name='best_net',
mask=per_task_masks, task_id=0)
model.save_mask(per_task_masks, task_id=0, net_label='best_net',
current_iter=-1)
logger.info(f'Best acc is {max_acc:.4f}')
if opt['val']['val_freq'] is not None:
model.validation(train_set, val_loader, current_iter, tb_logger, mask=per_task_masks[0])
if tb_logger is not None:
tb_logger.close()
if wandb_logger is not None:
wandb.finish()
if __name__ == '__main__':
main()