forked from wenxinxu/resnet-in-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
resnet.py
217 lines (175 loc) · 8.16 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Coder: Wenxin Xu
# Github: https://github.com/wenxinxu/resnet_in_tensorflow
# ==============================================================================
'''
This is the resnet structure
'''
import numpy as np
from hyper_parameters import *
BN_EPSILON = 0.001
def activation_summary(x):
'''
:param x: A Tensor
:return: Add histogram summary and scalar summary of the sparsity of the tensor
'''
tensor_name = x.op.name
tf.summary.histogram(tensor_name + '/activations', x)
tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
def create_variables(name, shape, initializer=tf.contrib.layers.xavier_initializer(), is_fc_layer=False):
'''
:param name: A string. The name of the new variable
:param shape: A list of dimensions
:param initializer: User Xavier as default.
:param is_fc_layer: Want to create fc layer variable? May use different weight_decay for fc
layers.
:return: The created variable
'''
## TODO: to allow different weight decay to fully connected layer and conv layer
regularizer = tf.contrib.layers.l2_regularizer(scale=FLAGS.weight_decay)
new_variables = tf.get_variable(name, shape=shape, initializer=initializer,
regularizer=regularizer)
return new_variables
def output_layer(input_layer, num_labels):
'''
:param input_layer: 2D tensor
:param num_labels: int. How many output labels in total? (10 for cifar10 and 100 for cifar100)
:return: output layer Y = WX + B
'''
input_dim = input_layer.get_shape().as_list()[-1]
fc_w = create_variables(name='fc_weights', shape=[input_dim, num_labels], is_fc_layer=True,
initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
fc_b = create_variables(name='fc_bias', shape=[num_labels], initializer=tf.zeros_initializer())
fc_h = tf.matmul(input_layer, fc_w) + fc_b
return fc_h
def batch_normalization_layer(input_layer, dimension):
'''
Helper function to do batch normalziation
:param input_layer: 4D tensor
:param dimension: input_layer.get_shape().as_list()[-1]. The depth of the 4D tensor
:return: the 4D tensor after being normalized
'''
mean, variance = tf.nn.moments(input_layer, axes=[0, 1, 2])
beta = tf.get_variable('beta', dimension, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
gamma = tf.get_variable('gamma', dimension, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32))
bn_layer = tf.nn.batch_normalization(input_layer, mean, variance, beta, gamma, BN_EPSILON)
return bn_layer
def conv_bn_relu_layer(input_layer, filter_shape, stride):
'''
A helper function to conv, batch normalize and relu the input tensor sequentially
:param input_layer: 4D tensor
:param filter_shape: list. [filter_height, filter_width, filter_depth, filter_number]
:param stride: stride size for conv
:return: 4D tensor. Y = Relu(batch_normalize(conv(X)))
'''
out_channel = filter_shape[-1]
filter = create_variables(name='conv', shape=filter_shape)
conv_layer = tf.nn.conv2d(input_layer, filter, strides=[1, stride, stride, 1], padding='SAME')
bn_layer = batch_normalization_layer(conv_layer, out_channel)
output = tf.nn.relu(bn_layer)
return output
def bn_relu_conv_layer(input_layer, filter_shape, stride):
'''
A helper function to batch normalize, relu and conv the input layer sequentially
:param input_layer: 4D tensor
:param filter_shape: list. [filter_height, filter_width, filter_depth, filter_number]
:param stride: stride size for conv
:return: 4D tensor. Y = conv(Relu(batch_normalize(X)))
'''
in_channel = input_layer.get_shape().as_list()[-1]
bn_layer = batch_normalization_layer(input_layer, in_channel)
relu_layer = tf.nn.relu(bn_layer)
filter = create_variables(name='conv', shape=filter_shape)
conv_layer = tf.nn.conv2d(relu_layer, filter, strides=[1, stride, stride, 1], padding='SAME')
return conv_layer
def residual_block(input_layer, output_channel, first_block=False):
'''
Defines a residual block in ResNet
:param input_layer: 4D tensor
:param output_channel: int. return_tensor.get_shape().as_list()[-1] = output_channel
:param first_block: if this is the first residual block of the whole network
:return: 4D tensor.
'''
input_channel = input_layer.get_shape().as_list()[-1]
# When it's time to "shrink" the image size, we use stride = 2
if input_channel * 2 == output_channel:
increase_dim = True
stride = 2
elif input_channel == output_channel:
increase_dim = False
stride = 1
else:
raise ValueError('Output and input channel does not match in residual blocks!!!')
# The first conv layer of the first residual block does not need to be normalized and relu-ed.
with tf.variable_scope('conv1_in_block'):
if first_block:
filter = create_variables(name='conv', shape=[3, 3, input_channel, output_channel])
conv1 = tf.nn.conv2d(input_layer, filter=filter, strides=[1, 1, 1, 1], padding='SAME')
else:
conv1 = bn_relu_conv_layer(input_layer, [3, 3, input_channel, output_channel], stride)
with tf.variable_scope('conv2_in_block'):
conv2 = bn_relu_conv_layer(conv1, [3, 3, output_channel, output_channel], 1)
# When the channels of input layer and conv2 does not match, we add zero pads to increase the
# depth of input layers
if increase_dim is True:
pooled_input = tf.nn.avg_pool(input_layer, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='VALID')
padded_input = tf.pad(pooled_input, [[0, 0], [0, 0], [0, 0], [input_channel // 2,
input_channel // 2]])
else:
padded_input = input_layer
output = conv2 + padded_input
return output
def inference(input_tensor_batch, n, reuse):
'''
The main function that defines the ResNet. total layers = 1 + 2n + 2n + 2n +1 = 6n + 2
:param input_tensor_batch: 4D tensor
:param n: num_residual_blocks
:param reuse: To build train graph, reuse=False. To build validation graph and share weights
with train graph, resue=True
:return: last layer in the network. Not softmax-ed
'''
layers = []
with tf.variable_scope('conv0', reuse=reuse):
conv0 = conv_bn_relu_layer(input_tensor_batch, [3, 3, 3, 16], 1)
activation_summary(conv0)
layers.append(conv0)
for i in range(n):
with tf.variable_scope('conv1_%d' %i, reuse=reuse):
if i == 0:
conv1 = residual_block(layers[-1], 16, first_block=True)
else:
conv1 = residual_block(layers[-1], 16)
activation_summary(conv1)
layers.append(conv1)
for i in range(n):
with tf.variable_scope('conv2_%d' %i, reuse=reuse):
conv2 = residual_block(layers[-1], 32)
activation_summary(conv2)
layers.append(conv2)
for i in range(n):
with tf.variable_scope('conv3_%d' %i, reuse=reuse):
conv3 = residual_block(layers[-1], 64)
layers.append(conv3)
assert conv3.get_shape().as_list()[1:] == [8, 8, 64]
with tf.variable_scope('fc', reuse=reuse):
in_channel = layers[-1].get_shape().as_list()[-1]
bn_layer = batch_normalization_layer(layers[-1], in_channel)
relu_layer = tf.nn.relu(bn_layer)
global_pool = tf.reduce_mean(relu_layer, [1, 2])
assert global_pool.get_shape().as_list()[-1:] == [64]
output = output_layer(global_pool, 10)
layers.append(output)
return layers[-1]
def test_graph(train_dir='logs'):
'''
Run this function to look at the graph structure on tensorboard. A fast way!
:param train_dir:
'''
input_tensor = tf.constant(np.ones([128, 32, 32, 3]), dtype=tf.float32)
result = inference(input_tensor, 2, reuse=False)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
summary_writer = tf.train.SummaryWriter(train_dir, sess.graph)