-
-
Notifications
You must be signed in to change notification settings - Fork 42
/
textgen_api.py
173 lines (152 loc) · 5.98 KB
/
textgen_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#textgen_api.py
import requests
import json
from typing import List, Union, Optional
import aiohttp
import asyncio
import logging
logger = logging.getLogger(__name__)
def create_openai_compatible_embedding(api_base: str, model: str, input: Union[str, List[str]], api_key: Optional[str] = None) -> List[float]:
"""
Create embeddings using an OpenAI-compatible API.
:param api_base: The base URL for the API
:param model: The name of the model to use for embeddings
:param input: A string or list of strings to embed
:param api_key: The API key (if required)
:return: A list of embeddings
"""
# Normalize the API base URL
api_base = api_base.rstrip('/')
if not api_base.endswith('/v1'):
api_base += '/v1'
url = f"{api_base}/embeddings"
headers = {
"Content-Type": "application/json"
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
payload = {
"model": model,
"input": input,
"encoding_format": "float"
}
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
result = response.json()
if "data" in result and len(result["data"]) > 0 and "embedding" in result["data"][0]:
# If multiple embeddings are returned, we'll just use the first one
return result["data"][0]["embedding"]
else:
raise ValueError("Unexpected response format: 'embedding' data not found")
except requests.RequestException as e:
raise RuntimeError(f"Error calling embedding API: {str(e)}")
async def send_textgen_request(api_url, base64_images, model, system_message, user_message, messages, seed, temperature,
max_tokens, top_k, top_p, repeat_penalty, stop, tools=None, tool_choice=None):
headers = {
"Content-Type": "application/json"
}
data = {
"model": model,
"messages": prepare_textgen_messages(system_message, user_message, messages, base64_images),
"temperature": temperature,
"max_tokens": max_tokens,
"presence_penalty": repeat_penalty,
"top_p": top_p,
"top_k": top_k,
"seed": seed
}
if stop:
data["stop"] = stop
if tools:
data["functions"] = tools
if tool_choice:
data["function_call"] = tool_choice
try:
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=data) as response:
response.raise_for_status()
response_data = await response.json()
choices = response_data.get('choices', [])
if choices:
choice = choices[0]
message = choice.get('message', {})
if "function_call" in message:
return {
"choices": [{
"message": {
"function_call": {
"name": message["function_call"]["name"],
"arguments": message["function_call"]["arguments"]
}
}
}]
}
else:
generated_text = message.get('content', '')
return {
"choices": [{
"message": {
"content": generated_text
}
}]
}
else:
error_msg = "Error: No valid choices in the textgen response."
print(error_msg)
return {"choices": [{"message": {"content": error_msg}}]}
except aiohttp.ClientError as e:
error_msg = f"Error in textgen API request: {e}"
print(error_msg)
return {"choices": [{"message": {"content": error_msg}}]}
def prepare_textgen_messages(system_message, user_message, messages, base64_image=None):
textgen_messages = []
if system_message:
textgen_messages.append({"role": "system", "content": system_message})
for message in messages:
role = message["role"]
content = message["content"]
if isinstance(content, list):
# Handle multi-modal content
message_content = []
for item in content:
if item["type"] == "text":
message_content.append({"type": "text", "text": item["text"]})
elif item["type"] == "image_url":
message_content.append({
"type": "image_url",
"image_url": {"url": item["image_url"]["url"]}
})
textgen_messages.append({"role": role, "content": message_content})
else:
textgen_messages.append({"role": role, "content": content})
# Add the current user message with image if provided
if base64_image:
textgen_messages.append({
"role": "user",
"content": [
{"type": "text", "text": user_message},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
})
else:
textgen_messages.append({"role": "user", "content": user_message})
return textgen_messages
def parse_function_call(response, tools):
try:
# Look for JSON-like structure in the response
start = response.find("{")
end = response.rfind("}") + 1
if start != -1 and end != -1:
json_str = response[start:end]
parsed = json.loads(json_str)
if "function_call" in parsed:
return parsed
except json.JSONDecodeError:
pass
return None