-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
634 lines (550 loc) · 26.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import math
import os
import argparse
from pathlib import Path
import itertools
import torch
import torch.nn.functional as F
from accelerate.logging import get_logger
from tqdm import tqdm
from diffusers.optimization import get_scheduler
from peft import LoraConfig
from accelerate import Accelerator
from accelerate.utils import set_seed, ProjectConfiguration
from huggingface_hub import Repository
import wandb
from datasets.custom import CustomDataset, CustomDatasetWithMasks, collate_fn
from datasets.utils import prepare_prompt, random_batch_slicing
from models.infer import run_inference
from models.unet import get_visual_cross_attention_values_norm, set_cross_attention_layers_to_train
from models.modeling_utils import load_models, save_progress
from models.loss import FaceLoss
from utils.hub import get_full_repo_name
from utils.image_utils import denormalize, denormalize_clip, to_pil, save_images_grid
logger = get_logger(__name__)
PROMPTS = ['{} in Ghibli anime style',
'{} in Disney & Pixar style',
'{} wears a red hat',
'{} on the beach',
'Manga drawing of {}',
'{} Funko Pop',
'{} latte art', ]
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default="runwayml/stable-diffusion-v1-5",
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_photoverse_path",
type=str,
default=None,
help="Path to pretrained ip adapter model. If not specified weights are initialized randomly.",
)
parser.add_argument(
"--data_root_path",
type=str,
default=None,
required=True,
help="Training datasets root path",
)
parser.add_argument(
"--img_subfolder",
type=str,
default="images",
help="Subfolder relative to data_root_path containing images",
)
parser.add_argument(
"--mask_subfolder",
type=str,
default=None,
help="Subfolder relative to data_root_path containing masks",
)
parser.add_argument(
"--output_dir",
type=str,
default="results",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images"
),
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Learning rate to use.",
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=5000,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=4,
help=(
"Number of subprocesses to use for datasets loading. 0 means that the datasets will be loaded in the main process."
),
)
parser.add_argument(
"--checkpoint_save_steps",
type=int,
default=2000,
help=(
"Save a checkpoint of the training state every X updates"
),
)
parser.add_argument(
"--samples_save_steps",
type=int,
default=500,
help=(
"Save samples of the training state every X updates"
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
# add num_tokens
parser.add_argument(
"--extra_num_tokens",
type=int,
default=4,
help="Number of image encoder hidden states to use as extra tokens for the text encoder",
)
parser.add_argument(
"--image_encoder_layers_idx",
type=list,
default=[4, 8, 12, 16],
help="Image encoder extra layers indices to use as tokens for the text encoder, should be equal to extra_num_tokens",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
'--denoise_timesteps',
type=int,
default=10,
help='Number of timesteps for inference'
)
parser.add_argument(
'--guidance_scale',
type=float,
default=2.0,
help='Guidance scale for inference'
)
parser.add_argument(
"--num_of_samples_to_save",
type=int,
default=4,
help="Number of samples to save for each prompt.",
)
parser.add_argument(
"--save_samples_with_various_prompts",
action="store_true",
help="Whether to save samples with various prompts.",
)
parser.add_argument(
"--use_random_prompts",
action="store_true",
help="Whether to use random prompts for training.",
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--face_loss",
type=str,
default=None,
choices=["arcface", "facenet"],
help="The face loss to use in the training process."
)
parser.add_argument(
"--face_loss_sample_ratio",
type=float,
default=0.25,
help="Ratio of the batch of images to use for face loss calculation."
)
parser.add_argument(
"--use_lora",
action="store_true",
help="Whether to use LORA for the textual cross attention layers."
)
parser.add_argument(
"--lora_alpha",
type=float,
default=1,
help="LORA alpha parameter."
)
parser.add_argument(
"--lora_dropout",
type=float,
default=0.1,
help="LORA dropout parameter."
)
parser.add_argument(
"--lora_rank",
type=int,
default=8,
help="LORA rank parameter."
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def check_args(args):
if args.extra_num_tokens < 0:
raise ValueError("extra_num_tokens should be greater than or equal to 0")
if len(args.image_encoder_layers_idx) != args.extra_num_tokens:
raise ValueError("The number of image encoder layers to use as tokens should be equal to extra_num_tokens")
if 0 in args.image_encoder_layers_idx:
raise ValueError(
"The image encoder extra tokens layers cant be the last layer since we always use the last layer")
args.image_encoder_layers_idx = torch.tensor(args.image_encoder_layers_idx)
def main():
args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
cpu=args.cpu,
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.seed is not None:
set_seed(args.seed)
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
check_args(args)
# Initialize the Faces losses methods
face_loss = None
if args.face_loss:
face_loss = FaceLoss(device=accelerator.device, model_name=args.face_loss)
extra_num_tokens = args.extra_num_tokens
image_encoder_layers_idx = args.image_encoder_layers_idx
lora_config = None
if args.use_lora:
lora_config = LoraConfig(
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
r=args.lora_rank,
bias="none",
target_modules=["attn2.to_k", "attn2.to_v", "attn2.to_q"],
)
# Load models and tokenizer using the load_models function
tokenizer, text_encoder, vae, unet, image_encoder, image_adapter, text_adapter, noise_scheduler, lora_config = load_models(
pretrained_model_name_or_path=args.pretrained_model_name_or_path,
extra_num_tokens=extra_num_tokens,
photoverse_path=args.pretrained_photoverse_path,
use_lora=args.use_lora,
lora_config=lora_config,
)
# optimizer
# Since we patch unet after freezing, all new parameters are trainable
unet_params_to_opt = []
for name, param in unet.named_parameters():
if param.requires_grad:
unet_params_to_opt.append(param)
params_to_opt = itertools.chain(image_adapter.parameters(), text_adapter.parameters(), unet_params_to_opt)
optimizer = torch.optim.AdamW(params_to_opt, lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# learning rate scheduler
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
# dataloader
if args.mask_subfolder is None:
train_dataset = CustomDataset(data_root=args.data_root_path, img_subfolder=args.img_subfolder,
tokenizer=tokenizer, size=args.resolution,
use_random_templates=args.use_random_prompts)
else:
train_dataset = CustomDatasetWithMasks(data_root=args.data_root_path, img_subfolder=args.img_subfolder,
tokenizer=tokenizer, size=args.resolution,
use_random_templates=args.use_random_prompts)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
override_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
override_max_train_steps = True
# train
unet, image_adapter, text_adapter, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet,
image_adapter,
text_adapter,
optimizer,
train_dataloader,
lr_scheduler,
device_placement=[True, True, True, True, False, False])
# set dtype and device
weight_dtype = torch.float32
device = accelerator.device
unet.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
text_encoder.to(device, dtype=weight_dtype)
image_encoder.to(device, dtype=weight_dtype)
image_adapter.to(device, dtype=weight_dtype)
text_adapter.to(device, dtype=weight_dtype)
# set to eval
vae.eval()
unet.eval()
image_encoder.eval()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if override_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if accelerator.is_main_process:
accelerator.init_trackers("photoVerse", config=vars(args))
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("~~~~~ Running training ~~~~~")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
global_step = 0
for epoch in range(0, args.num_train_epochs):
text_adapter.train()
image_adapter.train()
set_cross_attention_layers_to_train(unet)
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet, image_adapter, text_adapter):
pixel_values = batch["pixel_values"].to(device, dtype=weight_dtype)
pixel_values_clip = batch["pixel_values_clip"].to(device, dtype=weight_dtype)
placeholder_idx = batch["concept_placeholder_idx"].to(device)
text_input_ids = batch["text_input_ids"].to(device)
# Convert images to latent space
latents = vae.encode(pixel_values).latent_dist.sample().detach()
latents = latents * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents).to(latents.device)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,),
device=latents.device).long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# get image_emmbeddings from last layers + extra layers from image_encoder hidden states
image_features = image_encoder(pixel_values_clip, output_hidden_states=True)
image_embeddings = [image_features[0]] + [image_features[2][i] for i in image_encoder_layers_idx if
i < len(image_features[2])]
assert len(
image_embeddings) == extra_num_tokens + 1, "Entered indices are out of range for image_encoder layers."
image_embeddings = [emb.detach() for emb in image_embeddings]
# run through text_adapter
concept_text_embeddings = text_adapter(image_embeddings)
encoder_hidden_states = text_encoder({'text_input_ids': text_input_ids,
"concept_text_embeddings": concept_text_embeddings,
"concept_placeholder_idx": placeholder_idx})[0]
# run through image_adapter
encoder_hidden_states_image = image_adapter(image_embeddings)
# Run the UNet
noise_pred = unet(noisy_latents, timesteps,
encoder_hidden_states=(encoder_hidden_states, encoder_hidden_states_image)).sample
# Calculate concept text regularizer
concept_text_loss = torch.abs(concept_text_embeddings).mean()
# Calculate reference image regularizer
cross_attn_values_norm = get_visual_cross_attention_values_norm(unet)
cross_attn_visual_loss = cross_attn_values_norm.mean()
# Calculate loss
diffusion_loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
# Calculate face loss if needed
floss = torch.zeros(1, dtype=torch.float32).to(device)
# Calculate face loss if needed
if face_loss is not None:
num_samples = max(int(args.face_loss_sample_ratio * pixel_values.shape[0]),1)
example = prepare_prompt(tokenizer, "a photo of {}", "*", num_of_samples=bsz)
batch.update(example)
sliced_batch = random_batch_slicing(batch, pixel_values.shape[0], num_samples)
gen_images = run_inference(sliced_batch, tokenizer, image_encoder, text_encoder, unet, text_adapter,
image_adapter, vae,
noise_scheduler, device, image_encoder_layers_idx,
guidance_scale=args.guidance_scale,
timesteps=10, token_index=0, disable_tqdm=True, from_noised_image=True, training_mode=True)
floss = face_loss(sliced_batch['pixel_values'].to(device), gen_images, normalize=False)
# Add calculated face loss to the overall loss
loss = diffusion_loss + concept_text_loss * 0.01 + cross_attn_visual_loss * 0.001 + floss * 0.01
# Backward
accelerator.backward(loss)
# Gradient clipping
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(text_adapter.parameters(), 1)
accelerator.clip_grad_norm_(image_adapter.parameters(), 1)
accelerator.clip_grad_norm_(unet.parameters(), 1)
# Optimizer step
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.samples_save_steps == 0:
torch.cuda.empty_cache()
input_images = [to_pil(denormalize(img)) for img in batch["pixel_values"]]
if args.use_random_prompts:
example = prepare_prompt(tokenizer, "a photo of {}", "*", num_of_samples=len(input_images))
batch.update(example)
with torch.no_grad():
gen_tensors = run_inference(batch, tokenizer, image_encoder, text_encoder, unet, text_adapter,
image_adapter, vae,
noise_scheduler, device, image_encoder_layers_idx,
guidance_scale=args.guidance_scale,
timesteps=args.denoise_timesteps, token_index=0, disable_tqdm=True)
gen_images = [to_pil(denormalize(img)) for img in gen_tensors]
similarity_metric = None
if face_loss is not None:
with torch.no_grad():
similarity_metric = face_loss(pixel_values, gen_tensors, normalize=False,
maximize=False).detach().item()
clip_images = [to_pil(denormalize_clip(img)).resize((train_dataset.size, train_dataset.size)) for
img in batch["pixel_values_clip"]]
grid_data = [("Input Images", input_images[:args.num_of_samples_to_save]),
("Condition Images", clip_images[:args.num_of_samples_to_save]),
(batch["text"][0], gen_images[:args.num_of_samples_to_save])]
if args.save_samples_with_various_prompts:
example = {"pixel_values_clip": batch["pixel_values_clip"][:args.num_of_samples_to_save],
"pixel_values": batch["pixel_values"][:args.num_of_samples_to_save]}
for prompt in PROMPTS:
example_to_update = prepare_prompt(tokenizer, prompt, "*", num_of_samples=args.num_of_samples_to_save)
example.update(example_to_update)
with torch.no_grad():
gen_images = run_inference(example, tokenizer, image_encoder, text_encoder, unet,
text_adapter,
image_adapter, vae,
noise_scheduler, device, image_encoder_layers_idx,
guidance_scale=args.guidance_scale,
timesteps=args.denoise_timesteps, token_index=0,
disable_tqdm=True).to('cpu') # offload to cpu
gen_images = [to_pil(denormalize(img)) for img in gen_images]
grid_data.append((prompt, gen_images))
img_grid_file = os.path.join(args.output_dir, f"{str(global_step).zfill(5)}.jpg")
save_images_grid(grid_data, img_grid_file)
torch.cuda.empty_cache()
if args.report_to == "wandb":
images = wandb.Image(img_grid_file, caption="Generated images vs input images")
logs = {"Generated images vs input images": images}
if similarity_metric is not None:
logs["face_similarity"] = similarity_metric
accelerator.log(logs, step=global_step)
if global_step % args.checkpoint_save_steps == 0:
save_progress(image_adapter, text_adapter, unet, accelerator, args.output_dir, step=global_step,
lora_config=lora_config, optimizer=optimizer)
logs = {"loss_mle": diffusion_loss.detach().item(),
"loss_reg_concept_text": concept_text_loss.detach().item(),
"loss_reg_cross_attn_visual": cross_attn_visual_loss.detach().item(),
"lr": lr_scheduler.get_last_lr()[0]}
if args.face_loss:
logs["loss_face"] = floss.detach().item()
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
if accelerator.is_main_process:
save_progress(image_adapter, text_adapter, unet, accelerator, args.output_dir,
lora_config=lora_config, optimizer=optimizer)
accelerator.end_training()
if __name__ == "__main__":
main()