-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.R
133 lines (101 loc) · 4.8 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
library(shiny)
library(ggplot2)
library(dplyr)
library(magrittr)
library(tidyr)
library(ridigbio)
library(jsonlite)
# Define server logic required to draw a histogram
shinyServer(
function(input, output, session) {
## # Expression that generates a histogram. The expression is
## # wrapped in a call to renderPlot to indicate that:
## #
## # 1) It is "reactive" and therefore should
## # re-execute automatically when inputs change
## # 2) Its output type is a plot
output$queryText <- renderText({
qry <- parseQueryString(session$clientData$url_search)
if (length(qry)) {
qry <- jsonlite::fromJSON(qry$rq)
idig_time <- system.time(hol <<- idig_search_records(rq = qry, fields = "all"))
if (nrow(hol) > 1) paste("Time taken:", idig_time[1], "\nNumber of records:", nrow(hol)) else "problem"
} else {
"You need to specify a query"
}
})
output$distPlot <- renderPlot({
idig_data <- subset(hol, institutioncode %in% input$institution_code)
idig_data$datecollected <- as.Date(idig_data$datecollected)
if (identical(input$plot_type, "Barplot")) {
p <- ggplot(idig_data, aes(x = datecollected)) +
ylab("Number of records") + xlab("Date of collection") +
xlim(input$date_range[1], input$date_range[2]) + geom_histogram()
if (input$color_by != "none") {
p <- p + geom_histogram(aes_string(fill = input$color_by))
} else {
p <- p + geom_histogram()
}
} else {
p <- ggplot(idig_data, aes_string(x = "datecollected")) +
xlab("Date of collection") + ylab("Proportion of specimens")
if (input$color_by != "none") {
p <- p + stat_ecdf(aes_string(colour = input$color_by))
} else {
p <- p + stat_ecdf()
}
}
print(p)
})
output$missingData <- renderPlot({
idig_data <- hol
idig_data_tmp <- idig_data %>%
filter(institutioncode %in% input$institution_code_missing)
n_row <- nrow(idig_data_tmp)
idig_data_tmp <- idig_data_tmp %>%
select(one_of(input$fields_to_show)) %>%
group_by(institutioncode) %>%
summarise_each(funs(sum(is.na(.)/n_row))) %>%
gather(institutioncode, percent_missing) %>%
as.data.frame %>% setNames(c("institution_code", "field", "percent_missing"))
idig_data_tmp$field <- reorder(idig_data_tmp$field, idig_data_tmp$percent_missing,
sum)
total_percent <- idig_data_tmp %>% group_by(field) %>%
summarise(total_missing = sum(percent_missing))
idig_data_tmp %<>% left_join(total_percent)
if (input$only_missing)
idig_data_tmp %<>% filter(total_missing != 1)
if (input$no_missing)
idig_data_tmp %<>% filter(total_missing != 0)
p <- ggplot(idig_data_tmp, aes(x = field, y = percent_missing, fill = institution_code)) +
geom_bar(stat = "identity") + coord_flip() + ylim(c(0, 1)) +
xlab("Data Fields") + ylab("Percent missing data")
print(p)
})
output$unique_values <- renderPlot({
idig_data <- hol
idig_data_tmp <- idig_data %>%
filter(institutioncode %in% input$institution_code_unique)
n_row <- nrow(idig_data_tmp)
idig_data_tmp <- idig_data_tmp %>%
#select(one_of(input$fields_to_show_unique)) %>%
summarise_each(funs(length(unique(na.omit(.))))) %>%
gather(field) %>%
as.data.frame %>%
setNames(c("field", "unique_values")) %>%
filter(unique_values != 0)
idig_data_tmp$field <- reorder(idig_data_tmp$field,
idig_data_tmp$unique_values,
sum)
total_unique <- idig_data_tmp %>% group_by(field) %>%
summarise(total_unique = sum(unique_values))
idig_data_tmp %<>% left_join(total_unique)
if (input$fully_unique)
idig_data_tmp %<>% filter(total_unique != n_row)
if (input$only_one)
idig_data_tmp %<>% filter(total_unique != 1)
p <- ggplot(idig_data_tmp, aes(x = field, y = unique_values)) +
geom_bar(stat = "identity") + coord_flip() + xlab("Data field") + ylab("Number of unique values")
print(p)
})
})