forked from iddryg2/PixelDistance
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPixDistStats2.py
628 lines (563 loc) · 29.8 KB
/
PixDistStats2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
# This script analyzes the csv files output by main / pixel_distance.py
# uses some methods from pixel_distance.py
# Updated Feb 2021.
# This version separates the data into biological replicates instead of aggregating all data for each sample group.
# pixel_distance.py actually performs the measurement of minimum distance
# between tumor and lyve-1 pixels, and outputs the results for each image.
# PixDistStats.py performs stats and makes plots on ALL the data separated by sample group. However,
# this is insufficient because it isn't split up into biological replicates, or normalized.
# PixDistStats2.py separates the data into biological replicates instead of aggregating
# all data for each sample group, and experiments with plots.
# PixDistStats3.py takes data from PixDistStats2, normalizes it to total pixels for each animal,
# does statistical comparisons and makes plots.
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import os
import pixel_distance as pxd
import pandas as pd
from scipy.stats import stats
from statsmodels.stats.multicomp import pairwise_tukeyhsd, MultiComparison
import joypy as jpy
def analyze(data, save_dir, labels, bin_size):
save_name = 'Results'
print('Bin size is: ')
print(bin_size)
# Scale the data
# 0.754 microns per pixel
print('data before scaling: ')
print(data.head(15))
data = 0.754*data
print('data after scaling: ')
print(data.head(15))
data.replace(0, np.nan, inplace=True)
print('data after removing zeros: ')
print(data.head(15))
stats1 = 0
if stats1 == 1:
# Run One-way ANOVA
# F is the F-statistic (an array, one for each group)
# p is the p-value (an array, one for each group)
# f_stat, p = stats.f_oneway(data[labels[0]][~np.isnan(data[labels[0]])],
# data[labels[1]][~np.isnan(data[labels[1]])],
# data[labels[2]][~np.isnan(data[labels[2]])])
# On ALL the data, unbinned but *by animal*
f_stat, p = stats.f_oneway(data[labels[0]].dropna(),
data[labels[1]].dropna(),
data[labels[2]].dropna(),
data[labels[3]].dropna(),
data[labels[4]].dropna(),
data[labels[5]].dropna(),
data[labels[6]].dropna(),
data[labels[7]].dropna(),
data[labels[8]].dropna(),
data[labels[9]].dropna(),
data[labels[10]].dropna(),
data[labels[11]].dropna(),
data[labels[12]].dropna(),
data[labels[13]].dropna(),
data[labels[14]].dropna())
# Make new dataframe to stack the data for tukey comparisons...
# print(data.head())
print('number of NaNs in data before stacking: ' + str(data.isna().sum()))
data_stacked = data.stack().reset_index()
print('number of NaNs in data_stacked initially: ' + str(data_stacked.isna().sum()))
data_stacked = data_stacked.dropna().rename(columns={'level_0': 'id', 'level_1': 'group', 0: 'distance'})
print('number of NaNs in data_stacked after dropna(): ' + str(data_stacked.isna().sum()))
# make new column with supergroups (naive, ndln, tdln)
data_stacked['supergroup'] = data_stacked['group'].map(lambda x: x.rstrip('12345'))
print(data_stacked.head(20))
# Multiple comparisons... Tukey Test:
mc = MultiComparison(data_stacked['distance'], data_stacked['group'])
tukey = mc.tukeyhsd(alpha=0.05)
print('Tukey results: ')
print(tukey)
print('Unique groups: {}'.format(mc.groupsunique))
# Save ANOVA & Tukey results in a text file
file0 = open(save_dir + 'ANOVA_Results.txt', 'a+')
file0.write('ANOVA Results: \n')
file0.write('F Statistic: ' + str(f_stat) + '\n')
file0.write('p-value: ' + str(p) + '\n')
file0.write('Tukey results: ' + '\n')
file0.write(str(tukey) + '\n')
file0.write('Unique groups: {}'.format(mc.groupsunique))
# print('F and its shape and type: ')
# print(f_stat)
# print(np.shape(f_stat))
# print(type(f_stat))
# print('p and its shape and type: ')
# print(p)
# print(np.shape(p))
# print(type(p))
plots = 0
if plots == 1:
# Violin plot ---------------------------------------------------------------------------------
sns.set_theme(style="whitegrid")
ax = sns.violinplot(data=data, inner='quartile', scale='width',
cut=0, bw='scott', width=0.9)
# Save violin plot
ax.set(xlabel=None) # remove the axis label
fig = ax.get_figure()
fig.set_size_inches(14, 6)
fig.tight_layout()
fig.savefig(save_dir + save_name + 'violin.png')
fig.clf()
# plt.savefig(save_dir + save_name + 'violin.png')
# plt.clf()
# Violin with stacked data -------------------------------------------------------
ax = sns.violinplot(data=data_stacked, x="group", y="distance", hue="supergroup", inner='quartile', scale='area',
cut=0, bw='scott', width=1, scale_hue=False)
ax.set(xlabel=None) # remove the axis labelfig = ax.get_figure()
plt.gca().legend().set_title(None)
fig.set_size_inches(20, 5)
# fig.tight_layout()
fig.savefig(save_dir + save_name + 'violin_supergroup.png')
fig.clf()
# Violin with stacked data 2 -------------------------------------------------------
ax = sns.violinplot(data=data_stacked, x="supergroup", y="distance", hue="supergroup", inner='quartile',
scale='count', cut=0, bw='scott', width=0.8)
ax.set(xlabel=None) # remove the axis label
fig = ax.get_figure()
plt.gca().legend().set_title(None)
fig.set_size_inches(10, 5)
fig.tight_layout()
fig.savefig(save_dir + save_name + 'violin_supergroup2.png')
fig.clf()
# Swarm Plot ---------------------------------------------------------------------
# Swarmplot takes too long... try strip plot. If that doesn't work try scatter plot
# ax = sns.swarmplot(data=data_stacked, x="group", y="distance", hue="supergroup", size=0.5)
ax = sns.stripplot(data=data_stacked, x="group", y="distance", hue="supergroup", size=2)
ax.set(xlabel=None) # remove the axis label
fig = ax.get_figure()
fig.set_size_inches(13, 6)
plt.gca().legend().set_title(None)
# fig.savefig(save_dir + save_name + 'swarm_supergroup.png')
fig.savefig(save_dir + save_name + 'strip_supergroup.png')
fig.clf()
# Swarm Plot with stacked data ---------------------------------------------------------------------
# Swarmplot takes too long... try strip plot. If that doesn't work try scatter plot
# ax = sns.swarmplot(data=data_stacked, x="supergroup", y="distance", hue="supergroup", size=0.5)
ax = sns.stripplot(data=data_stacked, x="supergroup", y="distance", hue="supergroup", size=2.5)
ax.set(xlabel=None) # remove the axis label
fig = ax.get_figure()
fig.set_size_inches(10, 6)
# fig.savefig(save_dir + save_name + 'swarm_all.png')
plt.gca().legend().set_title(None)
fig.savefig(save_dir + save_name + 'strip_all.png')
fig.clf()
# RIDGE PLOT ----------------------------------------------------------------------
# Uses STACKED data
# Initialize the FacetGrid object
pal = sns.cubehelix_palette(15, rot=-.25, light=.7)
g = sns.FacetGrid(data_stacked, row="group", hue="group", aspect=15, height=.5, palette=pal, sharey=True)
# Draw the densities in a few steps
g.map(sns.kdeplot, "distance", bw_adjust=.5, clip_on=False, fill=True, alpha=1, linewidth=1.5)
g.map(sns.kdeplot, "distance", clip_on=False, color="w", lw=2, bw_adjust=.5)
g.map(plt.axhline, y=0, lw=2, clip_on=False)
# Set x-limits
g.set(xlim=(-5, 80))
# Define and use a simple function to label the plot in axes coordinates
def label_axes(x, color, label):
ax = plt.gca()
ax.text(0, .7, label, fontweight="bold", color=color,
ha="left", va="center", transform=ax.transAxes)
g.map(label_axes, "distance")
# Set the subplots to overlap
g.fig.subplots_adjust(hspace=0)
# Remove axes details that don't play well with overlap
g.set_titles("")
g.set(yticks=[])
g.despine(bottom=True, left=True)
# title
plt.suptitle('Tumor Invasion Distance by Animal')
# fig.set_size_inches(9, 15)
# uncomment the following line if there's a tight layout warning
# g.fig.tight_layout()
# show plot
# plt.show()
# Save file
plt.savefig(save_dir + 'ridgeplot.png')
plt.clf()
# RIDGE PLOT with supergroups ----------------------------------------------------------------------
# Uses STACKED data
# Initialize the FacetGrid object
pal = sns.cubehelix_palette(4, rot=-.4, light=.7)
g = sns.FacetGrid(data_stacked, row="supergroup", hue="supergroup", aspect=5, height=2, palette=pal, sharey=True)
# Draw the densities in a few steps
g.map(sns.kdeplot, "distance", bw_adjust=.5, clip_on=False, fill=True, alpha=1, linewidth=1.5)
# g.map(sns.kdeplot, "distance", clip_on=False, color="w", lw=2, bw_adjust=.5)
g.map(plt.axhline, y=0, lw=2, clip_on=False)
# Set x-limits
g.set(xlim=(-5, 80))
# Define and use a simple function to label the plot in axes coordinates
def label_axes(x, color, label):
ax = plt.gca()
ax.text(0, .5, label, fontweight="bold", color=color,
ha="left", va="center", transform=ax.transAxes)
g.map(label_axes, "distance", label="supergroup")
# Set the subplots to overlap
g.fig.subplots_adjust(hspace=-0.25)
# Remove axes details that don't play well with overlap
g.set_titles("")
g.set(yticks=[])
g.despine(bottom=True, left=True)
# title
plt.suptitle('Tumor Invasion Distance by Group')
# fig.set_size_inches(7, 6)
# uncomment the following line if there's a tight layout warning
# g.fig.tight_layout()
# show plot
# plt.show()
# Save file
plt.savefig(save_dir + 'ridgeplot2.png')
plt.clf()
# JOYPLOT ------------------------------------------------------------------------------
# fig, axes = jpy.joyplot(data_stacked, by='group', ylim='own', overlap=1, range_style='own', x_range=[-5, 100])
fig, axes = jpy.joyplot(data_stacked, by='group', overlap=1, range_style='own', x_range=[-5, 100])
fig.savefig(save_dir + 'joyplot.png')
plt.clf()
# JOYPLOT all ------------------------------------------------------------------------------
# fig, axes = jpy.joyplot(data_stacked, by='supergroup', ylim='own', overlap=1, range_style='own', x_range=[-5, 100])
fig, axes = jpy.joyplot(data_stacked, by='supergroup', overlap=1, range_style='own', x_range=[-5, 100])
fig.savefig(save_dir + 'joyplot_all.png')
plt.clf()
# INDIVIDUAL PLOTS ----------------------------------------------------------------------
# For loop for Histograms and txt file summaries for each group
# Update Feb 2021: Adding in new analyses using the percentiles
# dist_by_percentiles:
# 1. calculate the mean distance for each 10th percentile for each animal
# 2. then, using those means as biological replicate data points, do statistical comparisons for each group
# at each percentile.
percentile_index = ['10th', '20th', '30th', '40th', '50th', '60th', '70th', '80th', '90th', '100th']
# dist_by_percentiles = data.iloc[0:0, :].copy()
# dist_by_percentiles = pd.DataFrame(index=percentile_index, columns=data.columns).fillna(0)
dist_by_percentiles = pd.DataFrame()
# percent_by_dist_bins
# 1. count the number of observations within each distance bin (for example, 0-20 microns, 20-40 microns, etc)
# 2. normalize those counts to the total counts for each animal. (essentially a % or proportion of cells invading each distance)
# 3. then do statistical comparisons for each distance comparing those normalized counts.
dist_bins_index = ['0-10um', '10-20um', '20-30um', '30-40um', '40-50um', '50-60um', '60-70um', '70-80um', '80-90um', '90-100um', '100um+']
dist_bins = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 500]
# numpix_by_dist_bins = data.iloc[0:0, :].copy()
# numpix_by_dist_bins = pd.DataFrame(index=dist_bins_index, columns=data.columns).fillna(0)
numpix_by_dist_bins = pd.DataFrame()
# initialize dataframe for normalized numpix_by_dist_bins
norm_numpix_by_dist_bins = pd.DataFrame()
counter = 0
for label in labels:
# histogram plot
sns.histplot(data=data[label].dropna())
# ax.set(ylabel='Pixels')
plt.title('Pixel Distance between tumor and lymphatic vessels for ' + label)
plt.xlabel('Distance (pixels)')
# plt.show()
plt.savefig(save_dir + label + 'histogram.png')
plt.clf()
# Save some basic stats in a text file
file1 = open(save_dir + label + '.txt', 'a+')
file1.write('Stats for the sample: ' + label + '\n')
file1.write('Number of Pixels used: ' + str(len(data[label].dropna())) + '\n')
file1.write('Mean: ' + str(np.mean(data[label].dropna())) + '\n')
file1.write('Standard Deviation: ' + str(np.std(data[label].dropna())) + '\n')
file1.write('Percentiles: \n')
file1.write('10: ' + str(np.percentile(data[label].dropna(), 10)) + '\n')
file1.write('25: ' + str(np.percentile(data[label].dropna(), 25)) + '\n')
file1.write('50: ' + str(np.percentile(data[label].dropna(), 50)) + '\n')
file1.write('75: ' + str(np.percentile(data[label].dropna(), 75)) + '\n')
file1.write('90: ' + str(np.percentile(data[label].dropna(), 90)) + '\n')
print('run number: ' + str(counter + 1))
# Add percentile data into dist_by_percentiles
percentiles = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
i = 0
for p in list(range(10, 110, 10)):
percentiles.iloc[i] = np.nanpercentile(data[label], p)
# print(str(percentiles.iloc[i]))
i += 1
# this isn't working correctly, try just populating a fresh dataframe! - Feb 3rd 2021
# dist_by_percentiles.insert(loc=0, column=label, value=percentiles)
dist_by_percentiles.insert(loc=0, column=label, value=percentiles)
# dist_by_percentiles[label] = pd.Series([np.nanpercentile(data[label], p) for p in list(range(10, 110, 10))])
# print(dist_by_percentiles.dtypes)
# Add distance bin data into numpix_by_dist_bins
pix_count = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
pix_count = pd.cut(data[label], bins=dist_bins).value_counts()
numpix_by_dist_bins.insert(loc=0, column=label, value=pix_count)
#pd.cut(df['ext price'], bins=4).value_counts()
# numpix_by_dist_bins[label] = pd.cut(data[label], bins=dist_bins).value_counts()
# print('numpix by dist bins: ')
# print(numpix_by_dist_bins.head(11))
# normalized numpix_by_dist_bins
# normalize each sample by the total number of pixels in that sample
norm_numpix_by_dist_bins.insert(loc=0, column=label, value=100*pix_count/pix_count.sum())
counter += 1
# Now that dataframes are populated, set indexes
# dist_by_percentiles = dist_by_percentiles.reindex(labels=percentile_index) # doesn't work, all values are NaNs
# Insert a new column with the index names
dist_by_percentiles.insert(loc=0, column='percentiles', value=percentile_index)
# Use the new column as the index names
dist_by_percentiles = dist_by_percentiles.set_index('percentiles')
print('dist by percentiles: ')
print(dist_by_percentiles.head(10))
print('dist_by_percentiles row names: ')
print(list(dist_by_percentiles.index))
# numpix_by_dist_bins.reindex(labels=dist_bins_index)
print('numpix by dist bins: ')
print(numpix_by_dist_bins.head(11))
print('numpix_by_dist_bins row names: ')
print(list(numpix_by_dist_bins.index))
numpix_by_dist_bins = numpix_by_dist_bins.sort_index()
print('numpix by dist bins after sorting by index: ')
print(numpix_by_dist_bins.head(11))
# Insert a new column with the index names
numpix_by_dist_bins.insert(loc=0, column='distance bins', value=dist_bins_index)
# Use the new column as the index names
numpix_by_dist_bins = numpix_by_dist_bins.set_index('distance bins')
# numpix_by_dist_bins = numpix_by_dist_bins.reindex(labels=dist_bins_index) # doesn't work, all values are NaNs
print('numpix by dist bins after re-indexing: ')
print(numpix_by_dist_bins.head(11))
# norm_numpix_by_dist_bins.reindex(labels=dist_bins_index)
print('norm numpix by dist bins: ')
print(numpix_by_dist_bins.head(11))
print('norm_numpix_by_dist_bins row names: ')
print(list(numpix_by_dist_bins.index))
norm_numpix_by_dist_bins = norm_numpix_by_dist_bins.sort_index()
print('norm numpix by dist bins after sorting by index: ')
print(norm_numpix_by_dist_bins.head(11))
# Insert a new column with the index names
norm_numpix_by_dist_bins.insert(loc=0, column='distance bins', value=dist_bins_index)
# Use the new column as the index names
norm_numpix_by_dist_bins = norm_numpix_by_dist_bins.set_index('distance bins')
# numpix_by_dist_bins = numpix_by_dist_bins.reindex(labels=dist_bins_index) # doesn't work, all values are NaNs
print('norm numpix by dist bins after re-indexing: ')
print(norm_numpix_by_dist_bins.head(11))
print('Violin plot, histogram plot, stats.txt and data file saved.')
print('Part 6 - Plot Histogram of Distances: Complete')
# Save data as csv file for later analysis
# np.savetxt(save_dir + 'dist_by_percentiles.csv', dist_by_percentiles, delimiter=", ", fmt='% s')
# np.savetxt(save_dir + 'numpix_by_dist_bins.csv', numpix_by_dist_bins, delimiter=", ", fmt='% s')
dist_by_percentiles.to_csv(save_dir + 'dist_by_percentiles.csv')
numpix_by_dist_bins.to_csv(save_dir + 'numpix_by_dist_bins.csv')
norm_numpix_by_dist_bins.to_csv(save_dir + 'norm_numpix_by_dist_bins.csv')
return
def process_csv_files(maindir):
# There are 3 groups: naive, ndln, tdln
# Within each group, there are 5 animals
# Within each animal, there are 3 fields imaged.
# Want to aggregate the 3 fields imaged and keep animals separate.
# Naming conventions:
# 20201103 naive LN 1 20x 1_CH4.tif - naive, animal 1, field 1
# 20201103 naive LN 1 20x 2_CH4.tif - naive, animal 1, field 2
# 20201103 ndLN 1 20x 1_CH4.tif - ndln, animal 1, field 1
# 20201103 tdLN 1 20x 1_CH4.tif - tdln, animal 1, field 1
# initialize arrays...
naive_array1 = np.zeros(0)
naive_size_array1 = np.zeros(45)
naive_size_count1 = 0
naive_array2 = np.zeros(0)
naive_size_array2 = np.zeros(45)
naive_size_count2 = 0
naive_array3 = np.zeros(0)
naive_size_array3 = np.zeros(45)
naive_size_count3 = 0
naive_array4 = np.zeros(0)
naive_size_array4 = np.zeros(45)
naive_size_count4 = 0
naive_array5 = np.zeros(0)
naive_size_array5 = np.zeros(45)
naive_size_count5 = 0
ndln_array1 = np.zeros(0)
ndln_size_array1 = np.zeros(45)
ndln_size_count1 = 0
ndln_array2 = np.zeros(0)
ndln_size_array2 = np.zeros(45)
ndln_size_count2 = 0
ndln_array3 = np.zeros(0)
ndln_size_array3 = np.zeros(45)
ndln_size_count3 = 0
ndln_array4 = np.zeros(0)
ndln_size_array4 = np.zeros(45)
ndln_size_count4 = 0
ndln_array5 = np.zeros(0)
ndln_size_array5 = np.zeros(45)
ndln_size_count5 = 0
tdln_array1 = np.zeros(0)
tdln_size_array1 = np.zeros(45)
tdln_size_count1 = 0
tdln_array2 = np.zeros(0)
tdln_size_array2 = np.zeros(45)
tdln_size_count2 = 0
tdln_array3 = np.zeros(0)
tdln_size_array3 = np.zeros(45)
tdln_size_count3 = 0
tdln_array4 = np.zeros(0)
tdln_size_array4 = np.zeros(45)
tdln_size_count4 = 0
tdln_array5 = np.zeros(0)
tdln_size_array5 = np.zeros(45)
tdln_size_count5 = 0
print('start1 ------------------------------------')
for root, dirs, files in os.walk(maindir):
for name in files:
if 'csv' in name and 'naive LN 1' in name:
# Naive animal 1
# flattened append
naive_array1 = np.append(naive_array1, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('naive array shape 1:')
print(np.shape(naive_array1))
naive_size_array1[naive_size_count1] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
naive_size_count1 += 1
print('naive count 1: ' + str(naive_size_count1))
if 'csv' in name and 'naive LN 2' in name:
# Naive animal 2
# flattened append
naive_array2 = np.append(naive_array2, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('naive array shape 2:')
print(np.shape(naive_array2))
naive_size_array2[naive_size_count2] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
naive_size_count2 += 1
print('naive count 2: ' + str(naive_size_count2))
if 'csv' in name and 'naive LN 3' in name:
# Naive animal 3
# flattened append
naive_array3 = np.append(naive_array3, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('naive array shape 3:')
print(np.shape(naive_array3))
naive_size_array3[naive_size_count3] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
naive_size_count3 += 1
print('naive count 3: ' + str(naive_size_count3))
if 'csv' in name and 'naive LN 4' in name:
# Naive animal 4
# flattened append
naive_array4 = np.append(naive_array4, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('naive array shape 4:')
print(np.shape(naive_array4))
naive_size_array4[naive_size_count4] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
naive_size_count4 += 1
print('naive count 4: ' + str(naive_size_count4))
if 'csv' in name and 'naive LN 5' in name:
# Naive animal 5
# flattened append
naive_array5 = np.append(naive_array5, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('naive array shape 5:')
print(np.shape(naive_array5))
naive_size_array5[naive_size_count5] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
naive_size_count5 += 1
print('naive count 5: ' + str(naive_size_count5))
if 'csv' in name and 'ndLN 1' in name:
# ndLN animal 1
ndln_array1 = np.append(ndln_array1, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('ndLN array shape 1:')
print(np.shape(ndln_array1))
ndln_size_array1[ndln_size_count1] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
ndln_size_count1 += 1
print('ndLN count 1: ' + str(ndln_size_count1))
if 'csv' in name and 'ndLN 2' in name:
# ndLN animal 2
ndln_array2 = np.append(ndln_array2, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('ndLN array shape 2:')
print(np.shape(ndln_array2))
ndln_size_array2[ndln_size_count2] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
ndln_size_count2 += 1
print('ndLN count 2: ' + str(ndln_size_count2))
if 'csv' in name and 'ndLN 3' in name:
# ndLN animal 3
ndln_array3 = np.append(ndln_array3, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('ndLN array shape 3:')
print(np.shape(ndln_array3))
ndln_size_array3[ndln_size_count3] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
ndln_size_count3 += 1
print('ndLN count 3: ' + str(ndln_size_count3))
if 'csv' in name and 'ndLN 4' in name:
# ndLN animal 4
ndln_array4 = np.append(ndln_array4, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('ndLN array shape 4:')
print(np.shape(ndln_array4))
ndln_size_array4[ndln_size_count4] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
ndln_size_count4 += 1
print('ndLN count 4: ' + str(ndln_size_count4))
if 'csv' in name and 'ndLN 5' in name:
# ndLN animal 5
ndln_array5 = np.append(ndln_array5, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('ndLN array shape 5:')
print(np.shape(ndln_array5))
ndln_size_array5[ndln_size_count5] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
ndln_size_count5 += 1
print('ndLN count 5: ' + str(ndln_size_count5))
if 'csv' in name and 'tdLN 1' in name:
# tdLN animal 1
tdln_array1 = np.append(tdln_array1, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('tdLN array shape 1:')
print(np.shape(tdln_array1))
tdln_size_array1[tdln_size_count1] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
tdln_size_count1 += 1
print('tdLN count 1: ' + str(tdln_size_count1))
if 'csv' in name and 'tdLN 2' in name:
# tdLN animal 2
tdln_array2 = np.append(tdln_array2, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('tdLN array shape 2:')
print(np.shape(tdln_array2))
tdln_size_array2[tdln_size_count2] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
tdln_size_count2 += 1
print('tdLN count 2: ' + str(tdln_size_count2))
if 'csv' in name and 'tdLN 3' in name:
# tdLN animal 3
tdln_array3 = np.append(tdln_array3, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('tdLN array shape 3:')
print(np.shape(tdln_array3))
tdln_size_array3[tdln_size_count3] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
tdln_size_count3 += 1
print('tdLN count 3: ' + str(tdln_size_count3))
if 'csv' in name and 'tdLN 4' in name:
# tdLN animal 4
tdln_array4 = np.append(tdln_array4, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('tdLN array shape 4:')
print(np.shape(tdln_array4))
tdln_size_array4[tdln_size_count4] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
tdln_size_count4 += 1
print('tdLN count 4: ' + str(tdln_size_count4))
if 'csv' in name and 'tdLN 5' in name:
# tdLN animal 5
tdln_array5 = np.append(tdln_array5, np.genfromtxt(os.path.join(root, name), delimiter=','))
print('tdLN array shape 5:')
print(np.shape(tdln_array5))
tdln_size_array5[tdln_size_count5] = len(np.genfromtxt(os.path.join(root, name), delimiter=','))
tdln_size_count5 += 1
print('tdLN count 5: ' + str(tdln_size_count5))
print(tdln_size_array5)
print('data collection complete.')
print('beginning analysis.')
# Create a data dictionary to load arrays into a pandas dataframe
data = {
'naive1': naive_array1,
'naive2': naive_array2,
'naive3': naive_array3,
'naive4': naive_array4,
'naive5': naive_array5,
'disLN1': ndln_array1,
'disLN2': ndln_array2,
'disLN3': ndln_array3,
'disLN4': ndln_array4,
'disLN5': ndln_array5,
'tdLN1': tdln_array1,
'tdLN2': tdln_array2,
'tdLN3': tdln_array3,
'tdLN4': tdln_array4,
'tdLN5': tdln_array5
}
# Want all arrays to be same size for pandas
maxsize = max([a.size for a in data.values()])
# pad the shorter arrays with NaNs to make them the same length as the longest array
data_pad = {k: np.pad(v, pad_width=(0, maxsize - v.size,), mode='constant', constant_values=np.nan) for k, v in
data.items()}
df = pd.DataFrame(data_pad)
data_labels = ['naive1', 'naive2', 'naive3', 'naive4', 'naive5',
'disLN1', 'disLN2', 'disLN3', 'disLN4', 'disLN5',
'tdLN1', 'tdLN2', 'tdLN3', 'tdLN4', 'tdLN5']
analyze(df, maindir, data_labels, bin_size=10)
# analyze(naive_array, naive_size_array, maindir, 'naive')
# analyze(ndln_array, ndln_size_array, maindir, 'ndln')
# analyze(tdln_array, tdln_size_array, maindir, 'tdln')
return
dirname = pxd.file_import(prompt='Choose the directory containing tiff folders: ')
print(dirname)
process_csv_files(dirname)