forked from benMen87/ApproximateConvolutionalSparseCoding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
common.py
233 lines (191 loc) · 6.55 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from __future__ import division
import os
import torch
from torch.autograd import Variable
import torch.nn as nn
import numpy as np
from pytorch_msssim import msssim
def project_dir():
return os.path.dirname(os.path.realpath(__file__))
def to_np(_x): return _x.data.cpu().numpy()
def I(_x): return _x
def normilize(_x, _val=255, shift=0):
return (_x - shift)/ _val
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def nhwc_to_nchw(_x):
if len(_x.shape) == 3 and (_x.shape[-1] == 1 or _x.shape[-1] == 3): #unsqueeze N dim
_x = _x[None, ...]
elif len(_x.shape) == 3: #unsqueezed C dim
_x = _x[..., None]
elif len(_x.shape) == 2: #unsqueeze N and C dim
_x = _x[None, :, :, None]
return np.transpose(_x, (0, 3, 1, 2))
def remove_img_boarder(border, x):
return x[0, 0, border:-border, border:-border]
def get_unique_name(path):
idx = 1
_path = path
while os.path.isdir(_path):
_path = '{}_{}'.format(path, idx)
idx += 1
return _path
def init_model_dir(path, name):
full_path = os.path.join(path, name)
if not os.path.isdir(path):
os.mkdir(path)
else:
full_path = get_unique_name(full_path)
os.mkdir(full_path)
return full_path
'''
Either string defining an activation function or module (e.g. nn.ReLU)
'''
if isinstance(act_fun, str):
if act_fun == 'LeakyReLU':
return nn.LeakyReLU(0.2, inplace=True)
elif act_fun == 'ELU':
return nn.ELU()
elif act_fun == 'none':
return nn.Sequential()
else:
assert False
else:
return act_fun()
def flip(x, dim):
dim = x.dim() + dim if dim < 0 else dim
inds = tuple(slice(None, None) if i != dim
else x.new(torch.arange(x.size(i)-1, -1, -1).tolist()).long()
for i in range(x.dim()))
return x[inds]
def bn(num_features):
return nn.BatchNorm2d(num_features)
def conv(in_f, out_f, kernel_size, stride=1, bias=True, pad='zero', downsample_mode='stride'):
downsampler = None
if stride != 1 and downsample_mode != 'stride':
if downsample_mode == 'avg':
downsampler = nn.AvgPool2d(stride, stride)
elif downsample_mode == 'max':
downsampler = nn.MaxPool2d(stride, stride)
else:
assert False
stride = 1
padder = None
to_pad = int((kernel_size - 1) / 2)
if pad == 'reflection' and False:
padder = nn.ReflectionPad2d(to_pad)
to_pad = 0
convolver = nn.Conv2d(in_f, out_f, kernel_size, stride, padding=to_pad, bias=bias)
layers = filter(lambda x: x is not None, [padder, convolver, downsampler])
return nn.Sequential(*layers)
def gaussian(ins, is_training, mean, stddev):
if is_training:
noise = stddev * torch.randn_like(ins) + mean
return ins + noise
return ins
def delete_pixels(ins, is_training, sample_prob=0.3):
if is_training:
_sample_prob = torch.Tensor(1)
prob_mask = _sample_prob.uniform_(sample_prob) * torch.ones_like(ins)
mask = torch.bernoulli(prob_mask)
return ins * mask + (1 - mask)
return ins
def reconsturction_loss(distance='l1', use_cuda=True):
if distance == 'l1':
dist = nn.L1Loss()
elif distance == 'l2':
dist = nn.MSELoss()
elif distance == 'msssim':
dist = lambda res, tar: 1 - msssim(tar, res.clamp(0, 1))
else:
raise ValueError(f"unidentified value {distance}")
#if use_cuda:
# dist = dist.cuda()
return dist
def get_criterion(losses_types, factors, use_cuda=True):
"""
Build Loss
total_loss = sum_i factor_i * loss_i(results, targets)
Args:
factors(list): scales for each loss.
losses(list): loss to apply to each result, target element
"""
losses = []
for loss_type in losses_types:
losses.append(reconsturction_loss(loss_type))
#if use_cuda:
# losses = [l.cuda() for l in losses]
def total_loss(results, targets):
"""Cacluate total loss
total_loss = sum_i losses_i(results_i, targets_i)
Args:
results(tensor): nn outputs.
targets(tensor): targets of resluts.
"""
loss_acc = 0
for fac, loss in zip(factors, losses):
_loss = loss(results, targets)
loss_acc += _loss * fac
return loss_acc
return total_loss
def psnr(im, recon, verbose=False):
im = np.squeeze(im)
recon = np.squeeze(recon)
MSE = np.sum((im - recon)**2) / np.prod(im.shape)
MAX = 1.0#np.max(im)
PSNR = 10 * np.log10(MAX ** 2 / MSE)
if verbose:
print('PSNR %f'%PSNR)
return PSNR
def clean(save_path, save_count=10):
import glob
l = glob.glob(save_path)
if len(l) < save_count:
return
l.sort(key=os.path.getmtime)
for f in l[:-save_count]:
print('removing', f)
os.remove(f)
def save_train(path, model, optimizer, schedular=None, epoch=None):
state = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
#TODO(hillel): fix this so we can save schedular state
#if schedular is not None:
# state['schedular'] = schedular.state_dict()
if epoch is not None:
state['epoch'] = epoch
torch.save(state, os.path.join(path, 'epoch_{}'.format(epoch)))
return os.path.join(path, 'epoch_{}'.format(epoch))
def load_train(path, model, optimizer, schedular=None):
state = torch.load(path)
pretrained = state['model']
model.load_state_dict(pretrained, strict=False)
if 'optimizer' in state:
try:
optimizer.load_state_dict(state['optimizer'])
except Exception as e:
print(f'did not restore optimizer due to error {e}')
else:
print('Optimizer not inilized since no data for it exists in supplied path')
if schedular is not None:
if 'schedular' in state:
schedular.load_state_dict(state['schedular'])
else:
print('Schedular not inilized since no data for it exists in supplied path')
if 'epoch' in state:
e = state['epoch']
else:
e = 0
return e
def save_eval(path, model):
torch.save(model.state_dict(), path)
def load_eval(path, model):
state = torch.load(path, map_location='cpu')
pretrained = state['model']
current = model.state_dict()
# very dangerous!!!
pretrained = {k:v for k, v in zip(current.keys(), pretrained.values())}
model.load_state_dict(pretrained, strict=False)
model.eval()