forked from guoyww/AnimateDiff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentanglement.py
199 lines (157 loc) · 7.11 KB
/
entanglement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import torch
from PIL import Image
from kandinsky2 import get_kandinsky2
import numpy as np
from diffusers import KandinskyV22InpaintPipeline
from diffusers.models import UNet2DConditionModel
def make_masks(image, target_img_size):
img_size = image.size
mask_size = (min(target_img_size), min(target_img_size))
image = np.asarray(image)
delta_width = target_img_size[0] - img_size[0]
delta_height = target_img_size[1] - img_size[1]
pad_width = delta_width // 2
pad_height = delta_height // 2
mask_1 = Image.new("RGB", mask_size, color=(255,255,255))
init_img_1 = Image.new("RGB", mask_size, color=(255,255,255))
for i in range(pad_width, mask_size[0]):
for j in range(pad_height, mask_size[1]):
mask_1.putpixel((i,j), (0, 0, 0))
init_img_1.putpixel((i,j), tuple(image[j-pad_height, i-pad_width]))
mask_2 = Image.new("RGB", mask_size, color=(255,255,255))
init_img_2 = Image.new("RGB", mask_size, color=(255,255,255))
for i in range(0, mask_size[0]- pad_width):
for j in range(0, mask_size[1] - pad_height):
mask_2.putpixel((i,j), (0, 0, 0))
init_img_2.putpixel((i,j), tuple(image[j+target_img_size[1]-mask_size[1]-pad_height-1, i+target_img_size[0]-mask_size[0]-pad_width-1]))
return [init_img_1, init_img_2], [mask_1, mask_2]
def get_img_embedding(model, cond, num_images_per_prompt=1):
cond = (
model.prior.image_processor(cond, return_tensors="pt")
.pixel_values[0]
.unsqueeze(0)
.to(dtype=model.prior.image_encoder.dtype, device=model.device)
)
return model.prior.image_encoder(cond)["image_embeds"].repeat(num_images_per_prompt, 1).unsqueeze(0)
def outpaint_img(img, target_img_size, reconstructed_vector, negative_emb, decoder, generator=None):
# load base and mask image
img.thumbnail(target_img_size)
init_images, mask_images = make_masks(img, target_img_size)
# Generate image 1
gen_1 = decoder(image_embeds=reconstructed_vector,
negative_image_embeds=negative_emb,
num_inference_steps=50,
height=1024,
width=1024,
guidance_scale=4,
image=init_images[0],
mask_image=mask_images[0],
generator=generator).images[0].resize(mask_images[0].size)
# Generate image 2
gen_2 = decoder(image_embeds=reconstructed_vector,
negative_image_embeds=negative_emb,
num_inference_steps=50,
height=1024,
width=1024,
guidance_scale=4,
image=init_images[1],
mask_image=mask_images[1],
generator=generator).images[0].resize(mask_images[1].size)
# stack images
gen_images = [gen_1, gen_2]
# outpainted image
combined_image = Image.new("RGB", target_img_size)
# Calculate the position to paste the first image
x_offset = 0
y_offset = 0
# Paste the first image onto the combined image
combined_image.paste(gen_images[0], (x_offset, y_offset))
# Calculate the position to paste the second image
x_offset = combined_image.width - gen_images[1].width
y_offset = combined_image.height - gen_images[1].height
# Paste the second image onto the combined image
combined_image.paste(gen_images[1], (x_offset, y_offset))
return combined_image
if __name__ == '__main__':
# make models
unet = UNet2DConditionModel.from_pretrained('kandinsky-community/kandinsky-2-2-decoder-inpaint', subfolder='unet').to(torch.float16).to('cuda')
decoder = KandinskyV22InpaintPipeline.from_pretrained('kandinsky-community/kandinsky-2-2-decoder-inpaint', unet=unet, torch_dtype=torch.float16).to('cuda')
model = get_kandinsky2('cuda', task_type='text2img', model_version='2.2', use_flash_attention=False)
generator = None
# number of embeddings to get to make the PCA space
n_images = 1000
emb_list = []
emb_path = 'entanglement/emb_background.pt'
if not os.path.exists(emb_path):
for i in range(n_images):
image_emb = model.prior(prompt='background of a painting',
num_inference_steps=25,
num_images_per_prompt=1,
guidance_scale=4,
negative_prompt='',
generator=generator).image_embeds
emb_list.append(image_emb)
embeddings = torch.cat(emb_list, dim=0).type(torch.float32)
torch.save(embeddings, emb_path)
else:
embeddings = torch.load(emb_path)
# Normalize embeddings
emb_mean = embeddings.mean()
emb_std = embeddings.std()
embeddings_normalized = (embeddings - emb_mean) / emb_std
# Perform Singular Value Decomposition
U, S, V = torch.svd(embeddings_normalized)
k = 100
principal_components = V[:, :k]
print("\nSelected Principal Components: ", principal_components.size())
### Get the image embedding
image_path = 'dog.jpg'
img = Image.open(image_path).convert('RGB')
out_path = 'entanglement/og.png'
img.save(out_path)
# embedd image
img_emb = get_img_embedding(model, img).type(torch.float32)[0]
# normalize embedding
norm_img_emb = (img_emb - emb_mean) / emb_std
projected_data = torch.matmul(norm_img_emb, principal_components)
reconstructed_vector = torch.matmul(projected_data, principal_components.t())
# Denormalize
reconstructed_vector = reconstructed_vector * emb_std + emb_mean
print("\nReconstructed Vector:")
print(reconstructed_vector.size())
n_prompt = 'foreground'
negative_emb = model.prior(prompt=n_prompt, num_inference_steps=25, num_images_per_prompt=1, guidance_scale=4, generator=generator)
if n_prompt == '':
negative_emb = negative_emb.negative_image_embeds
else:
negative_emb = negative_emb.image_embeds
# Generate background
reconstructed_image = model.decoder(
image_embeds=reconstructed_vector,
negative_image_embeds=negative_emb,
num_inference_steps=50,
height=1024,
width=1024,
guidance_scale=4,
generator=generator).images[0]
out_path = 'entanglement/reconstructed_background.png'
reconstructed_image.save(out_path)
# Generate foreground
diff = img_emb - reconstructed_vector
print(img_emb.size(), reconstructed_vector.size(), diff.size())
reconstructed_image = model.decoder(
image_embeds= diff,
negative_image_embeds=negative_emb,
num_inference_steps=50,
height=1024,
width=1024,
guidance_scale=4,
generator=generator).images[0]
out_path = 'entanglement/reconstructed_foreground.png'
reconstructed_image.save(out_path)
# Outpaint
target_img_size = (1280, 720)
combined_image = outpaint_img(img, target_img_size, reconstructed_vector, negative_emb, decoder)
out_path = 'entanglement/outpainted.png'
combined_image.save(out_path)