-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_vocoder.py
252 lines (201 loc) · 9.39 KB
/
train_vocoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# based on https://github.com/huggingface/diffusers/blob/main/examples/train_unconditional.py
import argparse
import os
import torch
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel, set_seed
from tqdm.auto import tqdm
from omegaconf import OmegaConf
import wandb
from torchaudio import save as save_audio
from utils import CompositeLoss, get_model, get_datasets
from funcs import print_sizes
import warnings
warnings.filterwarnings("ignore")
logger = get_logger(__name__)
def main(conf):
train_args = conf.training
model_args = conf.model
loss_args = conf.loss
# create working directory
output_dir = train_args.output_dir
os.makedirs(output_dir, exist_ok=True)
os.makedirs(os.path.join(output_dir, "samples"), exist_ok=True)
# seed alls
set_seed(42)
accelerator = Accelerator(
kwargs_handlers=[DistributedDataParallelKwargs(broadcast_buffers=False)],
gradient_accumulation_steps=train_args.gradient_accumulation_steps,
mixed_precision=train_args.mixed_precision,
log_with="wandb"
)
# Get datasets and dataloaders
train_dataset, val_dataset = get_datasets(train_args)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=train_args.train_batch_size, shuffle=False)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=train_args.eval_batch_size, shuffle=True)
# setup diffusion loss
loss_fn = CompositeLoss(loss_args, train_args)
# Set up model
model = get_model(model_args, train_args, loss_fn)
# Set up optimizer
optimizer = torch.optim.AdamW(
model.parameters(),
lr=train_args.learning_rate,
betas=(train_args.adam_beta1, train_args.adam_beta2),
weight_decay=train_args.adam_weight_decay,
eps=train_args.adam_epsilon,
)
# Set up scheduler
lr_scheduler = get_scheduler(
train_args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=train_args.lr_warmup_steps,
num_training_steps=(len(train_dataloader) * train_args.num_epochs) //
train_args.gradient_accumulation_steps,
)
# Accelerate
model, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare(model, optimizer, train_dataloader, val_dataloader, lr_scheduler)
global_step = 0
# load weights
if os.path.exists(os.path.join(output_dir, f"model_latest.pt")):
map_location = {"cuda:%d" % 0: "cuda:%d" % accelerator.process_index}
state_dicts = torch.load(os.path.join(output_dir, f"model_latest.pt"), map_location=map_location)
model.load_state_dict(state_dicts["model"])
optimizer.load_state_dict(state_dicts["optimizer"])
lr_scheduler.load_state_dict(state_dicts["lr_scheduler"])
train_args.start_epoch = state_dicts["epoch"] + 1
global_step = state_dicts["global_step"]
ema_model = EMAModel(
getattr(model, "module", model),
inv_gamma=train_args.ema_inv_gamma,
power=train_args.ema_power,
max_value=train_args.ema_max_decay,
)
if global_step > 0:
ema_model.optimization_step = global_step
if accelerator.is_main_process:
# initialize wandb
print(train_args.wandb_project)
accelerator.init_trackers(
project_name=train_args.wandb_project,
config=OmegaConf.to_container(conf, resolve=True),
init_kwargs={"wandb": {"entity": "ethz-mtc", "group": "conditional-vocoder"}}
)
for epoch in range(train_args.start_epoch, train_args.num_epochs):
progress_bar = tqdm(total=len(train_dataloader), initial=epoch, disable=not accelerator.is_local_main_process)
progress_bar.set_description(f"Epoch {epoch}")
model.train()
for step, batch in enumerate(train_dataloader):
# extract the batch
audio = batch["audio"]
z_audio = batch["z_audio"]
z_audio_mask = batch["z_audio_mask"]
z_text = batch["z_text"]
z_text_mask = batch["z_text_mask"]
embeds = batch["clap_embed"]
# print_sizes(batch)
# process the pair to get the latents Z and the embeddings
input_spec = z_audio
with accelerator.accumulate(model):
loss, loss_dict = model(
audio,
input_spec=input_spec,
embedding=embeds,
embedding_mask_proba=train_args.CFG_mask_proba
)
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
if train_args.use_ema:
ema_model.step(model)
optimizer.zero_grad()
progress_bar.update(1)
# update the step only if gradient was updated
if step % train_args.gradient_accumulation_steps == 0:
global_step += 1
# Save logs
logs = {
"loss": loss.detach().item(),
"lr": lr_scheduler.get_last_lr()[0],
"step": global_step,
}
for loss_name in loss_dict.keys():
logs[loss_name] = loss_dict[loss_name].detach().item()
progress_bar.set_postfix(**logs)
if (global_step) % train_args.wandb_log_every == 0 or global_step == 1:
wandb_log = logs.copy()
wandb_log.pop("step")
accelerator.log(wandb_log, step=global_step)
progress_bar.close()
accelerator.wait_for_everyone()
# Generate sample images for visual inspection
if accelerator.is_main_process:
if ((epoch + 1) % train_args.save_model_epochs == 0
or (epoch + 1) % train_args.save_images_epochs == 0
or epoch == train_args.num_epochs - 1):
unet = accelerator.unwrap_model(model)
if train_args.use_ema:
ema_model.copy_to(unet.parameters())
if (epoch + 1) % train_args.save_model_epochs == 0 or epoch == train_args.num_epochs - 1:
save_data = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"global_step": global_step,
}
torch.save(save_data, os.path.join(output_dir, f"model_latest.pt"))
if (epoch + 1) % train_args.save_images_epochs == 0:
eval_batch = next(iter(val_dataloader))
# extract the batch
audio = eval_batch["audio"]
z_audio = eval_batch["z_audio"]
z_audio_mask = eval_batch["z_audio_mask"]
z_text = eval_batch["z_text"]
z_text_mask = eval_batch["z_text_mask"]
embeds = eval_batch["clap_embed"]
# Turn noise into new audio sample with diffusion
model_samples = model.sample(
spectrogram=z_text.unsqueeze(1),
embedding=embeds, # ImageBind / CLAP
embedding_scale=1.0, # Higher for more text importance, suggested range: 1-15 (Classifier-Free Guidance Scale)
num_steps=50 # Higher for better quality, suggested num_steps: 10-100
)
# calculate loss between samples and original
eval_loss, eval_loss_dict = loss_fn(model_samples, audio)
for i in range(model_samples.shape[0]):
sample = model_samples[i]
# save
sample_path = os.path.join(output_dir, "samples", f"model_audio_{epoch}_{i}.wav")
gt_path = os.path.join(output_dir, "samples", f"gt_audio_{epoch}_{i}.wav")
save_audio(sample_path, sample.cpu(), train_args.sr)
save_audio(gt_path, audio[i].cpu(), train_args.sr)
# log to wandb
accelerator.log({"audio_examples":
[
wandb.Audio(sample_path, caption=f"Sample {i}", sample_rate=train_args.sr),
wandb.Audio(gt_path, caption=f"Ground Truth {i}", sample_rate=train_args.sr)
]}, step=global_step)
# Save logs
eval_logs = {
"eval_loss": eval_loss.detach().item(),
}
for loss_name in eval_loss_dict.keys():
eval_logs[loss_name] = eval_loss_dict[loss_name].detach().item()
# log to wandb
accelerator.log(eval_logs, step=global_step)
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
# parse arguments for rank
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/train_conf.yaml")
args = parser.parse_args()
conf = OmegaConf.load(args.config)
main(conf)