Skip to content

Latest commit

 

History

History
28 lines (17 loc) · 1.33 KB

README.md

File metadata and controls

28 lines (17 loc) · 1.33 KB

Code and resources for Quanthoven

This repository holds the code and the datasets for the paper:

  • Miranda, Yeung, Pearson, Meichanetzidis, Coecke (2021). A Quantum Natural Language Processing Approach to Musical Intelligence

This paper pioneers a Quantum Natural Language Processing approach to classifying music. Using this quantum classifier we use a generate and test approach to generate quantum music. This is a proof of concept, but as quantum devices improve in size and fidelity we will be able to learn a quantum classifier that hard to simulate on a classical device.

Contents

  • audio contains computer-rendered recordings for the dataset.
  • compositions contains the scores and professional recordings for selected compositions generated by the model.
  • datasets contains the train / development / test set used for our experiment. The generation methodology is described in the paper.
  • experiment.ipynb contains the pipeline described in Fig 9. of the paper, which is used used to learn the dataset.

Code requirements

For running the code, you will need Python 3.7 or later. Further, the following packages must also be installed:

  • discopy (v0.3.7.1)
  • lambeq (v0.1.2)

Links

For further help see: