-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_images.py
257 lines (192 loc) · 9.89 KB
/
generate_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# %% (1) Define grid
import os
import numpy
import psycopg
import utm
import matplotlib.pyplot as plt
from datetime import timezone
from obspy import UTCDateTime
from rtm import (
define_grid,
produce_dem,
process_waveforms,
grid_search,
plot_time_slice,
get_peak_coordinates,
plot_st,
calculate_time_buffer
)
try:
from waveform_collection.waveform_collection import gather_waveforms
except ImportError:
from waveform_collection import gather_waveforms
from web import config
"""
To obtain the below file from OpenTopography, run the command
$ curl https://cloud.sdsc.edu/v1/AUTH_opentopography/hosted_data/OTDS.072019.4326.1/raster/DEM_WGS84.tif -o DEM_WGS84.tif
or simply paste the above URL in a web browser. Alternatively, specify None to
automatically download and use 1 arc-second STRM data.
"""
#EXTERNAL_FILE = 'DEM_WGS84.tif'
class infrasound_location:
def __init__(self, end = None, start = None):
self.SVDIR = config.IMG_DIR
self.ISAVE = config.SAVE_IMAGES
self.TIME_BUFFER = config.TIME_BUFFER
self.TIME_METHOD = config.TIME_METHOD
self.STACK_METHOD = config.STACK_METHOD
endtime = UTCDateTime.now()
end_minute = endtime.minute - (endtime.minute % 10)
self.ENDTIME = end or endtime.replace(minute = end_minute, second = 0, microsecond = 0)
print("End time set to:", self.ENDTIME)
self.STARTTIME = start or self.ENDTIME - 10 * 60 # 10 minutes
def gen_volc_image(self, volc_name, volc_info, SAVE_DB = True):
NETWORK = config.NETWORK
SOURCE = config.SOURCE
LOCATION = config.LOCATION
CHANNEL = config.CHANNEL
LON_0 = volc_info['lon'] # [deg] Longitude of grid center
LAT_0 = volc_info['lat'] # [deg] Latitude of grid center
X_RADIUS_NET = volc_info['x_radius_net'] # [m] E-W grid radius (half of grid "width")
Y_RADIUS_NET = volc_info['y_radius_net'] # [m] N-S grid radius (half of grid "height")
SPACING_NET = volc_info['spacing_net'] # [m] Grid spacing
network_grid = define_grid(lon_0=LON_0, lat_0=LAT_0, x_radius=X_RADIUS_NET,
y_radius=Y_RADIUS_NET, spacing=SPACING_NET, projected=True,
plot_preview=False)
network_dem = produce_dem(network_grid, external_file=None, plot_output=False)
X_RADIUS_SEARCH = volc_info['x_radius_search'] # [m] E-W grid radius (half of grid "width")
Y_RADIUS_SEARCH = volc_info['y_radius_search'] # [m] N-S grid radius (half of grid "height")
SPACING_SEARCH = volc_info['spacing_search'] # [m] Grid spacing
search_grid = define_grid(lon_0=LON_0, lat_0=LAT_0, x_radius=X_RADIUS_SEARCH,
y_radius=Y_RADIUS_SEARCH, spacing=SPACING_SEARCH, projected=True,
plot_preview=False)
search_dem = produce_dem(search_grid, external_file=None, plot_output=False)
# %% (2) Grab and process the data
# Data collection parameters
STATION = volc_info['station']
FREQ_MIN = volc_info['freq_min'] # [Hz] Lower bandpass corner
FREQ_MAX = volc_info['freq_max'] # [Hz] Upper bandpass corner
DECIMATION_RATE = config.DECIMATION_RATE # [Hz] New sampling rate to use for decimation
SMOOTH_WIN = volc_info['smooth_win'] # [s] Smoothing window duration
# Automatically determine appropriate time buffer in s
MAX_STATION_DIST = volc_info['max_station_dist'] # [km] Max. dist. from grid center to station (approx.)
time_buffer = calculate_time_buffer(network_grid, MAX_STATION_DIST)
st = gather_waveforms(source=SOURCE, network=NETWORK, station=STATION,
location=LOCATION, channel=CHANNEL, starttime=self.STARTTIME,
endtime=self.ENDTIME, time_buffer=time_buffer)
st.remove_sensitivity()
nsta = len(st)
AGC_WIN = config.AGC_WIN
#AGC_PARAMS = None
AGC_PARAMS = dict(win_sec=AGC_WIN, method='walker')
st_proc = process_waveforms(st, freqmin=FREQ_MIN, freqmax=FREQ_MAX,
envelope=True, smooth_win=SMOOTH_WIN,
agc_params=AGC_PARAMS,
decimation_rate=DECIMATION_RATE, normalize=True,
plot_steps=False)
# %% (3) Perform grid search
TIME_KWARGS = {'celerity': config.CEL, 'dem': search_dem}
# STACK_METHOD = 'semblance' # Choose either 'sum', 'product', or 'semblance'
#TIME_KWARGS = {'celerity': 338, 'dem': network_dem, 'window': 10}
S = grid_search(processed_st=st_proc, grid=search_grid, time_method=self.TIME_METHOD,
starttime=self.STARTTIME, endtime=self.ENDTIME,
stack_method=self.STACK_METHOD, **TIME_KWARGS)
# Normalize to number of stations
S.data = S.data / nsta
PK_HT = config.PEAK_HEIGHT
MIN_TIME = AGC_WIN
PROM = config.PROMINANCE
# Find and save any detections
time_max, y_max, x_max, peaks, props = get_peak_coordinates(
S, global_max=False,
height=PK_HT,
min_time=MIN_TIME,
prominence=PROM,
unproject=True
)
det_times = [x.datetime.replace(tzinfo = timezone.utc) for x in time_max]
det_lon = numpy.asarray(x_max)
det_lat = numpy.asarray(y_max)
det_values = props['peak_heights']
if len(det_values) > 0 and SAVE_DB and nsta >= 3:
det_volc = [volc_name] * len(det_values)
gc_x, gc_y, _, _ = utm.from_latlon(*reversed(S.grid_center))
det_x, det_y, _, _ = utm.from_latlon(det_lat, det_lon)
# Distance to center in meters (a^2+b^2=c^2)
det_dist = numpy.sqrt(numpy.square(det_x - gc_x) + numpy.square(det_y - gc_y))
db_data = list(zip(det_volc, det_values, det_times, det_dist, det_lon.tolist(), det_lat.tolist()))
##### DEBUG
print("Saving detections to DB:", db_data)
with psycopg.connect(host = config.PG_SERVER, dbname = config.PG_DB,
user = config.PG_USER) as db_conn:
curr = db_conn.cursor()
curr.executemany("INSERT INTO detections (volc,value,d_time,dist,lon,lat) VALUES (%s,%s,%s,%s,%s,%s)",
db_data)
db_conn.commit()
# fig_rec = plot_record_section(st_proc, origin_time=time_max,
# source_location=(y_max, x_max),
# plot_celerity=S.celerity, label_waveforms=True)
# fig_rec.axes[0].set_ylim(bottom=6) # Start at this distance (km) from source
if self.ISAVE:
from matplotlib import rcParams
# %% (4) Plot
# This should be the default, but go ahead and be explicit about it anyway just to be sure.
rcParams.update({'font.size': 10})
fig_st = plot_st(st, filt=[FREQ_MIN, FREQ_MAX], equal_scale=False,
remove_response=False, label_waveforms=True)
fig_slice = plot_time_slice(S, st_proc, label_stations=True, dem=network_dem,
plot_peak=True, xy_grid=X_RADIUS_NET, cont_int = 50,
annot_int = 500)
fig_st.set_dpi(200)
fig_slice.set_dpi(200)
# Adjust fig_slice to get rid of excess white space
fig_slice.set_size_inches(8, 10.465)
fig_slice.subplots_adjust(top = .945, bottom = .06, hspace = .2)
colorbar = fig_slice.get_children()[-1]
cb_pos = colorbar.get_position()
cb_pos.y1 = 0.9405
cb_pos.y0 = 0.347
cb_pos.x0 = .915
cb_pos.x1 = .935
colorbar.set_position(cb_pos)
ax = fig_slice.axes[0]
im = ax.get_images()
im[0].set_clim(.4, 1)
img_time = st_proc[0].stats.starttime
tmstr = UTCDateTime.strftime(img_time, '%Y%m%d_%H%M')
year = UTCDateTime.strftime(img_time, '%Y')
month = UTCDateTime.strftime(img_time, '%m')
day = UTCDateTime.strftime(img_time, '%d')
img_dir = os.path.join(self.SVDIR, volc_name, year, month, day)
os.makedirs(img_dir, exist_ok = True)
rcParams.update({'font.size': 10})
combined_file = os.path.join(img_dir, f'{volc_name}_{tmstr}_combined.png')
c1 = fig_slice.canvas
c2 = fig_st.canvas
c1.draw()
c2.draw()
a1 = numpy.array(c1.buffer_rgba())
a2 = numpy.array(c2.buffer_rgba())
a = numpy.vstack((a1, a2))
dpi = 800
height = fig_slice.get_figheight() + fig_st.get_figheight()
fig_c, ax_c = plt.subplots(figsize=(8, height), dpi = dpi)
fig_c.subplots_adjust(0, 0, 1, 1)
ax_c.set_axis_off()
ax_c.matshow(a)
fig_c.savefig(combined_file, dpi = 200, pad_inches = 0.04, bbox_inches='tight')
plt.close('all')
# wfs_file = os.path.join(img_dir, f'{volc_name}_{tmstr}_wfs.png')
# slice_file = os.path.join(img_dir, f'{volc_name}_{tmstr}_slice.png')
# # recsec_file = os.path.join(img_dir, f'{volc_name}_{tmstr}_recsec.png')
# fig_st.savefig(wfs_file, dpi=200,
# bbox_inches='tight', pad_inches=0.04)
# # fig_slice.set_size_inches(5,5)
# fig_slice.savefig(slice_file, dpi=200,
# bbox_inches='tight', pad_inches=0.04)
# fig_rec.savefig(recsec_file, dpi=200,
# bbox_inches='tight', pad_inches=0.1)
if __name__ == "__main__":
generator = infrasound_location()
for volc_name, volc_info in config.VOLCS.items():
generator.gen_volc_image(volc_name, volc_info)