Skip to content

Latest commit

 

History

History
236 lines (175 loc) · 11.2 KB

TUTORIAL_6_CORPUS.md

File metadata and controls

236 lines (175 loc) · 11.2 KB

Tutorial 6: Creating a Corpus

This part of the tutorial shows how you can load your own corpus for training your own model later on.

For this tutorial, we assume that you're familiar with the base types of this library.

Reading A Sequence Labeling Dataset

Most sequence labeling datasets in NLP use some sort of column format in which each line is a word and each column is one level of linguistic annotation. See for instance this sentence:

George N B-PER
Washington N I-PER
went V O
to P O
Washington N B-LOC

The first column is the word itself, the second coarse PoS tags, and the third BIO-annotated NER tags. To read such a dataset, define the column structure as a dictionary and use a helper method.

from flair.data import TaggedCorpus
from flair.data_fetcher import NLPTaskDataFetcher

# define columns
columns = {0: 'text', 1: 'pos', 2: 'ner'}

# this is the folder in which train, test and dev files reside
data_folder = '/path/to/data/folder'

# retrieve corpus using column format, data folder and the names of the train, dev and test files
corpus: TaggedCorpus = NLPTaskDataFetcher.load_column_corpus(data_folder, columns,
                                                              train_file='train.txt',
                                                              test_file='test.txt',
                                                              dev_file='dev.txt')

This gives you a TaggedCorpus object that contains the train, dev and test splits, each has a list of Sentence. So, to check how many sentences there are in the training split, do

len(corpus.train)

You can also access a sentence and check out annotations. Lets assume that the first sentence in the training split is the example sentence from above, then executing these commands

print(corpus.train[0].to_tagged_string('pos'))
print(corpus.train[0].to_tagged_string('ner'))

will print the sentence with different layers of annotation:

George <N> Washington <N> went <V> to <P> Washington <N>

George <B-PER> Washington <I-PER> went to Washington <B-LOC> .

Reading a Text Classification Dataset

Our text classification data format is based on the FastText format, in which each line in the file represents a text document. A document can have one or multiple labels that are defined at the beginning of the line starting with the prefix __label__. This looks like this:

__label__<label_1> <text>
__label__<label_1> __label__<label_2> <text>

To create a TaggedCorpus for a text classification task, you need to have three files (train, dev, and test) in the above format located in one folder. This data folder structure could, for example, look like this for the IMDB task:

/resources/tasks/imdb/train.txt
/resources/tasks/imdb/dev.txt
/resources/tasks/imdb/test.txt

If you now point the NLPTaskDataFetcher to this folder (/resources/tasks/imdb), it will create a TaggedCorpus out of the three different files. Thereby, each line in a file is converted to a Sentence object annotated with the labels.

Attention: A text in a line can have multiple sentences. Thus, a Sentence object can actually consist of multiple sentences.

from flair.data_fetcher import NLPTaskDataFetcher
from pathlib import Path

# use your own data path
data_folder = Path('/resources/tasks/imdb')

# load corpus containing training, test and dev data
corpus: TaggedCorpus = NLPTaskDataFetcher.load_classification_corpus(data_folder,
                                                                     test_file='test.txt',
                                                                     dev_file='dev.txt',
                                                                     train_file='train.txt')

If you just want to read a single file, you can use NLPTaskDataFetcher.read_text_classification_file('path/to/file.txt), which returns a list of Sentence objects.

Notice: In order to download and preprocess the IMDB dataset automatically, you can use the load_corpus() method that will execute all necessary steps to get a flair compatible text classification format:

corpus: TaggedCorpus = NLPTaskDataFetcher.load_corpus(NLPTask.IMDB)

Downloading A Dataset

Flair also supports a couple of datasets out of the box. You can simple load your preferred dataset by calling, for example

corpus = NLPTaskDataFetcher.load_corpus(NLPTask.UD_ENGLISH)

This line of code will download the UD_ENGLISH dataset and puts it into ~/.flair/datasets/ud_english. The method returns a TaggedCorpus which can be directly used to train your model.

The following datasets are supported:

NLPTask NLPTask NLPTask
CONLL_2000 UD_DUTCH UD_CROATIAN
CONLL_03_DUTCH UD_FRENCH UD_SERBIAN
CONLL_03_SPANISH UD_ITALIAN UD_BULGARIAN
WNUT_17 UD_SPANISH UD_ARABIC
WIKINER_ENGLISH UD_PORTUGUESE UD_HEBREW
WIKINER_GERMAN UD_ROMANIAN UD_TURKISH
WIKINER_DUTCH UD_CATALAN UD_PERSIAN
WIKINER_FRENCH UD_POLISH UD_RUSSIAN
WIKINER_ITALIAN UD_CZECH UD_HINDI
WIKINER_SPANISH UD_SLOVAK UD_INDONESIAN
WIKINER_PORTUGUESE UD_SWEDISH UD_JAPANESE
WIKINER_POLISH UD_DANISH UD_CHINESE
WIKINER_RUSSIAN UD_NORWEGIAN UD_KOREAN
UD_ENGLISH UD_FINNISH UD_BASQUE
UD_GERMAN UD_SLOVENIAN
IMDB TREC_6 TREC_50
NER_BASQUE

The TaggedCorpus Object

The TaggedCorpus represents your entire dataset. A TaggedCorpus consists of a list of train sentences, a list of dev sentences, and a list of test sentences.

A TaggedCorpus contains a bunch of useful helper functions. For instance, you can downsample the data by calling downsample() and passing a ratio. So, if you normally get a corpus like this:

original_corpus = NLPTaskDataFetcher.load_corpus(NLPTask.UD_ENGLISH)

then you can downsample the corpus, simply like this:

downsampled_corpus = NLPTaskDataFetcher.load_corpus(NLPTask.UD_ENGLISH).downsample(0.1)

If you print both corpora, you see that the second one has been downsampled to 10% of the data.

print("--- 1 Original ---")
print(original_corpus)

print("--- 2 Downsampled ---")
print(downsampled_corpus)

This should print:

--- 1 Original ---
TaggedCorpus: 12543 train + 2002 dev + 2077 test sentences

--- 2 Downsampled ---
TaggedCorpus: 1255 train + 201 dev + 208 test sentences

For many learning tasks you need to create a target dictionary. Thus, the TaggedCorpus enables you to create your tag or label dictionary, depending on the task you want to learn. Simple execute the following code snippet to do so:

# create tag dictionary for a PoS task
corpus = NLPTaskDataFetcher.load_corpus(NLPTask.UD_ENGLISH)
print(corpus.make_tag_dictionary('upos'))

# create tag dictionary for an NER task
corpus = NLPTaskDataFetcher.load_corpus(NLPTask.CONLL_03_DUTCH)
print(corpus.make_tag_dictionary('ner'))

# create label dictionary for a text classification task
corpus = NLPTaskDataFetcher.load_corpus(NLPTask.TREC_6)
print(corpus.make_label_dictionary())

Another useful function is obtain_statistics() which returns you a python dictionary with useful statistics about your dataset. Using it, for example, on the IMDB dataset like this

from flair.data_fetcher import NLPTaskDataFetcher, NLPTask
 
corpus = NLPTaskDataFetcher.load_corpus(NLPTask.TREC_6)
stats = corpus.obtain_statistics()
print(stats)

outputs detailed information on the dataset, each split, and the distribution of class labels.

The MultiCorpus Object

If you want to train multiple tasks at once, you can use the MultiCorpus object. To initiate the MultiCorpus you first need to create any number of TaggedCorpus objects. Afterwards, you can pass a list of TaggedCorpus to the MultiCorpus object.

english_corpus = NLPTaskDataFetcher.load_corpus(NLPTask.UD_ENGLISH)
german_corpus = NLPTaskDataFetcher.load_corpus(NLPTask.UD_GERMAN)
dutch_corpus = NLPTaskDataFetcher.load_corpus(NLPTask.UD_DUTCH)

multi_corpus = MultiCorpus([english_corpus, german_corpus, dutch_corpus])

The MultiCorpus object has the same interface as the TaggedCorpus. You can simple pass a MultiCorpus to a trainer instead of a TaggedCorpus, the trainer will not know the difference and training operates as usual.

Next

You can now look into training your own models.