-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathdrivingStereoTest.py
61 lines (48 loc) · 1.85 KB
/
drivingStereoTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import cv2
import pafy
import tensorflow as tf
import numpy as np
import glob
from hitnet import HitNet, ModelType, draw_disparity, draw_depth, CameraConfig
out = cv2.VideoWriter('outpy2.avi',cv2.VideoWriter_fourcc('M','J','P','G'), 30, (881*3,400))
# Get image list
left_images = glob.glob('DrivingStereo images/left/*.jpg')
left_images.sort()
right_images = glob.glob('DrivingStereo images/right/*.jpg')
right_images.sort()
depth_images = glob.glob('DrivingStereo images/depth/*.png')
depth_images.sort()
# Select model type
model_type = ModelType.middlebury
# model_type = ModelType.flyingthings
# model_type = ModelType.eth3d
if model_type == ModelType.middlebury:
model_path = "models/middlebury_d400.pb"
elif model_type == ModelType.flyingthings:
model_path = "models/flyingthings_finalpass_xl.pb"
elif model_type == ModelType.eth3d:
model_path = "models/eth3d.pb"
camera_config = CameraConfig(0.546, 1000)
max_distance = 50
# Initialize model
hitnet_depth = HitNet(model_path, model_type, camera_config)
cv2.namedWindow("Estimated depth", cv2.WINDOW_NORMAL)
for left_path, right_path, depth_path in zip(left_images[1500:1700:2], right_images[1500:1700:2], depth_images[1500:1700:2]):
# Read frame from the video
left_img = cv2.imread(left_path)
right_img = cv2.imread(right_path)
depth_img = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED).astype(np.float32)/256
# Estimate the depth
disparity_map = hitnet_depth(left_img, right_img)
depth_map = hitnet_depth.get_depth()
color_disparity = draw_disparity(disparity_map)
color_depth = draw_depth(depth_map, max_distance)
color_real_depth = draw_depth(depth_img, max_distance)
cobined_image = np.hstack((left_img,color_real_depth, color_depth))
out.write(cobined_image)
cv2.imshow("Estimated depth", cobined_image)
# Press key q to stop
if cv2.waitKey(1) == ord('q'):
break
out.release()
cv2.destroyAllWindows()