-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcomputefft.m
215 lines (184 loc) · 8.38 KB
/
computefft.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
%*--------------------------------------------------------------------*
%| FFT Harmonic Finding Function v0.1 |
%| (Rowland Sillito September 2001) |
%|--------------------------------------------------------------------|
%| Written as an accessory to Ian's Spike Analysis program |
%| |
%| *use fft=computefft(harmn1,harmn2,errortype,tempfreq) |
%| |
%| *set harmn2 to be infinity to calculate individual harmonics |
%| as specified by harmn1 |
%| *use harmn1 and harmn2 to get the values of harmonic1/harmonic2 |
%| *errortype takes the same values as those in spikes |
%| |
%| *output is fft.fftvalue - a matrix of fft harmonics/ratios thereof|
%| fft.errvalue - a matrix of the error values |
%| fft.freq - the exact frequencies for the harmonics |
%| fft.infpoint - arbitrary value for infinity points |
%| fft.nnpoint - arbitrary value for Not-A-Number points |
%| |
%| |
%| [5.04.02 ian - fixed the memory bug and errorbar problems |
%*--------------------------------------------------------------------*
function fftmatrix=computefft(harmn1,harmn2,errortype,tempfreq,infpoint,zeropoint)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------------ Variable Declaration ------------------%
global data %so we can see what Spikes knows
global StartMod
global EndMod
%--------------- End of Variable Declaration ---------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%----------------------- Main Program ----------------------%
%Calculate scaling factor, so our harmonics are in Hz
if data.wrapped==1
sf=1000/(data.numtrials*data.nummods*data.binwidth); %for the data values
sf2=1000/data.binwidth; %for the error values
else
sf=1000/(data.numtrials*data.binwidth); %for the data values
sf2=1000/data.binwidth; %for the error values
end
% %So later on we can use one loop to deal with 1variable data & 2variable data
% if data.numvars>1
% ynum=data.yrange;
% else
% ynum=1;
% end
data.fftsums=cell(data.yrange,data.xrange,data.zrange);
time=(max(data.time{1})+data.binwidth)/1000; %time in seconds for the psths
fftmatrix.fftvalue=zeros(data.yrange,data.xrange,data.zrange); %preparing the matrix for fft values
fftmatrix.errvalue=zeros(data.yrange,data.xrange,data.zrange); %..and for error values
%Finding fft harmonics, or ratios of one to another
for i=1:(data.xrange*data.yrange*data.zrange)
if harmn2~=inf %if we're calculating a ratio
[a1,f1]=fftval(data.psth{i},time,harmn1,tempfreq);
[a2,f2]=fftval(data.psth{i},time,harmn2,tempfreq);
if a1~=0 && a2==0 && infpoint~=inf %if its x/0 and we have specified NaN/infinity points
val=inf;
elseif a1==0 && a2==0 && infpoint~=inf %#ok<AND2> %if its 0/0 and we have specified NaN/infinity points
val=-1;
elseif a2~=0 || infpoint==inf %if its x/y or 0/x or there's no NaN/infinity point set
val=a1/a2;
end
fftmatrix.fftvalue(i)=val;
else %if we're calculating a single harmonic
[a,f]=fftval(data.psth{i},time,harmn1,tempfreq);
fftmatrix.fftvalue(i)=sf*a(end);
end
end
%Find the exact freqencies we're referring to...
if harmn2~=inf %if we're calculating a ratio
[a1,f1]=fftval(data.psth{1},time,harmn1,tempfreq);
[a2,f2]=fftval(data.psth{1},time,harmn2,tempfreq);
fftmatrix.freq=[f1,f2];
else %if we're calculating a single harmonic
[a,f]=fftval(data.psth{1},time,harmn1,tempfreq);
fftmatrix.freq=f;
end
%Finding error values
for i=1:(data.xrange*data.yrange*data.zrange)
for j=1:data.raw{i}.numtrials
if data.wrapped==1
for k=1:data.raw{i}.nummods
%get the psth for the kth modulation of the jth trial
[tmptime,tmppsth]=binit(data.raw{i},data.binwidth*10,k,k,j,j,1,[],1);
%find the fft harmonic/harmonic ratio for tmppsth, and store in matrix
if harmn2~=inf
[a1,f1]=fftval(tmppsth,time,harmn1,tempfreq);
[a2,f2]=fftval(tmppsth,time,harmn2,tempfreq);
if a2~=0 %just so we don't get error messages about things we'll be ignoring
tmpfft(j,k)=a1/a2;
else
tmpfft(j,k)=0;
end
else
[a,f]=fftval(tmppsth,time,harmn1,tempfreq);
tmpfft(j,k)=sf2*a; %NOTE!!! Roland used sf2 here - why????
end
end
else
%get the psth for the jth unwapped trial
[tmptime,tmppsth]=binit(data.raw{i},data.binwidth*10,StartMod,EndMod,j,j,1,[],1);
%find and store fft as befores
if harmn2~=inf
[a1,f1]=fftval(tmppsth,time,harmn1,tempfreq);
[a2,f2]=fftval(tmppsth,time,harmn2,tempfreq);
if a2~=0 %just so we don't get error messages about things we'll be ignoring
tmpfft(j)=a1/a2;
else
tmpfft(j)=0;
end
else
[a,f]=fftval(tmppsth,time,harmn1,tempfreq);
tmpfft(j)=sf2*a;
end
end
end
%find and resize the matrix of fft values so that errorfun can use it
a=size(tmpfft);
data.fftsums{i}=reshape(shiftdim(tmpfft,1),a(1)*a(2),1);
tmpfft=reshape(tmpfft,[1 a(1)*a(2)]);
%get the error value and store it
fftmatrix.errvalue(i)=errorfun(tmpfft,errortype);
clear tmpfft
end
if infpoint~=inf %if we've got abitrary infinity points to put in
maxval=max(fftmatrix.fftvalue(find(fftmatrix.fftvalue~=inf)));
fftmatrix.errvalue(find(fftmatrix.fftvalue==inf))=0;
fftmatrix.errvalue(find(fftmatrix.fftvalue==-1))=0;
fftmatrix.fftvalue(find(fftmatrix.fftvalue==inf))=maxval*infpoint;
fftmatrix.fftvalue(find(fftmatrix.fftvalue==-1))=-1*zeropoint;
fftmatrix.nnpoint=-1*zeropoint;
fftmatrix.infpoint=maxval*infpoint;
else %or even if we don't, we still want the error as 0 for such points
fftmatrix.errvalue(find(~(fftmatrix.fftvalue>0) & ~(fftmatrix.fftvalue<0) & ~(fftmatrix.fftvalue==0)))=0;
end
%-------------------- End of Main Program ------------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------ Extra Function Declarations ------------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% finds fft values, taken from fftplot2 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [findfftval,fftfreq] = fftval(y,maxtime,harmonic,tmpf)
if size(y,1) ==1
y = y';
end
nSteps=length(y);
ffty=fft(y);
ffty = ffty(1:ceil(nSteps/2));
ffty = 2*ffty/nSteps; %now the amplitudes are correct.
amp = abs(ffty);
%ph = angle(ffty);
amp(1) = amp(1)/2;
dc=amp(1); %d.c. is the 0 harmonic
freq=(0:length(ffty)-1)/maxtime;
%Finds those harmonics at frequencies closest to those desired
a=find((freq-(harmonic*tmpf)).^2==min((freq-(harmonic*tmpf)).^2));
findfftval=amp(a);
fftfreq=freq(a); %so one can see what frequency is actually used
%--------------------------------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%FUNCTION DEFINITION%%%%%%%%%%%%%%%%%%%%%%%
%--------------------------------------------------------------------
%
%
% Computes the Error Data
function error = errorfun(data,type)
switch(type)
case 'Standard Error'
err=std(data);
error=sqrt(err.^2/length(data));
case 'Standard Deviation'
error=std(data);
case '2 StdDevs'
error=(std(data))*2;
case '3 StdDevs'
error=(std(data))*3;
case '2 StdErrs'
err=std(data);
error=sqrt((err.^2/length(data)))*2;
case 'Variance'
error=std(data).^2;
end
%------------------- End of Declarations -------------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%