From aa5281c6caf07ef21b8967f12e84902eb47269ed Mon Sep 17 00:00:00 2001
From: Anshuman Suri <as9rw@virginia.edu>
Date: Mon, 29 Jan 2024 15:46:20 -0500
Subject: [PATCH] Edit-distance experiment exploration

---
 inspect_mi.ipynb | 431 +++++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 431 insertions(+)
 create mode 100644 inspect_mi.ipynb

diff --git a/inspect_mi.ipynb b/inspect_mi.ipynb
new file mode 100644
index 0000000..bc19749
--- /dev/null
+++ b/inspect_mi.ipynb
@@ -0,0 +1,431 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "7624f659",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import seaborn as sns\n",
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import pandas as pd\n",
+    "import json\n",
+    "from sklearn.metrics import roc_curve, auc, precision_recall_curve\n",
+    "import math\n",
+    "\n",
+    "import matplotlib as mpl\n",
+    "import matplotlib.font_manager as fm\n",
+    "\n",
+    "mpl.rcParams[\"figure.dpi\"] = 300\n",
+    "mpl.rcParams['pdf.fonttype'] = 42\n",
+    "mpl.rcParams['ps.fonttype'] = 42\n",
+    "mpl.rcParams[\"font.family\"] = \"Times New Roman\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "f18f952b",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "attack_focus = 'ref-stablelm-base-alpha-3b-v2'"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "c05b74da",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "with open(f\"./niloofar/results_for_niloofar/stable_lm_ref/EleutherAI_pythia-12b-deduped--bert-temp/fp32-0.3-1-the_pile-the_pile-1000200100_plen30_--tok_false-wikipedia_(en)_ngram_13_<0.8_truncated/{attack_focus}_results.json\", 'r') as f:\n",
+    "    og_data = json.load(f)\n",
+    "\n",
+    "member_scores = og_data['predictions']['member']\n",
+    "nonmember_scores = og_data['predictions']['nonmember']"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "6e50dca1",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "dict_keys(['nonmember', 'member'])"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "og_data['predictions'].keys()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "6a089015",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def filter_out_nan(x):\n",
+    "    return [element for element in x if not math.isnan(element)]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "dd97043c",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def get_auc_from_thresholds(preds_member, preds_nonmember):\n",
+    "    \"\"\"\n",
+    "    Compute FPRs and TPRs corresponding to given thresholds\n",
+    "    \"\"\"\n",
+    "    tpr, fpr = [], []\n",
+    "    for threshold in thresholds:\n",
+    "        tp = np.sum(preds_member >= threshold)\n",
+    "        tn = np.sum(preds_nonmember < threshold)\n",
+    "        fp = np.sum(preds_nonmember >= threshold)\n",
+    "        fn = np.sum(preds_member < threshold)\n",
+    "\n",
+    "        tpr.append(tp / (tp + fn))\n",
+    "        fpr.append(fp / (fp + tn))\n",
+    "    \n",
+    "    tpr = np.array(tpr)\n",
+    "    fpr = np.array(fpr)\n",
+    "    return auc(fpr, tpr)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "id": "f17e17d4",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "preds_member_ = -np.array(member_scores)\n",
+    "preds_nonmember_ = -np.array(nonmember_scores)\n",
+    "total_preds = np.concatenate((preds_member_ , preds_nonmember_))\n",
+    "\n",
+    "total_labels = [1] * len(preds_member_) + [0] * len(preds_nonmember_)\n",
+    "fpr, tpr, thresholds = roc_curve(total_labels, total_preds)\n",
+    "roc_auc = auc(fpr, tpr)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "id": "7e508567",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "0.578991"
+      ]
+     },
+     "execution_count": 20,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "roc_auc"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "6b6ee259",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "0.578991"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "get_auc_from_thresholds(preds_member_, preds_nonmember_)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "f3eb6855",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "with open(\"./newmia_results_all/wikipedia_(en).json\", 'r') as f:\n",
+    "    d = json.load(f)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "id": "8df212e0",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "care = d[attack_focus]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "86579d4b",
+   "metadata": {},
+   "source": [
+    "## Consider edited-members as members"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "id": "0328d0ad",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "columns = ['edit distance', 'AUC']\n",
+    "raw_data = []\n",
+    "raw_data.append((0, roc_auc))\n",
+    "\n",
+    "for n, v in care.items():\n",
+    "    for score in v.values():\n",
+    "        pm = -np.array(score)\n",
+    "        raw_data.append((int(n), get_auc_from_thresholds(pm, preds_nonmember_)))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "627bf8c2",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df = pd.DataFrame(raw_data, columns=columns)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "93ceef87",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "sns.lineplot(data=df, x='edit distance', y='AUC', markers=True, dashes=False)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e4e0edfe",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df.groupby('edit distance').mean()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "9da26a95",
+   "metadata": {},
+   "source": [
+    "### Consider edited-members as non-members"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "id": "9030c99d",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "columns = ['edit distance', 'AUC']\n",
+    "raw_data = []\n",
+    "raw_data.append((0, 0.5))\n",
+    "\n",
+    "for n, v in care.items():\n",
+    "    for score in v.values():\n",
+    "        # Consider \"members\" as members\n",
+    "        preds_member_ = -np.array(member_scores)\n",
+    "        # And edited members as \"non members\"\n",
+    "        preds_nonmember_ = -np.array(score)\n",
+    "        total_preds = np.concatenate((preds_member_ , preds_nonmember_))\n",
+    "\n",
+    "        total_labels = [1] * len(preds_member_) + [0] * len(preds_nonmember_)\n",
+    "        fpr, tpr, thresholds = roc_curve(total_labels, total_preds)\n",
+    "        roc_auc = auc(fpr, tpr)\n",
+    "        \n",
+    "        raw_data.append((int(n), roc_auc))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "id": "3fc70513",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df = pd.DataFrame(raw_data, columns=columns)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "id": "0a967bb2",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "<AxesSubplot: xlabel='edit distance', ylabel='AUC'>"
+      ]
+     },
+     "execution_count": 27,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABpQAAAUKCAYAAADo3ZIDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOz9eZAkd33n/7/yrMzKOrqqek7N1TWSkBgJ3ZpufouMzemFDdlg9IX1sesgMF6FlwUTDnyxu2yYAAeBba2vXRxmA2NOLxvYzCWNJCShE3FY0z2XZiSNNNL0XdVXXVlH/v6oVh8jqZkudc/5fPzVWWS9M3PQzFTla175MaIoigQAAAAAAAAAAAC8BvNcnwAAAAAAAAAAAADObwRKAAAAAAAAAAAAWBKBEgAAAAAAAAAAAJZEoAQAAAAAAAAAAIAlESgBAAAAAAAAAABgSQRKAAAAAAAAAAAAWBKBEgAAAAAAAAAAAJZEoAQAAAAAAAAAAIAlESgBAAAAAAAAAABgSQRKAAAAAAAAAAAAWBKBEgAAAAAAAAAAAJZEoAQAAAAAAAAAAIAlESgBAAAAAAAAAABgSQRKAAAAAAAAAAAAWBKBEgAAAAAAAAAAAJZEoAQAAAAAAAAAAIAlESgBAAAAAAAAAABgSQRKAAAAAAAAAAAAWBKBEgAAAAAAAAAAAJZEoAQAAAAAAAAAAIAlESgBAAAAAAAAAABgSQRKAAAAAAAAAAAAWBKBEgAAAAAAAAAAAJZEoAQAAAAAAAAAAIAlESgBAAAAAAAAAABgSQRKAAAAAAAAAAAAWJJ9rk8AWGhiYkIPPvjg3PbmzZsVi8XO4RkBAAAAAAAAAHDu1Wo1nTx5cm77537u59TV1XXWjk+ghPPKgw8+qF/6pV8616cBAAAAAAAAAMB57bvf/a5uv/32s3Y8HnkHAAAAAAAAAACAJREoAQAAAAAAAAAAYEk88g7nlc2bNy/a/u53v6vLL7/8HJ0NAAAAAAAAAADnh+PHjy9aMub0++mrjUAJ55VYLLZo+/LLL9eOHTvO0dkAAAAAAAAAAHB+Ov1++mrjkXcAAAAAAAAAAABYEoESAAAAAAAAAAAAlkSgBAAAAAAAAAAAgCURKAEAAAAAAAAAAGBJBEoAAAAAAAAAAABYEoESAAAAAAAAAAAAlkSgBAAAAAAAAAAAgCURKAEAAAAAAAAAAGBJBEoAAAAAAAAAAABYEoESAAAAAAAAAAAAlkSgBAAAAAAAAAAAgCURKAEAAAAAAAAAAGBJBEoAAAAAAAAAAABYEoESAAAAAAAAAAAAlkSgBAAAAAAAAAAAgCURKAEAAAAAAAAAAGBJBEoAAAAAAAAAAABYEoESAAAAAAAAAAAAlkSgBAAAAAAAAAAAgCURKAEAAAAAAAAAAGBJBEoAAAAAAAAAAABYEoESAAAAAAAAAAAAlkSgBAAAAAAAAAAAgCURKAEAAAAAAAAAAGBJBEoAAAAAAAAAAABYEoESAAAAAAAAAAAAlkSgBAAAAAAAAAAAgCURKAEAAAAAAAAAAGBJBEoAAAAAAAAAAABYEoESAAAAAAAAAAAAlkSgBAAAAAAAAAAAgCURKAEAAAAAAAAAAGBJBEoAAAAAAAAAAABYEoESAAAAAAAAAAAAlkSgBAAAAAAAAAAAgCURKAEAAAAAAAAAAGBJBEoAAAAAAAAAAABYEoESAAAAAAAAAAAAlkSgBAAAAAAAAAAAgCURKAEAAAAAAAAAAGBJBEoAAAAAAAAAAABYEoESAAAAAAAAAAAAlkSgBAAAAAAAAAAAgCURKAEAAAAAAAAAAGBJBEoAAAAAAAAAAABYkn2uTwAAAAAAAAAAAOB0zVakyUpd09W6TMPQupQn16Ync64QKAEAAAAAAAAAgPNGJWyqUA5VLIWKIunUREV3HxzSznxO/98tm8/16V2yCJQAAAAAAAAAAMA51ZptI42XQlXCphrNlp54rqA9/YM68NKkJOlksaw7bt4kwzDO8dlemgiUAAAAAAAAAADAOVGtN1UohSqWQ7Va0shUVXcfGtI9B4c1Uakv2vfHzxf1YrGizdn4OTrbSxuBEgAAAAAAAAAAOGtarUhT1XYbqVxrqtmK9OPnC9ozMKifPD+h6LXeF0nffvKkPvmuN5zV80UbgRIAAAAAAAAAAFh11XpTxXKoYqmuZivS+ExN9xwe1t0DQxovhWc041s/OqmPvf0KOZa5ymeL0xEoAQAAAAAAAACAVRFF7bWRCqVQpVpTrSjSv74woT0Dg3ryREGt16ojvYaR6ZruOzysd1+zYXVOGK+JQAkAAAAAAAAAAKyoWqOpYqkdJDVbkSbKoe49PKy9A0Mama51NHP7mkAf/jc9essVa1b4bHEmCJQAAAAAAAAAAMDrFkWRpioNFcqhZqoNRVGkgZcmtWdgUI89W1BzuXUkSa5l6satXbrjps26Yl1SOzamZJrGKpw9fhYCJQAAAAAAAAAA0LGw0VKxHKpQCtVoRpqu1nXfkRHt7R/UqclqRzM3pj315XO6aWtWcc/S9u7ECp81lotACQAAAAAAAAAALEsURZqqNlQshZqebSMdGZrWnoFBPXJ8TPXm8ttItmnohi1d6st3a1suLsMwFHctpeOOJMkyDdpJ5xCBEgAAAAAAAAAAOCNho6WJcqhCOVS9EalUa+iBoyPaMzCkFwrljmauS8bUm8/plm1ZBTFblimlfEcpz5FjmZIkw5DWp72VvBQsE4ESAAAAAAAAAAB4TVEUabrWbiNNVRqSpGPD09o7MKgHj40pbLSWPdMyDV23Ka3efE6Xr0nIMAz5rqW05yjwLBky5vbLBI4ycVeeY63odWF5CJQAAAAAAAAAAMAr1JvzayPVG5EqYVMPHRvVnv5BPTtW6mhmd8LVzp6cdvZklfQcmaaU8mylfEeuNR8YxWOWcoGrlOfwmLvzBIESAAAAAAAAAACYM12tq1iqa6paVxRJz42VtHdgUN8/OqJqffltJNOQrrksrb58TleuS8o0DHmuqbTnKOHZc20k05QycVfZgDbS+YhACQAAAAAAAACAS1yj2VKhHKpYqitstFRrNPXI8THt7h/U08MzHc3MxJ25NlJX3JXxchvJcxSz5wMj37WUDVx1+bSRzmcESufAc889p/vvv1+jo6PauHGj3vKWt6inp2dVjxlFkR5//HEdPnxYw8PDymazuvbaa9XX1yfD4DcoAAAAAAAAAFyKZmbXRpqstNtIJ4tl7R0Y1P2HR1QKm8ueZ0h648aUevM5Xb0+Jcs0FHNMpX1HiZgtc/Z+tGFIXXFHuSAm36WNdCEgUDqLXnrpJX384x/Xd77zHZmmqe7ubo2OjiqKIt1+++3627/9W61fv35FjxlFkb70pS/ps5/9rE6ePKlEIqF4PK6RkRFJ0pYtW/T5z39eH/rQh1b0uAAAAAAAAACA81Oj2VKxXFexHKpWb6nebOmxZ8a1Z2BQB09NdTQz5dm6tSenvnxW2SAmw5SSnq30aW0kzzHbbaS4K4s20gWFQOkseeKJJ3T77bdreHhYH/zgB3XXXXdp7dq1mpiY0Kc//Wn91V/9lR555BHt379f11133Yocs1Kp6H3ve5/27dunK664Qvfcc4/e/va3yzAMHT9+XJ/85Cf1L//yL/r3//7f67777tOXvvQlmaa5IscGAAAAAAAAAJxfSrWGCgvaSEOTVe09OKh7Dw1rqtroaOZV65Pa2ZPTtZelZ9tIhlK+q+RpbaS07yiXcBV3iSUuVPw/dxYcOnRI7373uzUxMaF3vetd+vrXvz73mLmuri795V/+pcbGxvTNb35T73znO/Xoo49q+/btr+uYzWZT73//+7Vv3z719PTo0UcfVXd399z/fvnll+u73/2ufu3Xfk1f//rX9fd///dyXVd/8zd/87qOCwAAAAAAAAA4fzRbkYrlUMVSqGq9pUazpSdPFLS7f1BPvTjZ0cxEzNYt2zLqy3drTTImw5ASnq20b8uz52OH2GwbKUMb6aJgRFEUneuTuJjV63XdfPPNOnDggCzL0tGjR181LHrhhRe0fft2NRoN3XbbbXrggQde19pGf/qnf6rf//3flyR973vf03vf+95X3W96elpXXnmlhoaGJEn/7//9P/3yL/9yx8d9vQ4ePKhrrrlmbntgYEA7duw4Z+cDAAAAAAAAABeicthuI02U222kkemq7j44pHsODWuiXO9o5uVrEurN5/SmTWk5linXNpTyHSU9R9ZpbaRs4CqI0WlZSef6/jn/b66yu+66SwcOHJAk/eIv/uJrNo+2bNmid77zndqzZ48eeugh/d3f/Z1+67d+q6Njjo+P63/8j/8hScrlcvq3//bfvua+yWRS//k//2f90R/9kSTpd37nd/Se97xHrut2dGwAAAAAAAAAwLnRbEWaKIcqlkNVwpaarUg/eaGoPf2D+vELRXVSL/Eda66NtD7ttdtIMVsp35bvzEcMrv1yG8mRbbG0ysWIQGkVVSoVfeELX5jbvv3225fc/z3veY/27NkjSfrc5z6nj3zkIx21lL785S+rXC5Lkm688cafuS7SBz/4wblA6dSpU/rqV7+qD3/4w8s+LgAAAAAAAADg7KuETRVmH2sXRVKhFOqeQ0Pad3BI4zNhRzO35eLqy+d0/eaMXNuUYxtKeY5Sni1r9p6zYUgpz1EmaLeUcHEjUFpF3/3udzUyMjK33dvbu+T+b33rW+d+PnHihO655x69613vWvZx77777rmfF66b9Fry+bw2b96skydPShKBEgAAAAAAAACc51qtSBOVugqlUJWwqVYU6amTE9ozMKgnnyuq2UEdKWabunlrRn35nC7LxGUYUuDaSsVtxRe0kRzbUDbuKhO4cmgjXTIIlFbRt771rbmfLcvSVVddteT+V155pWKxmGq1miTpm9/8ZkeB0sDAwNzPZ7pE1s6dO+cCpccff1zValWe5y372AAAAAAAAACA1VOtN1UotR9r12pJk5W67j08pL0DQxqeqnU0c3PGV28+pxu3ZOQ5lmxLSvmOUp4je8ETsJKerWzCVTJmd/R0LVzYCJRWSRRFeuihh+a2N27cKNte+pfbtm319PToyJEjktrBTicKhcLczxMTE2f0ng0bNsz9XKvVNDAwoJtvvrmj4wMAAAAAAAAAVk6rFWmyUlehHKpcayqKIh08NaXd/af0+LMFNVrLbyO5lqkbtnSpL5/Tlmxcpmko7lpK+Y4Cd/5etm0Zs2sjuXJt2kiXMgKlVXLs2DEVi8W57c2bN5/R+9atWzcXKB09elRTU1NKpVLLOnY8Htfk5KQk6emnnz6j95x+jNHR0WUdEwAAAAAAAACwsk5vI81UG7rv6LD29g/ppYlKRzM3pD315nO6ZWtGvmu320ieo5S/uI2U8GxlA1cpjzYS2giUVsnx48cXbZ9poJTNZud+jqJIx48f14033risY/f09Ohf//VfJUnPPvusRkZGtHbt2iXfMzMzs2h7YRjWqZGRkWUHU6f/ugEAAAAAAADApSSKZttIpVCl2TbS0eFp7ekf1MPHx1RvLr+NZJuGrt/cbiP1dAcyjAVtpJglQ+3AyDJn20iBo5htrfSl4QJHoLRKXnjhhUXbZ9oyisVii7Y7CXbe9ra3zQVKkvS1r31Nn/jEJ5Z8z+nBTzweX/ZxT/c3f/M3+sxnPvO65wAAAAAAAADAxa7WmG0jlepqtiKVw4a+f3REe/uH9Hyh3NHMtclYu420LatEzJZlzreRHGu+jRTELGUDV2nfoY2E10SgtEqmp6cXbZ9pQOO67qLtM10DaaH/9J/+k/7iL/5CzWZTkvTFL35RH/7wh5cMtZ5//vlF25lMZtnHBQAAAAAAAACcuSiKNFVpqFAONVNtSJKOj8xoz8CgHnp6VLVGa9kzLcPQmzal1ZfPafvahEzDkO+aSnuuAm++jWSamlsbyXNoI+FnI1BaJdVqddH2mQZK9Xp90XalsvznYG7fvl2f/vSn9d//+3+XJL300kv6yEc+om984xsyzVcumrZnzx4dOHBg0WtXXXXVso8LAAAAAAAAAPjZwkZrbm2kRjNStd7UD46Nanf/oJ4ZLXU0Mxe42tmT086erFK+I9OUUp6tlO/IteYDo3jMUjbebiOZJm0knDkCpVXied6ibcs6s4T39EDJ9/2Ojv9f/+t/VaFQ0P/8n/9TkvTtb39bp06d0h/8wR9ox44dmpiY0COPPKKvfvWrOn78+KJG1WWXXaZ169Z1dNyF7rzzTn3gAx9Y1nuOHz+uX/qlX3rdxwYAAAAAAACA80kURZqqNlQshZqebSM9P17SnoFBff/IqCr15rJnGoZ0zcZ2G+kN65IyTUOeayrtOUp49qI2UlfcVS6gjYTOESitkmQyuWj79MbSazl9v9PnnCnDMHTXXXfpHe94hz7zmc/oRz/6kR5++GG95z3vkSSl02n94i/+oj796U/rmWee0cc+9rG597773e/u6JinW7t2rdauXbsiswAAAAAAAADgQhQ2WiqWQxVK7TZS2GjpkWfGtPvAoI4OT//sAa+iy3e0syernfmcMnFXxsttJM9RzJ4PjHzXVDaIqYs2ElYAgdIqWbNmzaLtMw2UisXiou1Nmza9rvN473vfq/e+970aHBzUs88+q0ajoQ0bNuiKK66YW1zt7W9/+6L3fOhDH3pdxwQAAAAAAACAS1kURZqutdtIU5V2G+mlYkV7Bk7pviMjKtU6aCNJunpDUr35br1xQ0qWaSjmmEr5jpIxW+bs/V7DkLrijnJBTL5LGwkrh0BplezYsWPR9vDw8Bm9b2GgZJqmtm3btiLns2HDBm3YsOEVrx8/flz333//3PaOHTv08z//8ytyTAAAAAAAAAC4lNSbLRVLoQrlUPVGpHqzpcefHdee/kENnJrqaGbSs7WzJ6venpxyiZgMQ0r6ttKntZE8x1Q2cNUVd2XRRsIqIFBaJVdccYV831elUpEkvfjii2f0voX77dixQ/F4fFXO72V/+qd/qiiK5rY//elPyzTNVT0mAAAAAAAAAFxMpqt1FUt1TVXriiJpaKqqfQOD2n9oWFOz6yUt15XrkurNZ3XtxrRsy1TMMZTyHCU8R9aCNlLad5QNXAUxbvdjdfFf2CqxLEu/8Au/oN27d0uSjh079jPfMzY2pqmp+ZT6tttuW7Xzk6SDBw/q//yf/zO3/da3vlV33HHHqh4TAAAAAAAAAC4GjWZLhXKoYqmusNFSsxXpyRMF7e4/padOTir62SNeIXAt3bItq758TmtTngxDSsRspeO2PHv+dn7MMZWJu8rEHdkWBQGcHQRKq+iXf/mX5wKlsbExPf/889q6detr7n/o0KFF2x/4wAdW7dyazaZ+8zd/U81m+1mdiURCX/7yl+fWVQIAAAAAAAAAvNJMraHCTDjXRhqbqWnfwSHdc3BIxXK9o5nb1wTqzed03aYuOZYpxzaU9h0lT2sjpTxH2YSrBG0knAP8V7eK7rjjDv3e7/3e3LpIDz/88JKB0uOPPz738xVXXLGqDaVPfepTevLJJyW121Tf+MY31NPTs2rHAwAAAAAAAIALVaPZUrFcV7EcqlZvt5F+erKo3f2D+vHzRUUd1JF8x9LNWzPq257ThrQ/10ZK+bZ8Z/7WvWubygSOsnGXNhLOKQKlVZRMJvWxj31Mn/nMZyRJ3/nOd/Srv/qrr7n/vn375n7+wz/8w1VrC/2v//W/9MUvflGSZBiG/vqv/1rvfe97V+VYAAAAAAAAAHChKtUaKpRCTVbabaRiKdTdh9ptpNGZsKOZW3Nx9fXkdP2WLsVsS45lKOU7Snm2rNn17Q1DSnq2soGrpOes5CUBHSNQWmWf/OQn9eUvf1knT57U3r17NTg4qA0bNrxiv2PHjunBBx+UJPX29uo3fuM3XnVetVrVN77xDU1NTemOO+541VlLueuuu/SJT3xCkuQ4jr7yla/oQx/60DKvCgAAAAAAAAAuTs1WpGI5VLEUqlpvqRVF6n9xUrv7B/XD5wpqdlBHitmmbtqSUe/2nDZn4jIMKXBtJX1bgTt/m96xDWXjrjKBK4c2Es4zBEqrLJlM6h//8R/1tre9TdVqVX/8x3+sv//7v1+0T6PR0J133qlWq6U1a9boa1/7mkzz1f+wePvb365HHnlEkvTZz35W/f39Wrdu3c88j6GhIX384x/Xt771LUlSPp/X1772NfX29r7OKwQAAAAAAACAC185bGh8Zr6NNFmp677Dw9o7MKShqWpHMy/r8tWXz+mmrRl5jiXb0mwbyZG94B5w0rOVTbhKxmzWucd5i0DpLLjtttv0D//wD/oP/+E/6Mtf/rK6urr0mc98RolEQgcPHtTv/M7v6IEHHtDmzZv1ve99T/l8/lXnFAqFuTBJkkZHR/XII4/ofe9736vuPzk5qccff1z/9E//pK9//euqVCqybVsf/ehH9bnPfU7JZHJVrhcAAAAAAAAALgTNVqSJcqhiOVQlbCmKIh0anNLu/kE99sy4Gq3lt5Ecy9ANm7vUt71bW7NxmaYh37GUjjuL2ki2ZSgbuMrEXbk2bSSc/wiUzpIPfehD2rZtmz760Y/qz/7sz3TXXXcpnU6rUCgoFovpzjvv1J/8yZ8ok8m85oxsNqt/82/+jR5++GFJUnd3t9785je/Yr8vfelL+oM/+AMVCoW517q7u/WRj3xEv/M7v6Mrrrhi5S8QAAAAAAAAAC4QlbCp8VJNE+V2G2mm1tD9R4a1p39IL01UOpq5PuWpN5/TLdsyiru2LHO+jbTw8XUJz1Y27irl00bChYVA6Szq6+vTgQMH9Nhjj+nJJ5/UzMyMenp69I53vEPd3d1nNGP//v1zayh94AMf0Pr161+xzzXXXKOPfexjSiaTWrNmja6//nrt2LHjNR+jBwAAAAAAAAAXu1Yr0kSlrkIpVCVsKooiHRuZ0a4Dp/TI8XGFzdayZ9qmoes2dalve0757kCGYch3LaV9R0HMkqF2YGSZhjKBo2zgKmZbK31pwFlBoHQO9PX1qa+vr6P3ep6n3/zN31xynze/+c2v2lwCAAAAAAAAgEtNtd7UeCnURDlUq9VeK+nBp0e1p39QJ8bLHc1ck4ipN5/TrduySni2TFNKe46Svi3Xmg+M4jFLucBV2ndoI+GCR6AEAAAAAAAAALiotFqRJit1FcqhyrWmJOnZ0Rnt7h/UQ0+PqtpYfhvJNKQ3Xdal3nxOV6xLyDQM+a6ptOcq8ObbSKYpZeKusoErz6GNhIsHgRIAAAAAAAAA4KJQrTdVKIUqzraRqvWmHj4+qt0HhnR8dKajmdnA1c6erHb25JT2HZmmlPJsJT1n0ePrfHe+jWSatJFw8SFQAgAAAAAAAABcsKKo3UYaL823kV4olLW7/5QeODqqcthc9kzDkHZsSKk3n9PV61MyTUOeayrlOUrEbJmzj68zDCkTuMrRRsIlgEAJAAAAAAAAAHDBqTVm20ilupqtSPVmS48cH9Pu/kEdGZruaGbad7SzJ6venpwygSvDlJKerfQr2kimskFMad+RRRsJlwgCJQAAAAAAAADABSGKIk1VGhov1VSabSOdmqhoT/+g7j8youlao6O5V61Pqi+f046NaVmmoZhjKOW7Sp7WRuqKO8oGruIut9Zx6eG/egAAAAAAAADAea3WaKpYqqtYDtVoRmo0W3riuYJ29w+q/6XJjmYmPVu3bsuqN59TdyImw5ASnq0uf3EbyXNMZQJXmbhLGwmXNAIlAAAAAAAAAMB5J4oiTVUbKpRCzVTbzaORqar2HhzS/kPDmqzUO5p7xdqEevM5vemytGzLlGsbSvuOEp4ja0EbKe2320hBjNvogESgBAAAAAAAAAA4j4SNlorlUIVSu43UbEX60fMF7T4wqH89OaGog5lx19It27Lqy+e0LuW120gxW+m4Lc+ev00ec0xl4q4ycUe2Za7cRQEXAQIlAAAAAAAAAMA5FUWRpmsNFWZCTc+2kcZnarr74JDuPjSkQqmzNlJPd6C+fE7XbeqSa5tyZttIydPaSCnPUTbhKkEbCXhN/O4AAAAAAAAAAJwT9WZLxVKoQjlUvRGpFUX61xcmtKv/lH78fFGtDupInmPq5q3tNtLGLn+ujZT0bcWd+Vvijm0oO7s2kkMbCfiZCJQAAAAAAAAAAGfVdLWuQqndRooiqVgOtf/QkPYNDGt0ptbRzC3ZuPryOd2wuUsxx5JjGUr6ttKeI8tsB0aGISU9W9nAVdJzVvKSgIsegRIAAAAAAAAAYNU1mi0VyqGKpbrCRktRFKn/pUnt7h/UE88V1OygjuTapm7a0qXefLe2ZOMyjPZ6SSnfUeCe1kaKu8oEtJGAThEoAQAAAAAAAABWzczs2khT1bqiSJqq1HXvkWHtGxjS4GS1o5kb05768jndtDUr37VkW+11kFK+I9ucD4ySnq1M4Crl2TJm10wC0BkCJQAAAAAAAADAimo0WyqW6yqWQ9Xq7TbS4aFp7e4/pUePj6vRQRvJNg3dsKVLfflubcvFZRiG4q6ldHxxG8m2DGXirrKBK9emjQSsFAIlAAAAAAAAAMCKKNUaKpRCTVbabaRSraH7j45oT/+gXixWOpq5LhlTbz6nW7ZlFcRsWaaU8h2lPGfR4+uCmKVcEFPKp40ErAYCJQAAAAAAAABAx5qtSMVyqEKp3UaSpGPD09rdP6gfHB9T2Ggte6ZlGrpuU1p9+Zy2r0nIMAz5rqW07yiIWTJkzO2XCRxlA1cx21rR6wKwGIESAAAAAAAAAGDZymFD4zPzbaRK2NSDT49oz8CQnhsrdTSzO+GqtyenW3uySnqOTFNKe46Svi3Xmg+M4jFLucBVynNkmrSRgLOBQAkAAAAAAAAAcEaarUgTs22k6mwb6bmxknYfOKUHj43OvbYcpiFdc1m7jXTluqRMw5Dvmkp5jhKePddGMk3NrY3kObSRgLONQAkAAAAAAAAAsKRK2NR4qaaJcruNVGs09YNjY9rTP6hjIzMdzczEHe3syWlnT1ZdcVeGKaU8WynPWfT4Ot9tt5HSPm0k4FwiUAIAAAAAAAAAvEKrFWmiUlehVFMlbDePThbL2n1gUA8cHVEpbC57piHpjRtT6s3ndPX6lCzTUMwxlfYdJWK2TKMdGBmGlAlcZeOufJc2EnA+IFACAAAAAAAAAMyp1psaL4WaKIdqtaR6s6VHnxnT7gODOjw03dHMtO/o1m1Z9eZzygbtNlLSs5V+RRvJVCbuqivuyqKNBJxXCJQAAAAAAAAA4BLXakWarNQ1XgpVmW0eDU5WtKd/UPcdGdF0tdHR3DesS6pve07XbEzPtpEMpXxXydPaSGnfUS7hKu5yyxo4X/G7EwAAAAAAAAAuUdV6U4VSqOJsG6nRbOmJEwXtOTCoAy9NdjQzEbN1a09WvT05rUnGZBhSwrPV5S9uI8UcU9nAVYY2EnBBIFACAAAAAAAAgEtIFM23kcq1dhtpZLqqvQODuvfQiCYq9Y7mXr42od6enK7blJZtmXJto702kufIOq2NlA1cBTFuTwMXEn7HAgAAAAAAAMAloNaYbSOV6mq2IjVbkX78fEG7+wf105MTiqLlz4y7lm7emlFfvlvr0167jRSzlfJt+c787WfXfrmN5Mi2zBW8KgBnC4ESAAAAAAAAAFykoijSVKWh8VJNpdk2UqEUat/BQd1zcFjjpbCjudtycfXlc7p+c0aubcqxDaU8RynPlmW2AyPDkFKeo2zCVYI2EnDB43cxAAAAAAAAAFxkao2miqW6CqVQzVakVhTpqZMT2nVgUD96vqBWB22kmG3OtpFyuiwTl2FIgWsrFbcVX9BGcmxjbm0khzYScNEgUAIAAAAAAACAi0AURZqqNlQohZqpNiRJk5W67jk0pH0DQxqZrnU0d3PGV28+pxu3ZOQ5lhzLUNK3lfacuTaSJKV8W5nAVTJmy5hdMwnAxYNACQAAAAAAAAAuYGGjpWI5VKEUqtGMFEWRBk5NadeBU/rhcwU1OqgjuZapG7d0qTef05ZsXKZpKO5aSvmOAnf+trJtzbeRXJs2EnAxI1ACAAAAAAAAgAtMFEWarjVUmAk1PdtGmq7Wde/hYe0dGNLgZLWjuRvTnnbmc7pla0a+a8u22usgpXxH9oI2UsKzlQ1cpTzaSMClgkAJAAAAAAAAAC4Q9WZLxVKoQjlUvdFuIx0dmtau/lN69Jlx1ZvLbyPZpqHrN3epL59TT3cgw2i3kdJxR3HXkqF2YGSZs22kwFHMtlb60gCc5wiUAAAAAAAAAOA8N12tq1Bqt5GiSCqHDd1/ZER7+gd1sljpaObaZEy9+Zxu2ZZVImbLMqWU7yjlOXKs+TZSELOUC2JK+bSRgEsZgRIAAAAAAAAAnIfqzfbaSMVSXWGjJUk6PjKjXQdO6eHjY6rNvrYclmHoTZvS6svndPnahAzDkO9aSnuOAm9xGykTOMrEXXkObSQABEoAAAAAAAAAcF6ZmV0baapaVxRJ1XpTDzw9qj39g3purNTRzFzgqjef063bskr5jkxTSnm2Ur4j15oPjOIxS7nAVcpzZJq0kQDMI1ACAAAAAAAAgHOs0WypWK6rWA5Vq7ebRyfGStrVf0oPPT2mSr257JmGIV27Ma3efE5vWJeUaRryXFNpz1HCs+faSKYpZeKusgFtJACvjUAJAAAAAAAAAM6RUq2hQinUZKXdRgobLT10fFR7+wf19PBMRzO74o52bsuqN59TV9yV8XIbyXMUs+cDI9+1lA1cdfm0kQD8bARKAAAAAAAAAHAWNVuRiuVQhdJ8G+nFYll7+gd1/9ERlWodtJEkXb0hpd58Tm/ckJJlGoo5ptK+o0TMlmm0AyPDaAdOuSAm36WNBODMESgBAAAAAAAAwFlQDhsan5lvI9WbLT32zLh29w/q0OBURzOTnj3XRsolYjLM9mvp09pInmO220hxVxZtJAAdIFACAAAAAAAAgFXSbEWamG0jVWfbSEOTVe0ZOKX7Do9oqtroaO6V65Lqy+d0zcaUbMtUzDGU8l0lT2sjpX1HuYSruMutYACvD3+KAAAAAAAAAMAKq4RNjZdqmii320jNVqQnnmu3kfpfnFTUwczAtXRrT7uNtDbpyTCkhGcr7dvy7PlbvbHZNlKGNhKAFUSgBAAAAAAAAAAroNWKNFGpq1CqqRK220ij0zXtHRjU/sPDmijXO5q7fU2g3nxO123qkmOZcm1DKd9R0nNkndZGygaughi3fQGsPP5kAQAAAAAAAIDXoVpvarwUaqIcqtVqt5F+8kJBuw8M6icnJxR1UEfyHUs3b82ob3tOG9J+u40Us5XybfnO/G1d1365jeTItswVvCoAWIxACQAAAAAAAACWqdWKNFmpa7wUqhI2JUnFUqi9Bwd1z8FhjZfCjuZuy8XV25PT9Vu6FLMtObahlOco5dmyzHZgZBhSynOUCdotJQA4GwiUAAAAAAAAAOAMVetNFUqhirNtpFYU6cCLE9p1YFBPniio1UEbKWabumlLRr3bc9qcicswpMC1lYrbii9oIzm2oWzcVSZw5dBGAnCWESgBAAAAAAAAwBJarUhT1XYbqVxrt5EmK3Xdc2hIdw8MaXi61tHcTRlfvT053bQ1I8+x5FiGkr6tlOfINucDo6RnK5twlYzZMmbXTAKAs41ACQAAAAAAAABeRbXeVLEcqliqq9mKFEWRDg5OatdTg3riuYIaHdSRHMvQjVsy6s3ntDUbl2kairuWUr6jwJ2/XWtbxuzaSK5cmzYSgHOPQAkAAAAAAAAAZkVRpKlKQ+OlmkqzbaSZWkP3HhrW3oODOjVR7WjuhrSnnT053bIto7hry7ba6yCl/MVtpIRnKxu4Snm0kQCcXwiUAAAAAAAAAFzyao2miqW6CqVwro10dHhauw8M6pFnxlRvLr+NZJuGrtvcpb58TvnuQIaxoI0Us2SoHRhZ5mwbKXAUs62VvjQAWBEESgAAAAAAAAAuSVEUaaraUKEUaqbakCSVw4a+f3REe/qH9EKh3NHcNYmYevM53botq4RnyzLn20iONd9GCmKWckFMKZ82EoDzH4ESAAAAAAAAgEtK2GipWA5VKIVqzDaPnhmd0a4Dp/SDY2OqNVrLnmka0psu61Lv9pyuWJuQaRjyXVNpz1XgzbeRTFNzayN5Dm0kABcOAiUAAAAAAAAAF70oijRda6gwE2p6to1UrTf14NPtNtKzY6WO5mYDV709Wd3ak1Pad2SaUsqzlfIdudZ8YBSPWcrG3dl9aCMBuPAQKAEAAAAAAAC4aNWbLRVLoQrlUPVGu430/HhJu/oH9eDRUVXqzWXPNAxpx8aUentyunp9SqZpyHNNpT1HCc9e1EbqirvKBbSRAFz4CJQAAAAAAAAAXHSmq3UVSu02UhS1H3P38PFR7ekf0tHh6Y5mpn1HO3uy6s3nlIm7Ml5uI3mOYvZ8YOS7prJBTF20kQBcRAiUAAAAAAAAAFwU6s322kjFUl3h7DpIpyYq2nXglL5/dFQztUZHc69en1RvPqcdG9OyTEMxx1Tad5SI2TKNdmBkGFJX3FEuiMl3aSMBuPgQKAEAAAAAAAC4oM3Mro00Va0riqRGs6XHnh3X7v5BHTw11dHMpGfrlm1Z9eVz6k7EZBhS0reVPq2N5DmmsoGrrrgrizYSgIsYgRIAAAAAAACAC06j2VKx3H6s3cttpOGpqnb3n9J9h0c0Ve2sjXTF2oT68jlde1latmUq5hhKeY4SniNrQRsp7TvKJVzFXW6xArg08KcdAAAAAAAAgAtGqdZQoRRqstJuIzVbkX54Yly7DwzqwIuTijqYGXetuTbSupQnw5ASMVvpuC3Pnr+FGnu5jeQ7si1z5S4KAC4ABEoAAAAAAAAAzmvNVqRiOVShFKpWb7eRxmdq2jMwqP2HhlUs1zuam+8O1JvP6bpNXXJtU45tKO07Sr5KGykTuErEuJ0K4NLFn4AAAAAAAAAAzkvlsKHxmfk2UiuK9JPni9rVP6ifvlBUq4M6kueYumVrVr35nDZ2+XNtpJRvy3fmb5e6tqlM4Cgbd2kjAYAIlAAAAAAAAACcR5qtSBOzbaTqbBupWA5198Eh3X1wSGMzYUdzt2Tj6svndMPmLsUcS45lKOU7Snm2LLMdGBmGlPRsZQNXSc9ZsWsCgIsBgRIAAAAAAACAc64SNjVeqmmi3G4jRVGkp16c0K4Dg/rR80U1O6gjubapm7Z0qTffrS3ZuAxDClxbqbit+II2kmMbysZdZQJXDm0kAHhVBEoAAAAAAAAAzolWK9JEpa5CqaZK2G4jTVXquufQkPYdHNLwVK2juZd1+erN53TTlox815JtabaN5Mg25wOjpGcrm3CVjNkyZtdMAgC8OgIlAAAAAAAAAGdVtd7UeCnURDlUq9VuIx0anNKuA6f0+LMFNTpoI9mmoRtn20jbcnGZpqG4aynlOwrc+dugtmUoG7jKxF25Nm0kADhTBEoAAAAAAAAAVl2rFWmyUtd4KVQlbEqSSrWG9h8e0r6BYb00Uelo7rpUTH35nG7emlUQs2WZ822khY+vS8yujZTyaCMBQCcIlAAAAAAAAACsmmq9qUIpVHG2jSRJTw9PaddTg3rkmXGFzdayZ1qmoes2pdWXz2n7moQMw5DvWkr7joKYJUPG3H7ZwFUmcBSzrZW8LAC45BAoAQAAAAAAAFhRrVakqWq7jVSutdtIlbCp+48Oa+/AkJ4fL3c0tzvhqrcnp1t7skp6jkxTSnuOkr4t15oPjIKYpWzgKu07tJEAYIUQKAEAAAAAAABYEdV6U8VyqGKprubsOkjPjs3oe08N6uHjo6rWl99GMg3pmsvabaQr1yVlGoZ811TacxV4820k05QycVfZwJXn0EYCgJVGoAQAAAAAAACgY1EUaarS0HipptJsG6nWaOrBo6PaMzCoZ0ZLHc3Nxl3t7MlqZz6ntN9uI6U8W0lv8ePrfNdSbraNZJq0kQBgtRAoAQAAAAAAAFi2WqOpYqmuQimcayO9UCjpewcG9dDToyqHzWXPNCS9cWNKffmcrl6fkmka8lxTac9RwrMXtZG64q5ytJEA4KwhUAIAAAAAAABwRqIo0lS1oUIp1Ey1IUmqN1t6+Pio9vQP6cjQdEdz076jW7dl1ZvPKRu4MmbbSKlXtJFMZYOYumgjAcBZR6AEAAAAAAAAYElho6ViOVShFKrRbLeRBicr+t6BU/r+kVHN1Bodzb1qfVK9+Zyu2ZiWZRqKOaZSvqNkzJZptAMjw5C64o5yQUy+SxsJAM4VAiUAAAAAAAAArxBFkaZrDRVmQk3PtpEazZYee3Zcu/sHdfDUVEdzEzFbt/Zk1duT05pkTIYhJTxbXf7iNpLnmMoGrrririzaSABwzhEoAQAAAAAAAJhTb7ZULIUqlEPVG+020sh0VbsODOr+IyOarNQ7mnv52oT68jm96bK0bMuUaxtK+44SniNrQRsp7TvKBq6CGLcuAeB8wp/KAAAAAAAAADRdratQareRokhqtiI9eWJcu/oHdeDFSUXR8mfGXUs3b83ozdu7tS7ltdtIMVvpuC3Pnr81GXNMZeKuMnFHtmWu4FUBAFYKgRIAAAAAAABwiao359dGermNND5T056BQd17aESFctjR3J7uQL35nK7f1CXXNuXMtpGSp7WRUp6jbMJVgjYSAJz3+JMaAAAAAAAAuMTMzK6NNFWtK4qkVhTpJy8Utbt/UD95vqhWB22kmG3q5q0Z9W3v1mVd/lwbKeXb8p3525CObSgbuMrEXTm0kQDggkGgBAAAAAAAAFwCGs2WiuX2Y+3CRkuSNFEOtffgoPYfHNHoTK2juZszvnrzOd24JSPPseRYhlK+o5RnyzLbgZFhSEnPVjZwlfScFbsmAMDZQ6AEAAAAAAAAXMRmag0VS6EmK+02UhRFOvDSpHYdOKUnTxTV7KCO5FqmbtzSpb7t3dqc8WWahgLXVtK3FbintZHirjIBbSQAuNARKAEAAAAAAAAXmUazpYlKu41Uq7fbSNPVuu45NKR9B4c1NFntaO7GtKfefE43b83Id23ZVnsdpJTvyDbnA6OkZyubcJWM2TJm10wCAFzYCJQAAAAAAACAi0Sp1lDhtDbS4aEpfe+pU3riuYLqzeW3kWzT0PWbu9S3PaeeXCDTNOQ7ltJxZ1EbybYMZeKusoEr16aNBAAXGwIlAAAAAAAA4ALWbEWaKIcqlEJVZ9tI5bCh/YeGte/gkF4sVjqauzYZU18+p1u2ZRXEbFmmZtdGchY9vi7h2crGXaV82kgAcDEjUAIAAAAAAAAuQOWw3UaaKLfbSJL09PC0vnfglB57Zly1RmvZMy3D0Js2pdWXz+nytQkZhiHftZT2HQUxS4bagZFlGsoEjrKBq5htreRlAQDOUwRKAAAAAAAAwAWi2Yo0WamrUKqpErYDo2q9qfuPDGvvwJBOjJc7mpsLXPXmc7p1W1Yp35FpSmnPUdK35VrzgVE8ZikXuEp5jkyTNhIAXEoIlAAAAAAAAIDzXCVsqlAOVSyFc22kZ8dmtOvAoH5wbHTuUXfLYRjSNRvbbaQ3rE/KNAz5rqm05yrw5ttIpqm5tZE8hzYSAFyqCJQAAAAAAACA81Brto00XgpVCZuSpFqjqQefHtXegUEdHyl1NLcr7mhnT069PVl1xV2ZppTybCU9Z9Hj63y33UZK+7SRAAAESgAAAAAAAMB5pVpvqlAKVSyHas0Wj04WS/reU4N66OlRlWbDpeUwJF29IaW+fE5Xb0jJMg15rqmU5ygRs2Ua7cDIMKRM4Cobd+W7tJEAAPMIlAAAAAAAAIBzrNWKNFVtt5HKtXZgVG+29PDxUe3tH9LhoemO5qY8W7f25NSXzyobxGSYUtKzlX5FG8lUJu6qK+7Koo0EAHgVBEoAAAAAAADAOVKtN1UshyqW6mq22osjDU5WtOupQX3/6RFNVxsdzX3DuoR68926ZmNKtmUq5hhK+a6Sp7WR0r6jXMJV3OU2IQBgafxNAQAAAAAAAJxFUdReG6lQClWabSM1W5Eee3ZMuw8MauDUVEdzEzFbt2zLqDef09qkJ8OQEp6tLn9xG8lzTGUCVxnaSACAZSBQAgAAAAAAAM6CWqOpYqkdJL3cRhqZrmp3/6DuPzyiiUq9o7mXr0moN5/VmzZ1ybFMubahtO8o4TmyTmsjZQNXQYxbggCA5eNvDwAAAAAAAGCVRFGkqUpDhXKomdnH1zVbkX70fEG7DgzqqRcnFEXLn+s7lm7ellFfPqcNab/dRorZSvm2fGf+lp9rm8oGrjJxR7ZlrtRlAQAuQQRKAAAAAAAAwAoLGy0Vy6EKpVCNZjsxKpRC7ekf1L2HhzVeCjuauy0XV28+pxs2Z+TaphzbUMpzlPJsWWY7MDIMKeU5yiZcJWgjAQBWCH+jAAAAAAAAACsgiiJNVRsqlkJNz7aRWlGkn75Q1K4Dg/rJC0W1OmgjxWxTN21tt5E2ZeJzbaSkbyu+oI3k2MZsG8mVQxsJALDCCJQAAAAAAACA1yFstDRRDlUoh6o32onRZKWuvQOD2n9oWCPTtY7mbsr46u3J6aatGXmOJccylPRtpT1nro0kSSnfViZwlYzZMmbXTAIAYKURKAEAAAAAAADLFEWRpmvtNtJUpTH3Wv9Lk9p14JSePFFUo4M6kmuZumFLl/ryOW3JxmWahuKupZTvKHDnb+XZ1nwbybVpIwEAVh+BEgAAAAAAAHCG6s35tZFebiPNVBu6+9Cg7j44rMHJakdz16c89eVzunlbRnHXlm2110FK+Y7sBW2khGcrG7hKebSRAABnF4ESAAAAAAAA8DNMV+sqluqaqtYVRe020pGhKX3vwKAef3Zc9eby20i2aei6ze02Ur47kGG020jpuKO4a8lQOzCyzNk2UuAoZlsrfWkAAJwRAiUAAAAAAADgVTSaLRXKoYqlusJGS5JUDhvaf3hYdw8M6WSx0tHctcmYentyuqUnq0TMlmVKKd9RynPkWPNtpCBmKRfElPJpIwEAzj0CJQAAAAAAAGCBmdm1kSYr7TaSJB0bmdb3njqlR58ZV202XFoOyzB07aa0evM5XbE2IdMw5LuW0p6jwFvcRsoEjjJxV55DGwkAcP4gUAIAAAAAAMAlr9FsqViuq1gOVau3A6NqvanvHx3W3oFhPTdW6mhuLnC1syerW3tySvuOTFNKe46Svi3Xmg+M4jFLucBVynNkmrSRAADnHwIlAAAAAAAAXLJKtYYKp7WRnhsradeBU/rBsTFV6s1lzzQM6ZqN7TbSVeuSMk1Dnmsq7TlKePZcG8k0pUzcVTagjQQAOP8RKAEAAAAAAOCS0mxFKpZDFUuhqrNtpLDR0oNPj2jvwJCOjcx0NLfLd3RrT1a9+ZwycVeGKaU8WynPUcyeD4x811I2cNXl00YCAFw4CJQAAAAAAABwSSiH7TbSRHm+jXSyWNauA6f04NOjKtWW30aSpKvXJ9W3Pac3bkjLMg3FHFNp31EiZss02oGRYUhdcUe5ICbfpY0EALjwECgBAAAAAADgotVsRZoohyqWQ1XCdhup3mzp4eNj2jMwqCOD0x3NTXq2bt3WbiN1J2IyzPZr6dPaSJ5jtttIcVcWbSQAwAWMQAkAAAAAAAAXnUrYVGH2sXYvt5EGJyvadWBQDxwd0VS10dHcK9cl1NuT07WXpWVbpmKOoZTvKnlaGyntO8olXMVdbr8BAC4O/I0GAAAAAACAi0KrFWmiUlehFKoSth9f12xFeuzZMe3pH9TAS1OKOpgbdy3dui2rvnxOa1OeDENKeLbSvi3Pnr+9FpttI2VoIwEALkIESgAAAAAAALigVetNFUrtx9q12k+109hMVbsODOq+IyOaKNc7mpvvDtSbz+m6TV1ybVOubSjlO0p6jqzT2kjZwFUQ41YbAODixd9yAAAAAAAAuOC0WpEmK3UVyqHKtXYbqRVFevLEuHYfGNJTL06o1UEdyXcs3bw1o958Thu7/HYbKWYr5dvynflbaa79chvJkW2ZK3VZAACctwiUAAAAAAAAcMF4tTZSoVzTngNDuvfwsMZLYUdzt2Tj6svndMOWLsVsS45tKOU5Snm2LLMdGBmGlPIcZYJ2SwkAgEsJgRIAAAAAAADOa1E020YqhSrNtpGiKNJPX5jQrv5T+vHzxY7aSDHb1I1bMurL57Q5G5dhSIFrKxW3FV/QRnJsQ9m4q0zgyqGNBAC4RBEoAQAAAAAA4LxUa8y2kUp1NWcTo8lKqH0Dw9p/aEjD07WO5l7W5akv362btmbkOZYcy1DSt5XyHNnmfGCU9GxlE66SMVvG7JpJAABcqgiUAAAAAAAAcN6IokhTlYYK5VAz1cbca/0vTWpX/6CefK6gRgd1JMcydMPmLvXlu7U1F5dpGoq7llK+o8Cdv0VmW8bs2kiuXJs2EgAALyNQAgAAAAAAwDkXNlpzayM1mu3AaKbW0N0Hh3TPwSGdmqx2NHddKqa+fE43b80qiNmyrfY6SCl/cRsp4dnKBq5SHm0kAABeDYESAAAAAAAAzokoijRVbahYCjW9oI10ZGhKuw4M6rFnx1VvLr+NZJmGrtuUVl++W9vXBDKMBW2kmCVDxtx+2cBVJnAUs60VvTYAAC42BEoAAAAAAAA4q8JGS8VyqEJpvo1UCZu65/CQ7j44pJOFSkdzuxOuevM53botq6TnyDLn20iONd9GCmKWckFMKZ82EgAAZ4pACQAAAAAAAKsuiiJN19ptpKlKY+714yPT+pcDp/TY8XFVG61lzzUN6drL0urN53TluqRMw5Dvmkp7rgJvvo1kmppbG8lzaCMBALBcBEoAAAAAAABYNfVmS8VSqEI5VL3RbiPVGk3df2RE+waG9OxYqaO5mbij3nxOO3tySvuOTFNKebZSviPXmg+M4jFL2bg7uw9tJAAAOkWgBAAAAAAAgBU3Xa2rWKprqlpXNLsM0omxGX3vwKB+cGxMlXpz2TMNSW/cmFJfPqer16dkmoY811Tac5Tw7EVtpK64q1xAGwkAgJVCoAQAAAAAAIAV0Wi2VCiHKpbqCmcfX1dvtvTA0+020tPDMx3NTfuObt2WVW8+p2zgyni5jeQ5itnzgZHvmsoGMXXRRgIAYMURKAEAAAAAAOB1mak1VJgJF7WRXiyW9b0Dp/TQ02OaqTWWHvAarlqfVF8+px0b07JMQzHHVNp3lIjZMo12YGQYUlfcUS6IyXdpIwEAsFoIlAAAAAAAALBsjWZLxXJdxXKoWr0199rDz4xqT/+QDg9OdzQ3EbPn2khrkjEZhpT0baVPayN5jqls4Kor7sqijQQAwKojUAIAAAAAAMAZK9UaKpRCTVbm20iDkxXt7h/U94+MaKraWRvpirUJ9eZzetNladmWqZhjKOU5SnrOojZS2neUS7iKu9zWAgDgbOJvXgAAAAAAACyp2YpULIcqlkJVZ9tIzVakx58d056BIfW/OKmog7lx19It27Lqy+e0LuXJMNoNpXTclmfP37aKvdxG8h3ZlrlCVwUAAJaDQAkAAAAAAACvqhw2ND6zuI00OlPV7v4h3X94WMVyvaO5PblAvdtzun5Tl1zblGsbSvntNpJ1WhspE7hKxLiFBQDAucbfxgAAAAAAAJjTbEWaKIcqlkNVwnYbqRVFevJEQXv6B/WvJyfU6qCO5DmmbtqSUd/2bl3W5c+1kVK+Ld+Zv0Xl2qYygaNs3KWNBADAeYRACQAAAAAAAKqETY2Xapooz7eRCqWa9g4M6d7DwxqbCTuauznrq6+nWzdu6VLMseRY7TZSyrNlme3AyDCkpGcrG7hKes5KXRIAAFhBBEoAAAAAAACXqFYr0kSlrkIpVCVsSpKiKNJPXihqT/+gfvzChJod1JFc29SNm7vUt71bW7JxGYYUuLZScVvxBW0kxzaUjbvKBK4c2kgAAJzXCJQAAAAAAAAuMdV6U+OlUBPlUK32U+00VQ21b2BI9xwa1vBUraO5G9Oe+vI53bQ1K9+1ZFuabSM5ss35wCjp2comXCVjtozZNZMAAMD5jUAJAAAAAADgEtBqRZqs1FUohyrX5ttI/acmtfvAoJ48UVC9ufw2km0aumFLl3rzOfXkApmmobhrKeU7Ctz5W0+2ZSgbuMrEXbk2bSQAAC40BEoAAAAAAAAXsWq9qUIpVHFBG2mmVtc9B4d1z6EhvTRR7WjuumRMvfmcbtmWVRCzZZnzbaSFj69LzK6NlPJoIwEAcCEjUAIAAAAAALjIRFG7jTRemm8jSdLhoUntempQjz9bUNhsLXuuZRh606a0+rbndPmahAzDkO9aSvuOgpglQ+3AyDJn20iBo5htrdh1AQCAc4dACQAAAAAA4CJRa8y2kUp1NVvtx9dV6g3tPzSiuw8O6YVCuaO5ucBVbz6nnT1ZJT2n3UbyHCV9W641HxgFMUvZwFXad2gjAQBwkSFQAgAAAAAAuIBFUaSpSkPjpZpKC9pIx0emtevAoB55ZkzV+vLbSKYhXbOx3Ua6cl1SpmHId02lPVeBN99GMk0pE3eVDVx5Dm0kAAAuVgRKAAAAAAAAF6Bao6liqa5iOVSjGc29dv+RdhvpmdFSR3MzcUc7e9ptpK64K9OUUp6tpLf48XW+ayk320YyTdpIAABc7AiUAAAAAAAALhBRFGmq2lChFGqm2ph7/cT4jHYdGNQPjo2pHDaXmPDqDElXb0ipL5/T1RtSskxDnmsq7TlKePaiNlJX3FWONhIAAJccAiUAAAAAAIDzXNhoqVgOVSjNt5HqzZYeeHpE+waG9PTwTEdzU56tW3ty6stnlQ1iMmbbSKlXtJFMZYOYumgjAQBwySJQAgAAAAAAOA9FUaTpWkOFmVDTC9pILxXL+t6BU3rw6THN1BpLTHhtb1iXUG++W9dsTMm2TMUcUynfUTJmyzTagZFhSF1xR7kgJt+ljQQAwKWOQAkAAAAAAOA8Um+2VCyFKpRD1RvtNlKzFekHx0e1t39IhwanOpqbiNm6ZVtGfflurUnGZBhSwrPV5S9uI3mOqWzgqivuyqKNBAAAZhEoAQAAAAAAnAemq3UVSu02UtTOkTQ0WdGu/kE9cHRUk5V6R3O3r0moL5/Tmzal5VimXNtQ2neU8BxZC9pIad9RNnAVxLhdBAAAXolPCAAAAAAAAOdIo9lSoRyqWKorbLQktdtIjz87pr0DQzrw0uRcuLQcvmPplm0Z9eZz2pD2222kmK103JZnz98OijmmMnFXmbgj2zJX6rIAAMBFiEAJAAAAAADgLJuZXRtpqlqfC4xGZ2ra0z+o+w4Pq1jurI20LRdXbz6nGzZn5NqmnNk2UvK0NlLKc5RNuErQRgIAAGeITw0AAAAAAABnQaPZUrFcV7EcqlZvt5FaUaQfPV/QngND+unJolodtJFitqmbtmbUl89pUyY+10ZK+bZ8Z/7Wj2ubygSOMnFXDm0kAACwTARKAAAAAAAAq6hUa6hQCjVZmW8jFcqh9vYP6t7DwxqbCTuauynjqy+f041bMvIcS45lKOU7Snm2LLMdGBmGlPRsZQNXSc9ZqUsCAACXIAIlAAAAAACAFdZsRSqWQxVK822kKIr0rycntKt/UD9+vqhmB3Uk1zJ1w5Yu9eVz2pKNyzQNBa6tpG8rcOdv8zi2oWzcVSagjQQAAFYGgRIAAAAAAMAKKYcNjc8sbiNNVerae3BI9x4a1tBUtaO5G9KeevM53bI1I9+1ZVvtdZBSviPbnA+Mkp6tbMJVMmbLmF0zCQAAYCUQKAEAAAAAALwOzVakidk2UnVBG2ng1KR29w/qh88VVG8uv41km4au29xuI+W7A5mmId+xlI47i9pItmUoG7jKxF25Nm0kAACwOgiUAAAAAAAAOlAJmxov1TRRnm8jzdTquufQsPYfGtaLxUpHc9cmY+rtyemWnqwSMVuWqdm1kZxFj69LeLaycVcpnzYSAABYfQRKAAAAAAAAZ6jVijRRqatQqqkStuZePzw0pd0HTumxZwsKG60lJrw6yzB07aa0+vI5Xb42IdMw5LuW0r6jIGbJUDswskxDmcBRNnAVs60Vuy4AAICfhUAJAAAAAADgZ6jWmxovhZooh2rN5kWVekP3HhrW3YeG9fx4uaO5ucDVzp6cdvZklfIdmaaU9hwlfVuuNR8YxWOWcoGrtO/QRgIAAOcEgRIAAAAAAMCraLUiTVbqGi+FqoTNudePjUxr94FBPfrMmCr15beRDEO6ZmO7jfSGdcn22kiuqbTnKvDm20imKWXirrKBK8+hjQQAAM4tAiUAAAAAAIAFqvWmCqVQxQVtpFqjqfsPj+ieQ0M6PlrqaG6X72hnT1Y78zll4q5MU0p5tpKes+jxdb4730YyTdpIAADg/ECgBAAAAAAALnlRNN9GKtfm20gnxme0+8CgHjo2pvKCltKZMiRdtT6pvu05vXFDWpZpyHNNpTxHiZgtc/bxdYYhZQJX2bgr36WNBAAAzj8ESgAAAAAA4JJVa8y2kUp1NVuRJClsNvXQ02Pad3BIR4emO5qb9Gzdui2r3nxO3YmYDLP9WvoVbSRT2SCmtO/Ioo0EAADOYwRKAAAAAADgkhJFkaYqDY2XaiotaCO9WCxrd/+gHjw6qulao6PZV65NqHd7TtduTMu2TMUcQynfVfK0NlJX3FE2cBV3uTUDAAAuDHxqAQAAAAAAl4Rao6liqa5CKZxrIzVbkR4+Pqq9A0M6dGpKUQdzA9fSLduy6svntDblyTCkhGery1/cRvIcU5nAVSbu0kYCAAAXHAIlAAAAAABw0YqiSFPVhgqlUDPV+dbR0FRFuw8M6oGjo5qo1DuavX1NoN58Ttdt6pJjmXJtQ2nfUcJzZC1oI6X9dhspiHEbBgAAXLj4JAMAAAAAAC46YaOlYjlUoRSq0ZxvIz327Jj2DQzpwEuTijqoI/mOpZu2ZtSXz2ljl99uI8VspeO2PHv+Notrm8oGrjJxR7ZlrtRlAQAAnDMESgAAAAAA4KIQRZGmaw0VZkJNL2gjjc1Utbt/UN8/MqrxUtjR7K25uHp7crphS5ditiVnto2UPK2NlPIcZROuErSRAADARYZPNwAAAAAA4IJWb7ZULIUqlEPVG+3aURRFevL5gvb0D+mnLxTV6qCNFLNN3bil3UbanI3PtZGSvq24M39LxbGN2TaSK4c2EgAAuEgRKAEAAAAAgAvSdLWuQqndRnr58XXFUk17B4Z075ERjU7XOpp7WZevvnxON23NyHMsOZahpG8r7TmyzPnAKOXbygaukp6zEpcDAABwXiNQAgAAAAAAF4x6s702UrFUV9hoSWq3kf71ZFG7+4f0o+eLanZQR3IsQzds7lLf9m5tzcZlmobirqWU7yhw52+f2JahXOCqK+7KtWkjAQCASweBEgAAAAAAOO/NzK6NNFWtz7WRJqt13T0wqHsPj2hwstrR3PUpT735nG7emlEQs2Vb7XWQUr4je0EbKenZygSuUp4tY3bNJAAAgEsJgRIAAAAAADgvNZotFcvtx9otbCMNnJrUnv4hPfHcuOrN5beRLNPQ9Zu61JvPafuaQIbRbiOl469sI2XirrIBbSQAAAACJQAAAAAAcF4p1RoqlEJNVubbSDO1uvYfGtb+Q8M6Wax0NHdNIqad+axu3ZZV0nNkmVLKd5TyHDnWfGAUxCzlgphSPm0kAACAlxEoAQAAAACAc67ZilQshyqUQtXqrbnXjwxNadeBQT3+7LhqjdYSE16daUjXXpZWX75bV6xLyDQM+a6ltO8oiFky1A6MLNNQJnCUibvyHGvFrgsAAOBiQaAEAAAAAADOmXLY0PjM4jZSJWzo3iMjuufgkE6Mlzuam4k76s3ntLMnp7TvyDSltOco6dtyrfnAKB6zlAtcpTxHpkkbCQAA4LUQKAEAAAAAgLOq2Yo0MdtGqi5oIx0fmdau/kE9enxclXpz2XMNSTs2ptSbz+nq9SmZpiHfNZXyHCU8e66NZJqaWxuJNhIAAMCZIVACAAAAAABnRSVsarxU00R5vo1UazR1/5ER3XNoWMdHZjqam/Yd7ezJqrcnp0zgyjCllGcr5TmK2fOBke+220jtxhJtJAAAgOUgUAIAAAAAAKum1Yo0UamrUKqpEs63kU6Mz2h3/6B+cGxMpdry20iSdNX6pPryOe3YmJZlGoo5ptK+o0TMlmm0AyPDkDKBq2zcle/SRgIAAOgUgRIAAAAAAFhx1XpT46VQE+VQrdkcqd5s6qGnx7Tv4JCODE13NDfp2bpla1Z923PqTsRkmO3X0qe1kTzHVDZw1RV3ZdFGAgAAeN0IlAAAAAAAwIpotSJNVuoaL4WqhPOtoxeLZe3uH9RDT49qqtroaPYVaxPqzef0psvSsi1TMcdQyneVPK2NlPYd5RKu4i63PAAAAFYSn64AAAAAAMDrUq03VSiFKi5oIzVaLT1ybFz7Dg7q4KkpRR3MjbuWbtmWVV8+p3UpT4YhJTxbXf7iNlJsto2UoY0EAACwagiUAAAAAADAsrVakaaq7TZSecEaSIOTZe3tH9L3j45qolLvaHZPd6C+fE7XbeqSa5tybaO9NpLnyDqtjZQNXAUxbm8AAACsNj5xAQAAAACAM1atN1UshyqW6mq22r2jZtTS488UtO/gkA68OKFWB3UkzzF189Z2G2ljl99uI8VspXxbvjN/+8K1X24jObItc6UuCwAAAD8DgRIAAAAAAFhSFEWaqjQ0XqqptKCNNDpd1d6BId1/ZETjpbCj2Zuzvvp6unXjli7FHEuObSjlOUp5tiyzHRgZhpTyHGUTrhK0kQAAAM4JPoUBAAAAAIBXVWs0VSzVVSiFc22kVtTSj54vam//kH56cmLu9eVwbVM3bu5S3/ZubcnGZRhS4NpKxW3FF7SRHNuYWxvJoY0EAABwThEoAQAAAACAOVEUaaraUKEUaqbamHu9WK5p78CQ7js8opHpWkezN6Y99eVzumlrVr5rybEMJX1bac+ZayNJUsq3lQlcJWO2jNk1kwAAAHBuESgBAAAAAACFjZaK5VCFUqhGs906iqJIPz05ob0Dg/rRiaIaHbSRbNPQDVu61Jfv1rZcXKZpKO5aSvmOAnf+toRtzbeRXJs2EgAAwPmGQAkAAAAAgEtUFEWarjVUmAk1vaCNNFkJdffBdhvp1GS1o9nrkjH15nO6ZVtWQcyWbbXXQUr5juwFbaSEZysbuEp5tJEAAADOZwRKAAAAAABcYurNloqlUIVyqHpjvnV04KUJ7esf0hPPFRQ2W8uea5mGrtuUVl8+p+1rEjKMdhspHXcUdy0ZMub2ywauMoGjmG2t2HUBAABg9RAoAQAAAABwiZiu1lUotdtI0WyONFOr655Dw7r38LBOFiodze1OuNrZk9POnqySniPLlFK+o5TnyLHm20hBzFIuiCnl00YCAAC40BAoAQAAAABwEas359dGWthGOjw0qb39Q3r0mXHVGstvI5mGdM3GtPq253TluqRMw5DvWkp7jgJvcRspEzjKxF15Dm0kAACACxWBEgAAAAAAF6GZ2bWRpqr1uTZSud7Q/YdHdM+hYT03VupobibuzLWRuuKuTFNKebZSviPXmg+M4jFLucBVynNkmrSRAAAALnQESgAAAAAAXCQazZaK5fZj7cIFraPjI9Pa3T+oR58ZVzlsLnuuIemNG1Pqzed09fqULNOQ55pKe44Snj3XRjJNqSvuKhfQRgIAALjYECgBAAAAAHCBK9UaKpRCTVbm20jVRlMPHGm3kY6NzHQ0N+XZ2tmTU28+q2wQk/FyG8lzFLPnAyPftZQNXHX5tJEAAAAuVgRKAAAAAABcgJqtaG5tpFp9vo10YnxGu/uH9PCxMc3UGh3NfsO6pHrzOV17WVqWaSjmmEr7jhIxW6bRDowMQ+qKO8oFMfkubSQAAICLHYESAAAAAAAXkHLY0PjM4jZS2GjqoWNjuufQkA4PTnc0NxGzdcu2jPry3VqTbLeRkp6t9GltJM8x222kuCuLNhIAAMAlg0AJAAAAAIDzXLMVaWK2jVRd0EZ6sVjWnoFBPXh0VFPVztpI29ck1JfP6U2b0nIsUzHHUMp3lTytjZT2HeUSruIutxIAAAAuRXwKBAAAAADgPFUJmxov1TRRnm8j1ZstPfrMmPYdHNLBU1Nzry+H71hzbaT1aU+GISU8W2nflmfP3yqIvdxG8h3ZlrlCVwUAAIALEYESAAAAAADnkVYr0kSlrkKppko430Yamqxoz8CgHjg6qmK53tHsbbm4+vI5Xb85I9c25dqGUr6jpOfIOq2NlA1cBTFuGwAAAKCNT4YAAAAAAJwHKmFThXKoiXKo1myO1Gi19MSzBd19aEhPnZxQq4M2Usw2dfPWjPryOV2WibfbSDFbKd+W78zfFnBtU5nAUTbu0kYCAADAKxAoAQAAAABwjrRakSYrdY2XQlXC5tzrI9NV7RsY1PePjmpsJuxo9qaMr758TjduychzLDm2oZTnKOXZssx2YGQYUtKzlQ1cJT1nRa4JAAAAFycCJQAAAAAAzrJqvalCKVRxQRupFbX0oxNF7Ts4pJ+8MKFmB3Uk1zJ1w5Yu9eVz2pKNyzQNBa6tVNxWfEEbybENZeOuMoErhzYSAAAAzgCBEgAAAAAAZ0GrFWmq2m4jlWvzbaRCuaa7B4Z035ERDU/VOpq9Ie2pN5/TLVsz8l1btiWlfEcpz5FtzgdGSc9WNuEqGbNlzK6ZBAAAAJwJAiUAAAAAAFZRtd5UsRyqWKrPtY5aUUtPnZzUnoEh/fj5gurN5beRbNPQ9ZvbbaSe7kCmaSjuWkr5jgJ3/uu+bRnKBq4ycVeuTRsJAAAAnSFQAgAAAABghUVRpKlKQ+OlmkoL2kiTlVD3HBrWfYeH9dJEtaPZa5OxdhtpW1aJ2GwbyXOU8he3kRKzayOlPNpIAAAAeP0IlAAAAAAAWCG1RlPFUl2FUjjXRooUaeClKe3pH9QPTxQUNlrLnmsZhq7dlNab8zltX5uQaSxoI8UsGWoHRpY520YKHMVsa0WvDQAAAJc2AiUAAAAAAF6HKIo0VW2oUAo1U23MvT5Tq2v/oWHde3hELxTKHc3OBa529uS0syerlO/IMufbSI4130YKYpaygau079BGAgAAwKogUAIAAAAAoANho6ViOVShFKqxYA2kI0PtNtJjz46rWl9+G8kwpGs2ptWXz+kN65IyTUO+ayrtuQq8+TaSaUqZuKts4MpzaCMBAABgdREoAQAAAABwhl5uIxVLoaYXtJHKYUP3HRnWvYdG9OxYqaPZXb6jnT1Z7cznlIm7Mk0p5dlK+Y5caz4w8l1Ludk2kmnSRgIAAMDZQaAEAAAAAMDPUG+2VCyFKpRD1RvzbaRjI9Pa2z+kR54ZUzlsLnuuIenqDUn15rv1xg0pWaYhzzWV9hwlPHtRG6kr7ipHGwkAAADnCIESAAAAAACvIooiTdfm20jRbI5UrTf0/aOjuvfQsJ4emelodtKztXNbVr35nHKJmIyX20ieo5i9sI1kKhvE1EUbCQAAAOcYgRIAAAAAAAvUm/NrIy1sI50Yn9Ge/iH94NiYZmqNJSa8tivXJdSbz+najWnZlqmYYyrlO0rGbJlGOzAyDKkr7igXxOS7tJEAAABwfiBQAgAAAABA0nS1rmKprqlqfa6NFDZbeujpUe0/NKTDg9OKlh7xqgLX0i3bsurL57Q25ckwpKRvK31aG8lzTGUDV11xVxZtJAAAAJxnCJQAAAAAAJesRrOlYrmuQilU2GjNvf5isaQ9/UN66NiYJiv1jmbn1wTqy+d03aYuOZapmGMo5TlKeI6sBW2ktO8oG7gKYnxFBwAAwPmLT6sAAAAAgEvOzOzaSJOVxW2kx54Z090HhzVwanLu9eXwHUs3b82ob3tOG9K+DENKxGyl47Y8e/4reMwxlYm7ysQd2Za5QlcFAAAArB4CJQAAAADAJaHRbGmi0m4j1erzbaTBqbL29g/rgaMjKpY7ayNtzcbVl8/p+i1ditmWHNtQ2neUPK2NlPIcZROuErSRAAAAcIHhEywAAAAA4KJWqjVUOK2N1Gi19MRz47r74LCeOjmhVgdtpJht6qYtGfVuz2lzJj7XRkr5tnxn/uu2a5vKBI6ycZc2EgAAAC5YBEoAAAAAgItOsxVpohyqUApVXdBGGp2uau/BIT1wdFSj07WOZl/W5asvn9NNWzPyHEuOZSjlO0p5tiyzHRgZhpT0bGUDV0nPWZFrAgAAAM4lAiUAAAAAwEWjHLbbSBPl+TZSs9XSj14o6u6BIf3khQk1O6gjOZahGzZ3qW97t7Zm4zJNQ4FrK+nbCtz5r9aObSgbd5UJXDm0kQAAAHARIVACAAAAAFzQXm4jFcuhKuF8G6lQqunuQ0O6//CohqaqHc1en/LUm8/plm0ZxV1bttVeBynlO7LN+cAo6dnKJlwlY7aM2TWTAAAAgIsJgRIAAAAA4IJUCZsqlEMVS+GiNtKBFye19+CQfnSioHpz+W0k2zR03aa0+rZ3K98dyDQN+Y6ldNxZ1EayLUPZwFUm7sq1aSMBAADg4kagBAAAAAC4YLRakSYqdRVKoSphc+71iXKo/YeHdd/hEb00Uelo9ppETL35nG7dllXCs2WZml0byVn0+LqEZysbd5XyaSMBAADg0kGgBAAAAAA471XrTRVK7cfatWafahcp0sBLk9o7MKQfPldQrdFaesirMA3p2su61JfP6Yp1CZmGId+1lPYdBTFLhtqBkWUaygSOsoGrmG2t5KUBAAAAFwQCJQAAAADAeanVijRZqatQDlWuzbeRpquh7j08ovuOjOj58XJHs7OBq509We3sySntOzJNKe05Svq2XGs+MIrHLOUCV2nfoY0EAACASxqB0jnw3HPP6f7779fo6Kg2btyot7zlLerp6VnVY4ZhqB/+8IcaGBhQoVCQ7/vatGmT3vzmN+uyyy5b1WMDAAAAwHJU600Vy6EKpcVtpKOD09ozMKTHnh1Ttb78NpJhSDs2pNSbz+nq9an22kiuqbTnKvDm20imKWXirrKBK8+hjQQAAABIBEpn1UsvvaSPf/zj+s53viPTNNXd3a3R0VFFUaTbb79df/u3f6v169ev6DHr9bo+//nP66677tL4+Lhs29aaNWtUqVQ0MTEhSXrXu96lL3zhC7r22mtX9NgAAAAAcKaiaLaNVApVWtBGKocN3X9kRPceHtYzo6WOZqd9Rzt7surtySkTuDJNKeXZSnrOosfX+e58G8k0aSMBAAAACxEonSVPPPGEbr/9dg0PD+uDH/yg7rrrLq1du1YTExP69Kc/rb/6q7/SI488ov379+u6665bkWNOTEzo3e9+t5544gmtW7dOX/nKV/T+979fQRBIko4cOaL/9t/+m7797W/rgQce0Fe/+lV94AMfWJFjAwAAAMCZqDWaKpbaQVKzFUlqt5GOj8xob/+QHn1mTKWw+TOmvLqr1ifVl89px8a0LNOQ55pKeY4SMVvm7OPrDEPKBK5ytJEAAACAJREonQWHDh3Su9/9bk1MTOhd73qXvv71r889e7urq0t/+Zd/qbGxMX3zm9/UO9/5Tj366KPavn376zpmFEV6//vfryeeeEJr167V448/rm3bti3a56qrrtK3vvUt+b6vr3zlK/rVX/1V5fN53XTTTa/r2AAAAACwlCiKNFVpqFAONVNtzL1eCRt68Nio9h8a1tPDMx3NTnq2btmWVV8+p+5ETIbZfi39ijaSqWwQU9p3ZNFGAgAAAH4mI4qi6FyfxMWsXq/r5ptv1oEDB2RZlo4ePfqqYdELL7yg7du3q9Fo6LbbbtMDDzzwuhZ8/ad/+ifdcccdkqS//uu/1p133vma+w4PD2vjxo1qtVp629vepnvvvbfj475eBw8e1DXXXDO3PTAwoB07dpyz8wEAAACwcsJGa25tpEZz/qvoc+PtNtIjx8c0tSBgWo4r1ibUm8/pTZelZVumYo6hlO8qeVobqSvuKBu4irv8+0oAAABcWM71/XM+Qa+yu+66SwcOHJAk/eIv/uJrNo+2bNmid77zndqzZ48eeugh/d3f/Z1+67d+q+PjfuMb35j7+ed//ueX3HfdunW66qqrdOjQIX3/+99XtVqV53kdHxsAAAAAXhZFkaaqDRVLoaYXhEW1RlM/ODaq/YdHdPjUlDr5l45x15prI61LeTIMKeHZ6vIXt5E8x1QmcJWJu7SRAAAAgA4RKK2iSqWiL3zhC3Pbt99++5L7v+c979GePXskSZ/73Of0kY98pOOW0tNPPz3388zMz35URCqVkiS1Wi1NTExo/fr1HR0XAAAAAKTXbiOdLJa1b2BQDz09polKvaPZ+e5AvfmcrtvUJdc25dqG0r6jhOfIWtBGSvvtNlIQ46svAAAA8HrxqXoVffe739XIyMjcdm9v75L7v/Wtb537+cSJE7rnnnv0rne9q6NjL2wY7du3T7fccsuS+w8NDUmSstms1q5d29ExAQAAAFzaoijSdK3dRpqqzLeR6s2mHnlmXPsPDWvgpUm1OqgjeY6pm7e220gbu/x2GylmKx235dnzX21d21Q2cJWJO7ItcyUuCwAAAIAIlFbVt771rbmfLcvSVVddteT+V155pWKxmGq1miTpm9/8ZseB0o4dO/TjH/9YkvQXf/EX+q3f+i2tW7fuVfc9fvy4Tpw4IUn68Ic/LNPkSxcAAACAM1dvtlQshSqUQ9Ub82nRqcmy7h4Y1oNPj2q8FHY0e0s2rr58Tjds7lLMseTMtpGSp7WRUp6jbMJVgjYSAAAAsCr4pL1KoijSQw89NLe9ceNG2fbSv9y2baunp0dHjhyRJD3++OMdH/83f/M39Q//8A+SpEKhoPe9733av3+/4vH4K/b98z//c0nS9u3b9Ud/9EcdHxMAAADApWW6WlexVNdUta5oNkdqNJt64kRR9xwc0lMvTqrZQR3JtU3dtKVLvflubcnG59pISd9W3Jn/XuXYxmwbyZVDGwkAAABYVQRKq+TYsWMqFotz25s3bz6j961bt24uUDp69Kimpqbm1jdajre+9a16xzveof3790uSHn30Uf3cz/2c/vmf/1kbN26c2+///t//q7/9279VPp/X3XffrXQ6vexjAQAAALh0NJotFcqhiqW6wkZr7vWR6YruPjis7x8d1eh0raPZG9Oe+vI53bQ1K9+15FiGkr6ttOfIWvAkhZRvKxu4SnrO674eAAAAAGeGQGmVHD9+fNH2mQZK2Wx27ucoinT8+HHdeOONHZ3D1772Nb3lLW/R0aNHJUk/+tGPdMstt+if//mfdfPNN2vfvn36tV/7Nb3rXe/SV7/6VXV3d3d0nNcyMjKi0dHRZb3n9F83AAAAAOeHmdm1kSYrC9pIrZZ+8kJRdw8M6ScvTKjRQRvJNg3dsKVLfflubcvFZZqG4q6llO8ocOe/stqWoVzgqivuyrVpIwEAAABnG4HSKnnhhRcWbZ9pyygWiy3aXthyWq41a9bovvvu0zve8Q4dPnxYknTq1CnddtttuvPOO/WVr3xFf/7nf67f/u3fljH77PGV9Dd/8zf6zGc+s+JzAQAAAJwdjWZLxXJdxXKoWn2+jTRequqegyP6/tERDU5WO5q9LhVTb09Ot2zLKojZsq32Okgp35G9oI2U9GxlAlcpz16V7y0AAAAAzgyB0iqZnp5etP1qaxe9Gtd1F21PTEy8rvO47LLL9IMf/EDvf//79eCDD0qSKpWKvvjFL+qKK67QW9/6Vr6UAQAAAFikVGuocFobqRlFOnCyqH0Hh/WjE0WFzdbSQ16FZRq6blNaffmctq9JyDDabaR0/JVtpEzcVTagjQQAAACcLwiUVkm1uvhf6Z1poFSv1xdtVyqV130uuVxO3/jGN7Rjxw6Zpqnx8XFJ7XWebr31Vv3jP/6jbr/99td9HAAAAAAXrmYrUrEcqlgKVV3QRpqohNp/aFj3HxnRi8XOvp90J1z19uR0a09WSc+RZUop31HKc+RY84FRELOUC2JK+bSRAAAAgPMNgdIq8Txv0bZlWWf0vtMDJd/3X/e5/PCHP9T73/9+ffjDH9Yf//Ef60Mf+pD27t0rSZqZmdH73vc+/dmf/Zn+y3/5L6/7WAvdeeed+sAHPrCs9xw/fly/9Eu/tKLnAQAAAOC1lcN2G2miPN9GakWRDp6a0t6BQf3wuYJqjeW3kUxDuuaydhvpynVJmYYh37WU9h0FMUuG2oGRZRrKBI6ygauYfWbfmwAAAACcfQRKqySZTC7aPr2x9FpO3+/0Ocv1L//yL/rgBz+of/fv/p2+8IUvSJJ27dql3/3d39Vdd90lSWq1Wvr4xz+uMAz1e7/3e6/reAutXbtWa9euXbF5AAAAAFZGsxVpohyqWA5VCefDoqlqqPuOjOj+wyM6MV7uaHYm7mhnT047e7LqirsyTSntOUr6ttwF/9AuHrOUC1ylPEemSRsJAAAAON8RKK2SNWvWLNo+00CpWCwu2t60aVPH57B//379yq/8ihKJhP7yL/9y7nXTNPUXf/EX2rBhg37/939/7vVPfepTuvrqq/Xe976342MCAAAAOH9VwqbGS7VXtJGeHp7W3oEhPf7suMphc9lzDUlv3JhSbz6nq9enZJmGfNdUynOU8Oy5NpJpam5tJM+hjQQAAABcSAiUVsmOHTsWbQ8PD5/R+xYGSqZpatu2bR0df2RkRB/84AdVr9f167/+66/aFPrUpz4lx3H0yU9+UpIURZF++7d/W88884xisVhHxwUAAABwfmm1Ik1U6iqUQlUWhEUztboeODqqew8P65nRUkez076jW7dl1ZvPKRu4Mkwp5dlKec6ix9f5bruNlPZpIwEAAAAXKgKlVXLFFVfI931VKu1Fa1988cUzet/C/Xbs2KF4PN7R8T/72c+qUChIkn7lV37lNff73d/9XQ0NDc09Du+ll17St7/9bf36r/96R8cFAAAAcH6o1psaL4WaKIdqzT7VLlKkZ0ZmtHdgSI88M6ZSbfltJEl6w7qk+rbndM3GtCzTUMwxlfYdJWK2TKMdGBmGlAlcZeOufJc2EgAAAHChI1BaJZZl6Rd+4Re0e/duSdKxY8d+5nvGxsY0NTU1t33bbbd1dOwoivT1r399bvvyyy9fcv/Pfe5zuueee/TUU09Jku69914CJQAAAOAC1GpFmqzUVSiHKi8Ii8phXQ8dG9O9h0Z0dHi6o9mJmK1btmXVl89pTTImw5SSnq30K9pIpjJxV11xVxZtJAAAAOCiQaC0in75l395LlAaGxvT888/r61bt77m/ocOHVq0/YEPfKCj446MjGhsbGxuu7u7e8n9LcvSJz7xCf3H//gfJUlDQ0MdHRcAAADAuVGtN1UohSqe1kZ6fqysvQODevj4mKaqjY5mX742od6enK7blJZtmYo5hlK+q+RpbaS07yiXcBV3+ZoJAAAAXIz4pL+K7rjjDv3e7/3e3LpIDz/88JKB0uOPPz738xVXXNFxQ+n09Y8mJia0Zs2aJd9z/fXXz/2cyWQ6Oi4AAACAsyeKZttIpXDRo+uq9aYeOT6m/YeHdWhwSlG0/Nlx19LNWzPqy3drfdqTYUgJz1aXv7iNFHNMZQNXGdpIAAAAwEWPQGkVJZNJfexjH9NnPvMZSdJ3vvMd/eqv/upr7r9v3765n//wD/9QhtHZF7Kuri7l83k9++yzkqQnnnhC733ve8/4/b29vR0dFwAAAMDqqzVm20ilupqtdloUKdLJQkV3HxzSD46NqliudzS7JxeoN5/V9Zszcm1Trm2010byHFmntZGygasgxldKAAAA4FLBp/9V9slPflJf/vKXdfLkSe3du1eDg4PasGHDK/Y7duyYHnzwQUntQOc3fuM3XnVetVrVN77xDU1NTemOO+541VmS9NGPflSf+tSnJEn/+3//758ZKL0cZiWTSX3oQx864+sDAAAAsPqiKNJUpaFCOdTMgkfX1RpNPf7suPYfGlb/S5NqddBGitmmbtqa0ZvzOV2WibfbSDFbKd+W78x/ZXTtl9tIjmzLXInLAgAAAHABIVBaZclkUv/4j/+ot73tbapWq/rjP/5j/f3f//2ifRqNhu688061Wi2tWbNGX/va12Sar/4F7e1vf7seeeQRSdJnP/tZ9ff3a926da/Y72Mf+5i++c1v6qc//al27dqlv/u7v9NHPvKRV5159OhRff7zn5ckffGLX3zVeQAAAADOvrDRmlsbqdGcT4sGJyvaNzCkB58e1Xgp7Gj25oyv3nxON27JyHMsObahlOco5dmyZr+PGIaU8hxlE64StJEAAACASxr/rOwsuO222/QP//APchxHX/7yl/XJT35SMzMzkqSDBw/qHe94h+69915t3rxZ+/fvVz6ff9U5hUJhLkySpNHR0UXbC3mep927d+u6666T1G4sfexjH9OJEyfm9pmcnNSXvvQlvfnNb9bU1JQ+//nPv2boBAAAAODseHltpOfGSjo6NK3R6ZoazUj1ZlOPPjOq//YvA/pPX/uJ/t9PX1p2mORapnb2ZPXxt12hT7z9Sv3/Lu9WdyKmjRlPW7PB7FpIphzb0Lp0TG9Yn9SWXJwwCQAAAICMKOpkiVZ04rHHHtNHP/pR9ff3y7IspdNpFQoFxWIxffjDH9af/MmfKJPJLDnjLW95ix5++GFJUnd3t/r7+7V+/frX3H9mZkZf+MIXdNddd2lyclKSlMvlZNu2RkdH1Wq19Ja3vEV/8id/ottuu23lLrZDBw8e1DXXXDO3PTAwoB07dpzDMwIAAADOjrDRUrEcqlBa3EYanqrqnkNDeuDoqEamax3N3pD21JvP6ZatGfmuLccylPRtpT1nro0kSSnfViZwlYzZHa/pCgAAAGB1nOv75wRK58Bjjz2mJ598UjMzM+rp6dE7/v/s3Xdw3Pd95//Xt+53O7CLxg6A6hLVC6DmKtdYtmzJkptilSS2E+cuyUwyl0syF98lmUucuzjJ2f4pjmrkElnFcaLIpiolkupWYxMpAuxEr7vY/v39AZIgpIVEgsBiATwfM5oh8AY++15nMljsC6/v96qrVFdXd0zfe/Q9lK677jotXbr0mL4vn89r48aN2rJly5EQa+nSpbrsssu0YsWKE3k6M2qu/x8CAAAAqCTf9zWSLah/NKeRo+6NVCgW9fKeQf1yU5de3j2gfPH4f22zTUPnrqhRe2tSLXVhmaahkGspFnQUdicaR7ZlHLo3kivX5iIWAAAAQLWa6/fPuW7BHGhvb1d7e/u0vtfzPN10003H/X2O4+jKK6+sihYSAAAAsNjliyUNpHLqT+eUL0yERb2pjNZu6taT27q1fygzrbMbooHxNlJzQpGALdsavw9SLOjIPqqNFPFsJcKuYh5tJAAAAADvjUAJAAAAACpkJJNXf2q8jXT4WhHFUkmv7h3SLzYd1Iu7BpQrlI77XMswtGZ5XJe2JnVSQ0SGMd5GiocchVxLhsYDI8s81EYKOwrY1kw+NQAAAAALHIESAAAAAMyiQrGk/nROA6n8pLBoIJ3VY1u69fjWbu0ZGJvW2cmwq7bWpC5uTigWdGSZUizoKOY5cqyJNlI4YCkZDigWpI0EAAAAYHoIlAAAAABgFoweujfScCY/0UbyfW3eP6RH3jio5zv7lckffxvJMKSzlsbV3prUqY1RmaahoGsp7jkKe5PbSLVhR7UhV55DGwkAAADAiSFQAgAAAIAZUiiWNJDOayCdU/aosGgok9MTW3r0+LZudfSmpnV2TcjRJS1JtbUkVBNyZZpSzLMVCzpyrYnAKBSwlAy7inmOTJM2EgAAAICZQaAEAAAAACcolS2oP5XT0NjkNtKbB4f1yBsH9WxHv9K54nGfa0g6fUlMba1JnbEkJss05Lmm4p6jiGcfaSOZplQbcpUI00YCAAAAMDsIlAAAAABgGoolXwPpnAZSuUmXrhvN5vXEth49sbVb27tHp3V21LN1SXNCba1JJSMBGYfbSJ6jgD0RGAVdS4mwq5ogbSQAAAAAs4tACQAAAACOQzpXUN/o5DZSyff1Vs+oHnnjoDa81afRbGFaZ5/SGFF7a53OWhqTbZkKOKbiQUeRgC3TGA+MDGP88nfJcEBBlzYSAAAAgMogUAIAAACA91As+RpM59T/tjZSOlfQuu09emxLt7YdHJE/jbPDrqWLmhNqX51UQ9STYY43lOJvayN5jjneRgq5smgjAQAAAKgwAiUAAAAAmMJYrqi+VFaD6cltpF19KT2y6aDW7+jT0Fh+Wmevrg+rrTWpc5bXyLFMBRxDsaCr6NvaSPGgo2TEVcjl1zcAAAAAc4ffSAAAAADgKKWSr8GxvPpTWY3lJreRNu7s1aNburVp//CRgOl4BB1LFzbXqr01qSXxoAxDini24kFbnj3x61ngUBupljYSAAAAgCpBoAQAAAAAkjL5ovpSOQ2mcyodypF8+drbn9Yjmw7q6e29GkhPr43UnAyprSWpc1fWKGBbcm1DsaCjqOfIelsbKRF2FQ7wqxoAAACA6sJvKQAAAAAWrVLJ19BYXn2pnMZyxSOfzxQKen5nv9Zu6dJre4dUmkYbKWCbumBlrdpWJ7WiNjTeRgrYigVtBZ2JX8Vc+3AbyZFtmTPxtAAAAABgxhEoAQAAAFh0Mvmi+lM5DbytjXRgMKNfbD6odW/2qHc0N62zl9cG1daS1AWrauU5lhzbUMxzFPNsWeZ4YGQYUsxzVBsebykBAAAAQLUjUAIAAACwKPj+RBspnZ1oI2ULBb20a1C/3NylV/YMqjiNOpJjGTpvRa3aVye1KhGSaRoKu7ZiIVuho9pIjm0oEXJVG3bl0EYCAAAAMI8QKAEAAABY0LKFQ22kVP5IWOTLV9dwVms3d+mpN3vUNZyZ1tlNMU/trUld2FyrkGvLsQxFg7ZiniPbnAiMop6tRMRVNGDLOHTPJAAAAACYTwiUAAAAACw4vu9reKygvlRWqaPaSLlCUa/sHdQvN3Xp5d0DyhePv41km4bOWVGj9takWuvCMk1DIddSLOgo7E78imVbxqF7I7lybdpIAAAAAOY3AiUAAAAAC0a2UNRAKq+BdE6Fo8Ki3tGJNtK+wbFpnV0fCaitNamLmxOKeLZsa/w+SLHg5DZSxLOVCLuKebSRAAAAACwcBEoAAAAA5jXf9zWcKag/ldNopnDk84VSSa/vHdQvNnfpxc4BZQul4z7bNKQ1y2rUvjqpkxsiMo2j2kgBS4bGAyPLPNRGCjsK2NaMPTcAAAAAqBYESgAAAADmpVyhpIF0Tv2pyW2k/nRWj2/p1hPberS7Pz2tsxNhV20tCV3cklQ86MgyJ9pIjjXRRgoHLCXDAcWCtJEAAAAALGwESgAAAADmDd/3NZItqH80p5Gj2kjFUkmbDgzrl5u69FxHnzL5428jGYZ05pKY2lfX6bTGqEzTUNA1Ffdchb2JNpJp6si9kTyHNhIAAACAxYFACQAAAEDVyxdLGkjl1J/OKV+YaCMNjuX05NYePbGtWzt7U9M6Ox50dElLQm2tSdWGXJmmFPNsxYKOXGsiMAoFLCVCruJBR6ZJGwkAAADA4kKgBAAAAKBqjWTy6k+Nt5H8QzlSsVTSm12jemTTQT23s0+pXHFaZ5/eFFVba1JnLo3LMg15rqm45yji2ZPaSDUhV8kwbSQAAAAAixuBEgAAAICqki+O3xtpIJVXrjBx6bqRTE7rtvfq8a3derNrdFpnRz1bFzUn1N6aVF0kIONwG8lzFLAnAqOgayoRDqiGNhIAAAAASCJQAgAAAFAlRg/dG2k4k59oI/m+dvaMt5E2vtU36b5Jx+PkhojaW5Nasywu2zIVcEzFg44iAVumMR4YGYZUE3KUDAcUdGkjAQAAAMDRCJQAAAAAzJlCsaSBdF4D6Zyy+Yk2UiqX1zPb+/TY1i5tPTAi/13OmErItY60kRpjngxDigZtxd/WRvIcU4mwq5qQK4s2EgAAAACURaAEAAAAoOJS2YL6UzkNjU1uI+3uS+mRTQe1fkefhsby0zq7tS6sttakzlleI9c2FXAMxTxHEc+RdVQbKR50lAi7Cgf4tQgAAAAA3gu/OQEAAACoiGLJ10A6p/7U5DbSWL6gDW/16dEtXdq8f1iladSRPMfUhavG20hLa4IyDCkSsBUP2fLsiV97AofbSEFHtmXOxNMCAAAAgEWBQAkAAADArErnCuobndxGKvm+9g6M6RebDuiZHX3qT+WmdfbKREjtrUmdt6JGAceSYxuKBx1Fy7SRasOuIrSRAAAAAGBa+G0KAAAAwIwrlnwNHmojZY5qI2XyBT3f2a+1m7v1+r4hFadRR3JtUxesrFFba51WJkJH2kixoK2gY0/6utqwo0TIpY0EAAAAACeIQAkAAADAjBnLFdWXymowPbmNdGBoTGs3d2nd9l71jGSndfayGk9trXW6YGWtgq4lxzIUCzqKebYsczwwMgwp6tlKhF1FPWemnhYAAAAALHoESgAAAABOSKnka3Asr/5UVmO5yW2kl3cPaO3mbr2yZ1CFabSRbNPQeStrdGlrnVYlQzJNQ2HXVixkK3RUG8mxDSVCrmrDrhzaSAAAAAAw4wiUAAAAAExLJl9UXyqnwXROpUM5ki9f3cMZrd3Spae29ergcGZaZzfGAmpvTerCVQmFA7ZsS4faSI5scyIwinq2EhFX0YAt49A9kwAAAAAAM49ACQAAAMAxK5V8DY3l1ZfKaSxXPPL5TL6g1/YN6ZebuvSr3YPKFUvvckp5lmnonOVxtbcmtbo+ItM0FHItxYKOwu7Ery62ZSgRdlUbcuXatJEAAAAAoBIIlAAAAAC8p0y+qP5UTgNvayP1jeT06NYuPfVmj/YOjE3r7LqIq7aWpC5uSSjqObLMiTbS0Zevixy6N1LMo40EAAAAAJVGoAQAAACgLN+faCOlsxNtpFyxqE37hvXLzQf1QueAsoXjbyOZhnTWsvE20imNUZmGoaBrKR50FA5YMjQeGFnmoTZS2FHAtmbsuQEAAAAAjg+BEgAAAIBJMvmiBtI5DaTyKpZ8SeNtpIFUXo9v7daTb3ZrV196WmfXhhy1tSR1SWtS8aAj05TinqNo0JZrTQRG4YClRNhVPOjQRgIAAACAKkCgBAAAAEC+72t4rKC+VFapo9pI+WJJWw8O6xebDur5jgGN5Yvvckp5hqQzlsbU3prU6U0xmaahoGsq7rkKexNtJNOUakOuEmFXnkMbCQAAAACqCYESAAAAsIhlC0UNpPLqT+WOtJEkaXAspye39ujJN7v1Vk9qWmfHg44ubk6orTWpRNiVaUoxz1bUm3z5uqBrKXmojWSatJEAAAAAoBoRKAEAAACLjO/7Gs4U1J/KaTRTOPL5Qqmk7V0j+sWmLj3b0TepqXQ8TmuKqq01qbOWxmWZhjzXVNxzFA7YMo2JNlJNyFWSNhIAAAAAzAsESgAAAMAikSuUNJDOqT+VU6E40UYayuT0zPZePbG1R9u6RqZ1diRg66LmhNpbk6qPBmQcaiPF3tFGMpUIB1RDGwkAAAAA5hUCJQAAAGAB831fI9mC+kdzGnlbG2ln76jWburS+rf6Js2Ox0kNEbW3JnX2srhsy1TAMRULOooe1UYyDKkm5CgRdhVy+RUEAAAAAOYjfpsDAAAAFqB8saSBVE796ZzyhYk20mg2r/U7+vT41m5tOTAs/13OmErItXThqlpdurpOjTFPhiFFPFs1wcltJM8xlQi7qgm5smgjAQAAAMC8RqAEAAAALCAjmbz6U+NtJP9QWlQslbSrP61fburS+rd6NZjOT+vslmRYbauTOnd5jVzblGsbigcdRTxH1lFtpHhwvI0UDvDrBgAAAAAsFPyGBwAAAMxz+eL4vZEGUnnlCqUjn0/l8npuZ78e29KtN/YPqTSNOlLANnXhqlq1r67TsprgeBspYCsesuXZE79OBBxTtSFXtSFHtmXOxNMCAAAAAFQRAiUAAABgnho9dG+k4Ux+oo3k+9o7kNbazV16Znuv+lK5aZ29ojaottakzl9ZK8+x5BxqI0Xf1kaKeY4SEVcR2kgAAAAAsKDxWx8AAAAwjxSKJQ2kxy9rd3QbaSyf1/MdA3psa7de2zuk4jTqSK5l6ryVNbp0dZ1W1AZlmoYiAVvRoK2QM/Grg2MbSoRd1YZcObSRAAAAAGBRIFACAAAA5oFUtqD+VE5DY5PbSAeHxrR2c5ee3t6r7pHstM5eEvfU3prUhatqFXRtOZahWNBRzLNlmeOBkWFIUc9WIuwq6jkz9bQAAAAAAPMEgRIAAABQpYolXwPpnPpTOWXzE22kTL6gl3cP6tEtXXplz6DyxeNvI9mmoXNX1Kh9dVItybBM01DYHW8jhd23tZFCrmrDtJEAAAAAYDEjUAIAAACqTDpXUN/o5DZSyffVNZLRY1u6tO7NXh0Yykzr7IZoQO2tSV3UnFA4YMu2xu+DFAs6ss2JwCjq2aoNu4p5toxD90wCAAAAACxeBEoAAABAFSiWfA0eaiNljmojZQtFvbp3UGs3d+nl3YOT7pt0rCzD0NnL42pvTeqkhohM01DQsRQPOZPaSLZlqDbkKhF25dq0kQAAAAAAEwiUAAAAgDk0liuqL5XVYHpyG6l3NKvHt3Zr3Zs92jMwNq2zk2FXba1JXdycUCzoyDJ16N5IzqTL14UDlpLhgGJB2kgAAAAAgPIIlAAAAIAKK5V8DY7l1Z/Kaiw3uY20+cCQfrm5Wy929k9qKh0rw5DWLI2rrTWpU5uiMg1DQddSPOgoHLBkaDwwskxDtWFHibCrgG3N2HMDAAAAACxMBEoAAABAhWTyRfWlchpM51Q6lBX58tU/mtOTb3bryW296uxLTevsmpCjS1qSamtJqCbkyjSluOcoGrTlWhOBUShgKRl2FfMcmSZtJAAAAADAsSFQAgAAAGZRqeRraCyvvlROY7nikc9nC0W92TWiX27u0vMd/UofNTtWhqTTl8TU3prU6UtiskxDQddU3HMV9ibaSKapI/dG8hzaSAAAAACA40egBAAAAMyCTL6o/lROA29rIw2l8npq+3gbaUfP6LTOjnm2Lm5Jqr01oUQ4INMc/1zUcyZdvi7ojreR4kHaSAAAAACAE0OgBAAAAMyQUsnXcGa8jZTOTjSOcsWi3uoe1S82d+m5nf0azRamdf6pjRG1tdbprKUx2ZYpzzUV8xxFArZMYzwwMgypNuwqEXIVdGkjAQAAAABmBoESAAAAcIIy+aIG0jkNpPIqlnxJ422k4bGCnt7eo6fe7NHWgyPTOjsSsHVRc63aW+tUHw3IMKWoZyv+jjaSqdqQq5qQK4s2EgAAAABghhEoAQAAANPg++OBUV8qq9RRbaR8saSO3lGt3dyljTv7NTSWn9b5q+vDam9N6uzlNXIsUwHHUCzoKvq2NlI86CgZcRVyeWkPAAAAAJg9/NYJAAAAHIdsoaiBVF79qdykNtJopqANb/XpiW3d2nxgWL5//GcHHUsXNteqvTWpJfGgDEOKeLZqgpPbSAHHVCLsqpY2EgAAAACgQgiUAAAAgPfg+76GMwX1p3IazUzc/6hQKml3X0prt3Rp/Y4+DaSn10ZqTobU1prUeStq5dqmXNtQPOgo4jmy3tZGSoRdhQO8jAcAAAAAVBa/iQIAAABTyBVKGkjn1J/KqVCcqByNZPN6vqNfT2zt1uv7hlSaRhspYJu6YNV4G2l5bWi8jRSwFQvaCjoTL9Nd+3AbyZFtmTPxtAAAAAAAOG4ESgAAAMBRfN/XSLag/tGcRt7WRto7kNajW7q1fkevekdz0zp/eW1QbS1JXbCqVp5jybENxTxHMc+WZY4HRoYhxTxHiYirCG0kAAAAAEAV4LdTAAAAQFK+WNJAKqf+dE75wkTlaDSb18u7BvXY1i69unfoyH2TjodrmTpvZY3aW5NamQjJNA1FAraiQVuho9pIjm0cuTeSQxsJAAAAAFBFCJQAAACwqI1k8upPjbeR/ENZUbFU0oGhjB7b0qWnd/Sqazg7rbObYp7aW5O6sLlWIdeWYxmKBm3FPedIG0mSYkFbtWFX0YAt49A9kwAAAAAAqCYESgAAAFh08sWJeyMd3UZK5fJ6bc+QHt3SrV/tGVC+ePxtJNs0dM6K8TZSa11Ypmko5FqKBR2F3YmX37Y10UZybdpIAAAAAIDqRqAEAACARWP00L2RhjP5iTaS76t7OKPHtnbr6e092j+YmdbZ9dGA2luSuqgloUjAlm2N3wcpFnRkH9VGini2EmFXMY82EgAAAABg/iBQAgAAwIJWKJY0kB6/rF2uUDry+bF8QW/sHdbaLV16efeAskfNjpVlGFqzPK621qRObojINMbbSPGQo5BrydB4YGSZh9pIYUcB25qx5wYAAAAAQKUQKAEAAGBBSmUL6k/lNDQ2uY3UO5LRE9t69PT2Xu3uT0/r7GTY1SUtSV3SklAs6MgypVjQUcxz5FgTbaRwwFIyHFAsSBsJAAAAADC/ESgBAABgwSiW/CP3RsrmJxpHmUJBm/eP6NEtXXqhs1+Z/PG3kQxDOmvpeBvptMaoTNNQ0LUU9xyFvcltpNqwo9qQK8+hjQQAAAAAWBgIlAAAADDvpXMF9Y1ObiOVfF99qZzWvdmtp97sVUdvalpn1wQdXdySUFtrUrUhV6YpxTxbsaAj15oIjEIBS8mwq5jnyDRpIwEAAAAAFhYCJQAAAMxLxZKvwUNtpKMbR9lCUdu6RvTo5i4939GvVK44rfNPb4qqfXVSZyyJyzINea6puOco4tlH2kimKdWGXCXCtJEAAAAAAAsbgRIAAADmlbFcUX2prAbTk9tIg+mcnt7eq6fe7NH27tFpnR0N2EfaSHWRgIzDbSTPUcCeCIyCrqVE2FVNkDYSAAAAAGBxIFACAABA1SuVfA2O5dWfymosN7mN9FbPqNZu7tJzHf0ayRSmdf4pDRG1rU5qzdK4bMtUwDEVDzqKBGyZxnhgZBhSTchRMhxQ0KWNBAAAAABYXAiUAAAAULXGckX1p3MaTOdUOpQjlXxfQ2N5bXirV09u69G2gyPyp3F2yLV0cXNC7a1JNcQ8GaYU9WzF39ZG8hxzvI0UcmXRRgIAAAAALFIESgAAAKgqpdJ4YNSXymnsqPsfZQtF7epLae2Wbm18q09DY/lpnd9aF1Zba1LnLK+Ra5sKOIZiQVfRt7WR4kFHyYirkMtLZgAAAAAA+O0YAAAAVSGTL6o/ldPAUW0kX76Gx/J6rqNPT2zt0aYDw0fum3Q8go6lC1bVqr01qaU1QRmGFPFsxYO2PHviJXHgUBupljYSAAAAAACTECgBAABgzpRKvoYz422kdHaijZQrFrW3f0xrt3Rpw1t96k/lpnX+ykRI7a1JnbeyRgHbkmsbigUdRT1H1tvaSImwq3CAl8cAAAAAAJTDb8wAAACouEy+qIF0TgOpvIql8cqRL1+jYwU9v6tfT2zt0ev7BlWaRhspYJs6f+V4G2lFIjTeRgrYigVtBZ2Jl7+ufbiN5Mi2zJl6agAAAAAALEgESgAAAKgI3/c1PFZQXyqr1FFtpHyxpP2DY3p0S5fW7+hTz2h2WucvrfF0aWudLlhVK8+x5NiGYp6jmGfLMscDI8OQYp6j2vB4SwkAAAAAABwbAiUAAADMqmyhqIFUXv2p3OQ2UqagX+0e1OPbuvXqnkEVplFHcixD562oUXtrnVYlQzJNQ2HXVixkK3RUG8mxDSVCrmrDrhzaSAAAAAAAHDcCJQAAAMw43/c1nCmoP5XTaKZw5POFUkkHBsf0+LZuPbO9TweHM9M6vzEWUHtrUheuSigcsOVYhqJBWzHPkW1OBEZRz1Yi4ioasGUcumcSAAAAAAA4fgRKAAAAmDG5QkkD6Zz6UzkVihONo9FsXq/vHdJjW7v18u4B5YvH30ayTEPnLI+rvbVOq+vDMk1DIddSLOgo7E68rLUt49C9kVy5Nm0kAAAAAABmAoESAAAATsjhNtJAKqeRt7WRuoYzenJbt57e3qd9g2PTOr8u4qqtNamLmxOKeo5sa/w+SLHg5DZSxLOVCLuKebSRAAAAAACYaQRKAAAAmJZ8saSBVE796ZzyhYnGUSpX0OZ9w3p0a5de2jWgbKF03GebhrRm2Xgb6eTGiEzjqDZSwJKh8cDIMg+1kcKOArY1Y88NAAAAAABMRqAEAACAY+b7vkayE20k/1COVCyV1D2a0bptvXp6e6929aendX5tyFFba1KXtCQVDzqyzIk2kmNNtJHCAUvJcECxIG0kAAAAAAAqgUAJAAAA7ylfnLg30tFtpHS+oG0HRvToli690DmgsXzxuM82JJ2xNKb21qROb4rJNA0FXVNxz1XYm2gjmaaO3BvJc2gjAQAAAABQSQRKAAAAmNJIJq+BVF7DmfxEG8n31Tea1dPbe/T09l691ZOa1tmxoK1LmpNqa00qEXZlmlLMsxULOnKticAoFLCUCLmKBx2ZJm0kAAAAAADmAoESAAAAJikUSxpI59Wfyil31P2PxvIFbe8a1WNbu/VcR59S2eNvI0nSaU1RtbcmdebSuCzTkOeainuOIp49qY1UE3KVDNNGAgAAAACgGhAoAQAAQJI0eujeSENjk9tIA+ms1m/v07rtPXqza3RaZ0cCti5uTqitNan6aEDG4TaS5yhgTwRGQddUIhxQDW0kAAAAAACqCoESAADAIlYoljQ4Nt5GyuYn2kiZQkE7e1J6dEu3nt3Zp5FMYVrnn9QQUXtrUmcvi8u2TAUcU/Ggo0jAlmmMB0aGIdWEHCXDAQVd2kgAAAAAAFQjAiUAAIBFKJUtqP9tbaSS72sondOGnX1a92avthwYlj+Ns0OupYuaE2pvTaox5skwpGjQVvxtbSTPMZUIu6oJubJoIwEAAAAAUNUIlAAAABaJYsnXYDqn/lROmaPaSNlCUZ39KT22uVsbd/ZpMJ2f1vktybDaVid17vIaubapgGMo5jmKes6kNlI86CgZcRVyeSkKAAAAAMB8wW/xAAAAC1w6N95GGky/rY2Uyev5jn49ta1Hm/YPqTSNOpLnmLpgZa3aV9dpWU1QhjF+v6R4yJZnT7zUDBxuIwUd2ZY5Q88MAAAAAABUCoESAADAAnS4jTSQzmksN7mNtGcgrce2dmvjjj71pXLTOn9FbVDtrXU6f2WNAo4l1zYUC463kay3tZFqw64iAV52AgAAAAAwn/GbPQAAwAIyliuqP53TQCo3qY00ksnrpV0DenJbj17bN6TiNOpIrm3q/BU1al9dp5WJ0JE2UixoK+jYk76uNuwoEXJpIwEAAAAAsEAQKAEAAMxzpZKvwbG8+lM5jeWKRz6fLRS1f2hMj2/t1oYdfeoeyU7r/KVxT+2tSV2wKqGga8mxxttIMc+WZY4HRoYhRT1bibCrqOfMyPMCAAAAAADVg0AJAABgnsrki+pPjV/WrnToqna+fI2M5fXK3kE9sbVHr+wZVGEabSTbNHTeihq1rU6qJRmWaRoKu7ZiIVuho9pIjm0oEXJVG3bl0EYCAAAAAGDBIlACAACYR0olX0NjefWnc0pnJ9pIuWJRB4fG9MS2Xq3f0asDQ5lpnd8YDaitNamLmhMKB2zZlg61kRzZ5kRgFPVsJSKuogFbxqF7JgEAAAAAgIWLQAkAAGAeyOSLGkjn1J+a3EZKZYp6bd+gntjarZd3DypXLB332ZZp6OxlcbWvTuqk+ohM01DItRQLOgq7Ey8XbctQIuyqNuTKtWkjAQAAAACwmBAoAQAAVCnfP9RGSuWUOqqNlC+W1D2c0ZNv9uiZHb3aOzA2rfOTYVdtrUld0pJQ1HNkmRNtpKMvXxc5dG+kmEcbCQAAAACAxYpACQAAoMpkC0UNpMaDpOKh+x/58pXKFrV5/5Ae39qjF3f1K1s4/jaSaUhnLR1vI53SGJVpGAq6luJBR+GAJUPjgZFlHmojhR0FbGtGnx8AAAAAAJh/CJQAAACqgO/7Gh4rqD+d02imcOTz+WJJvaNZrdveo2e296qzLz2t82tDji5pGW8j1YTc8TaS5ygatOVaE4FROGApEXYVDzq0kQAAAAAAwBEESgAAAHMoVygduTdSoegf+XwqV9C2gyN6fGu3XujsVzpXfJdTyjMknb4kpvbWpE5fEpNlGgq6puKeq7A30UYyTak25CoRduU5tJEAAAAAAMA7ESgBAABUmO/7Gs4UNJDKaeSoNlKhVFLfaFbP7OjVM9v7tKNndFrnxzxbF7ck1d6aUCIckGmOfy7qTb58XdC1lDzURjJN2kgAAAAAAGBqBEoAAAAV8m5tpLe6R/X41m4919Gv0WzhXU6Z2qmNEbW11mnNsrgs05Dnmop7jiKePamNVBNylaSNBAAAAAAAjgOBEgAAwCzyfV8j2fE20vDYRFBULJXUl87q2R39Wre9V9u6RqZ1fiRg66LmWrW31qk+GpBxqI0Ue0cbyVQiHFANbSQAAAAAADANBEoAAACzIF8saSCVU386p3xhoo2UzhfU0ZPS41u79ezOPg1nptdGWl0fVntrnc5eHpdjmQo4pmJBR9GALdMYD4wMQ6oJOUqGAwq6tJEAAAAAAMD0ESgBAADMoJFMXgOpvIYzefmHcqRiqaTBdF7PdvTp6e292nxg+MjseAQdSxc116qtNakl8aAMQ4p4tmqCk9tInmMqEXZVE3Jl0UYCAAAAAAAzgEAJAADgBBWKJfWncxpI5ZUrlI58fixf0O6+tB7f2q2NO/s0kM5P6/zmZEhtrUmdt6JWrm3KtQ3Fg44iniPrqDZSPOgoEXYVDvASDwAAAAAAzCzebQAAAJim0UP3RhoaO6qN5PsaGsvphY7xeyO9sW9IpWm0kQK2qQtW1aq9NanltaHxNlLAVjxky7MnXsIFHFO1IVe1IUe2Zc7QMwMAAAAAAJiMQAkAAOA4FIolDaTzGkjnlM1PtJEyhYL29o/piW092vBWr3pHc9M6f3ltUO2tSZ2/slaeY8k51EaKvq2NFPMcJSKuIrSRAAAAAABABfAOBAAAwDFIZQvqL9NGGhnL6eXdg3rqzR69undIxWnUkVzL1Hkra9TemtTKREimaSgSsBUL2go6Ey/XXNtUbdhRbciVQxsJAAAAAABUEIESAADAFIolXwPpnAZSOWWOaiNlC0XtGxzTk4faSF3D2WmdvyTuqa01qYtW1Sro2nIsQ7Ggo5hnyzLHAyPDkKKerUTYVdRzZuR5AQAAAAAAHC8CJQAAgLdJ58bbSIPpiTZSyfc1nMnrtb1DenJbt17ZM6h88fjbSLZp6NwVNWprTaq1LizTNBR2bUWDtsLuxEszxzaUCLmqDdNGAgAAAAAAc49ACQAAQONtpMF0TgPpnMZyk9tIB4czR9pI+wcz0zq/PhpQe0tSF7UkFAnYsq3x+yDFgo5scyIwinq2EhFX0YAt49A9kwAAAAAAAOYagRIAAFjUxnJF9aWy72gjjWYLen3fkJ7a1qOXdg8oVyi9+0FlWIahNctjam+t00kNEVmmoaBjKR5yJrWRbMtQIuyqNuTKtWkjAQAAAACA6kOgBAAAFp1SydfgWF79qZzGcsUjn88WiuoZyeip7b3asKNPu/vT0zo/GXZ1SUtSl7QkFAs6skwdujeSM+nydRHPViLkKhakjQQAAAAAAKobgRIAAFg0Mvmi+lI5DaZzKh0qHPnyNZopaPPBYT25tUcv7upXJn/8bSTDkM5cGtelrUmd2hiVaRoKupbiQUfhgCVD44GRZRqqDTtKhF0FbGsmnx4AAAAAAMCsIVACAAALWqnka2gsr/50TunsRBspVyyqbySrdTt6tX5Hnzp6U9M6vybo6JKWhC5pTao25Mo0pbjnKBq05VoTgVEoYCkZdhXzHJkmbSQAAAAAADC/ECgBAIAFK5MvqrMvpXxh/OZIvnylMkW92T2sJ7b26PnOfqWPuuTdsTIknbYkqvbWpM5YEh+/N5JrKu65CnsTbSTTlGpDrhJhV55DGwkAAAAAAMxfBEoAAGDB2j84pnzBV75YUv9oVs+8Nd5G2t49Oq3zop6ti5sTamtNqi4SkGlKMc9W1HMmXb4u6I63keJB2kgAAAAAAGBhIFACAAAL0nAmr1S2qANDY7rvpT3a+Fa/RrOFaZ11SkNEbauTWrM0Ltsy5bmmYp6jSMCWaYwHRoYh1YZdJUKugi5tJAAAAAAAsLAQKAEAgAXH931tOziiv39su57Z3it/GmeEXUsXNSfU3ppUQ8yTYY43lOLvaCOZSoQDigcdWbSRAAAAAADAAkWgBAAAFpz+VE7f+vlmvb5v6Li/t7UurPbVSZ2zvEaOZSrgGIoFXUXf1kaqCTlKhF2FXF5OAQAAAACAhY93QAAAwIJSKvn66Ut7jytMCjqWLlxVq/bVSS2JB2UYUsSzVROc3EbyHFO1YVe1IZc2EgAAAAAAWFQIlAAAwIKyf3BMd6zvPKavXZUIqb01qXNX1ihgW3JtQ/Ggo4jnyDqqjRQPjreRwgFeOgEAAAAAgMWJd0UAAMCCkS+WdNfGTh0czkz5NQHb1Pkra9XemtSKRGi8jRSwFQ/Z8uyJl0aubSoRdlUbcmRbZiXWBwAAAAAAqFoESgAAYMF4q2dUP35hT9mZYUjXnLtMFzUn5DmWnENtpOjb2kgxz1Ei4ipCGwkAAAAAAOAI3ikBAAALQiZf1A+e7tBIplB23taS1JWn1CsSsBUN2go5Ey+DHNs41EZy5dBGAgAAAAAAeAcCJQAAsCC8vndQ//bK/rIz1zJ1w8XLtSoRkmVOBEaxoK3asKtowJZxqKUEAAAAAACAdyJQAgAA814qW9D3n9qpXLFUdv6Zc5eqtS4qSbItQ8mwq5qQK9emjQQAAAAAAHAsCJQAAMC8t35Hrx7f2l12FvNsfe6C5bItQ0trgop5tJEAAAAAAACOF4ESAACY14bSeX3/qZ3yp5h/4ZKVCrm2lsQ9xYNORXcDAAAAAABYKLjOCwAAmLd839fDbxzQy7sHys6b4p4+dkaTgq6pmpBb4e0AAAAAAAAWDgIlAAAwb/WMZvVPT++ccn7Tpc2yLVONMa+CWwEAAAAAACw8BEoAAGBeKpZ83ffCXu3sSZWdn9IQUXtrUhHPVtTjUncAAAAAAAAngkAJAADMS3sH0rprY+eU81uvaJVhGGqinQQAAAAAAHDCCJQAAMC8kyuUdNeGTnWPZMvOL25J6PQlMdWEHAVdq8LbAQAAAAAALDwESgAAYN7Z3jWin7y4p+zMNKSbL22RYYh7JwEAAAAAAMwQAiUAADCvZPJF/eCZDqWyxbLzq85o1LLaoJIRV67NSx0AAAAAAICZwLssAABgXvnV7gH9/NX9ZWcB29SXL1kl05QaorSTAAAAAAAAZgqBEgAAmDdGMnn9f0/tVKHkl51/7vxlqgm5aoh6skyjwtsBAAAAAAAsXARKAABg3nhme4+efLOn7Kwm6Oia85bLsQ3VRdwKbwYAAAAAALCwESgBAIB5YSCV1fee2jnl/EttK+U5lppingyDdhIAAAAAAMBMIlACAABVr1Ty9R+vH9Bre4fKzpfVBHXV6U0KuqZqQrSTAAAAAAAAZhqBEgAAqHrdI1n94OmOKec3X9YsyzTUFA9WcCsAAAAAAIDFg0AJAABUtUKxpB+/sFudfemy89OborqoOaGIZysSsCu8HQAAAAAAwOJAoAQAAKranoG07tm4a8r5rVe0yjAMLYl7FdwKAAAAAABgcSFQAgAAVStbKOrO9Z3qS+XKzttXJ3VKY1Q1IUeeY1V4OwAAAAAAgMWDQAkAAFStNw+O6L6X9padWaahmy5tlmFIjTHaSQAAAAAAALOJQAkAAFSldK6gf3q6Q+lcsez8Y2c2akk8qLpIQK7NSxoAAAAAAIDZxLsvAACgKr20a0APv36g7CzoWPrCxatkmYbqo4EKbwYAAAAAALD4ECgBAICqM5zJ67Z1O1Uo+WXnn7tgmeJBRw2xgCzTqPB2AAAAAAAAiw+BEgAAqCq+7+vJbd16entv2Xki5Ogz5y6Ta5tKht0KbwcAAAAAALA4ESgBAICq0p/K6bandk45/1LbKgVsS42xgAyDdhIAAAAAAEAlECgBAICqUSr5+rdX9+uN/cNl5ysSQX3otEYFXVM1IdpJAAAAAAAAlUKgBAAAqsbB4THd/kzHlPNbLmuRZRpqigcruBUAAAAAAAAIlAAAQFXIF0v64XN7tGdgrOz8rKVxnb+yVlHPViRgV3g7AAAAAACAxY1ACQAAVIVdfWnd+9yuKee3XtEiwzDUFPcquBUAAAAAAAAkAiUAAFAFMvmi7ljfoYF0vuz8ipPrtLo+otqwI8+xKrwdAAAAAAAACJQAAMCc23JgWA+8vK/szDYNfbW9WYYhNURpJwEAAAAAAMwFAiUAADCnUtmC/unpDo3li2Xnn1jTpIaYp7pIQK7NSxcAAAAAAIC5wLsyAABgTj3f0a9H3jhQdhZyLX3holWyTEP10UCFNwMAAAAAAMBhBEoAAGDODKXzum3dTpX88vPPX7hcEc9WQywgyzQquxwAAAAAAACOIFACAABzwvd9Pba1Sxt39pWdJyOuPnX2Mrm2qWTYrfB2AAAAAAAAOBqBEgAAmBO9o1n907qdU85vbFsl1zbVFPNkGLSTAAAAAAAA5hKBEgAAqLhiydfPXtmvLQdHys5XJUN6/6kNCrqW4iGnwtsBAAAAAADg7QiUAABAxR0YHNMd6zunnN96eYtMw1BT3KvcUgAAAAAAAJgSgRIAAKioXKGkHz6/W/sGx8rOz1ke17krahX1bEUCdoW3AwAAAAAAQDkESgAAoKI6ekb1w+d2l50Zkm69vFWSaCcBAAAAAABUEQIlAABQMZl8Ubdv6NTgWL7s/H2n1qu5LqzasCPPsSq8HQAAAAAAAKZCoAQAACrm9X1DeuhX+8rOHMvQr7c3yzCkxhjtJAAAAAAAgGpCoAQAACpiJJPXD9btVLZQKjv/tbOXqi4SUH00IMfiJQoAAAAAAEA14d0aAABQEc939Gntlq6ys0jA1vUXrpBlGqqLBCq8GQAAAAAAAN7LgguU9u/frwMHDsz1GgAA4CgDqZz+v6c6VPLLz6+/aIXCAVsNsYAs06jscgAAAAAAAHhP9lw++FNPPaWnnnrqXb+mvb1dV1111TGf2dvbqxtvvFF/8id/omuvvfZEVwQAACeoVPK1dstBPd/ZX3ZeHw3ok2uWyLVNJcNuhbcDAAAAAADAsZjTQGlkZES33XbbOxpFpmnqK1/5in7zN39TbW1tx3Xm2WefrUcffVTXXHONNm/erD/7sz+byZUBAMBx6hnN6J/WdUw5/2p7sxzLVFPMk2HQTgIAAAAAAKhGc3rJu1/7tV/TG2+8oeXLl8v3ffm+ryuuuEJbtmzR7bffftxh0mF1dXX65S9/qQ0bNuh//a//NcNbAwCAY1UolvTgy/u0vXu07Ly1LqwrTq5T0LUUDzkV3g4AAAAAAADHas7voVRTU6NVq1bJMAz9zu/8jh5//HGddNJJJ3xuMBjU/fffrwcffFAPP/zwDGwKAACO177BMd25YdeU81uvaJFhGFoS9yq4FQAAAAAAAI7XnAdKHR0d2rBhg6677jr9/d//vUxz5lYKh8O655579Nu//dvKZDIzdi4AAHhv2UJR9z63WweHy/8MPn9lrdYsq1EsaCscmNOr8AIAAAAAAOA9zHmg9P3vf181NTX67ne/Oyvnn3HGGbryyit12223zcr5AACgvLe6U/rR87vLzgxDuuXyFklSY4x2EgAAAAAAQLWb80Dpxz/+sX7jN35DiURi1h7ji1/8ou68885ZOx8AAEyWzhV0x/oOjWQKZecfPK1BKxMh1YYdeY5V4e0AAAAAAABwvOY0UNq6dav27t2rz33uc7P6OJdeeqlee+01HThwYFYfBwAAjHtt75B+9sr+sjPXMnVjW7MMg3YSAAAAAADAfDGngdKrr74qy7J03nnnzerjRKNR1dTU6JVXXpnVxwEAANJwJq8fPL1TuWKp7PzT5y5VIuyqPhqQY815WRoAAAAAAADHYE7fxdm/f78SiYQsa/YvdRMKhdTZ2TnrjwMAwGLm+7427OjVY1u6y85jnq1rL1guyzRUFwlUeDsAAAAAAABM15wGSmNjYzLNyqwwOjqq4eHhijwWAACL1UA6r9vWdcifYv6Fi1cq5NpqjAVkmUZFdwMAAAAAAMD0zWmgFIvF1N/fr2KxOKuPMzAwoMHBQfn+VG9vAQCAE1Uq+XrkjQN6efdA2XlTzNPHzmxSwDGVCLsV3g4AAAAAAAAnYk4DpaVLlyqfz+vVV1+d1cd59tlnJY0HWAAAYHZ0j2T0g2c6ppx/9bJm2Zapxpgnw6CdBAAAAAAAMJ/MaaB07rnnyvd9PfDAA7P6OP/6r/8qwzDU3Nw8q48DAMBilS+WdN9Le7WzJ1V2fnJDRJe2JhV0LcWDToW3AwAAAAAAwIma00CptbVVK1eu1Pe///1Zu7/Rnj179KMf/UjSeIAFAABm3p6BtO7ZuGvK+a1XtMgwDC2JexXcCgAAAAAAADNlTgMlSbr22mvV39+v//Jf/susnP/1r39duVxOp556qpYuXTorjwEAwGKWyRf1Lxt3qXskW3Z+cXNCZyyJKxa0FQ7YFd4OAAAAAAAAM2HOA6VvfvObsm1bd999t/70T/90Rs/+oz/6Iz388MMyDEM33njjjJ4NAADGbe8a0U9e3FN2ZhrSzZe1yDCkxhjtJAAAAAAAgPlqzgOlVatW6eabb5bv+/rLv/xLffrTn9b+/ftP6MxUKqUbb7xR3/72tyVJ8Xhcv/VbvzUT6wIAgKOksgXdvr5TqWyx7PyqMxq1rDao2rArz7EqvB0AAAAAAABmypwHSpL013/911q2bJkk6d///d910kkn6Zvf/KZefPHF4zqnt7dXf/u3f6vVq1fr3nvvle/7MgxD3/rWt1RbWzsbqwMAsKj9avegfv5q+T8ECdimvnTJKhmG1BANVHgzAAAAAAAAzKSquJFBLBbTAw88oA984AMaGxtTJpPRd7/7XX33u9/VkiVL1N7errPOOkurVq1SXV2dgsGgDMNQOp3WgQMHtH37dm3YsEEvvPCCCoWCfN+XJBmGoU9/+tP6nd/5nTl+hgAALDxD6bx+8MxOFUp+2fk15y1TbchVQzQgx6qKv2EBAAAAAADANFVFoCRJF110kR588EFde+21Gh0dlST5vq/9+/frgQce0AMPPPCeZxwdJPm+rw996EP60Y9+NKt7AwCwGPm+r2d29OrJbT1l5/Ggo8+dv1y2ZaguQjsJAAAAAABgvquqPxe+6qqrtH79ep122mlHLld3OBx6r/+k8SDpsG984xt6+OGHFQjwJhYAADOtdzSr29a9NeX8S5eslOdYaogGZJrGlF8HAAAAAACA+aGqAiVJOuuss/TKK6/oW9/6lmpqaiaFRe/23+Fg6fTTT9fjjz+uf/zHf5RtV00BCwCABaNY8vXIG116de9Q2fnSuKePnNGkgGMqEXYrvB0AAAAAAABmQ9UFSpLkOI7+5E/+RLt379Z3v/tdfehDH5LjOFO2k5LJpK699lo98sgj2rRpk973vvfN9VMAAGDBOjiU0T8/s3PK+c2Xt8gyDTXGvEntYQAAAAAAAMxfVV3hCYfD+trXvqavfe1rKhQK2rJli/bs2aOhoSE5jqNkMqkVK1bopJNOmutVAQBYFHKFku57aY86+9Jl56c1RXVxc0KhgKV40KnwdgAAAAAAAJgtVR0oHc22ba1Zs0Zr1qyZ61UAAFi0dveldM/GXVPOb72iRYZhaEncq+BWAAAAAAAAmG1zfsm7T3ziE3rsscfmeg0AAPAeMvmi7n52l/pSubLz9takTm2MKR50FHLnzd+sAAAAAAAA4BjMeaD0yCOPqKOjY67XAAAA72HrgWH99KW9ZWeWaeimy5plGFJDLFDhzQAAAAAAADDb5jxQkqTnn39+rlcAAADvYiST1+3rO5XOFcvOP3pmo5bEg6oNu/Icq8LbAQAAAAAAYLZVRaB055136qc//elcrwEAAMrwfV8v7xrQw68fKDsPOpa+ePEqGYbUGKWdBAAAAAAAsBBVxQ0OisWirr/+ei1dulQrV65UIHDsb0bZtq1AIKCamhotXbpUZ555pq644gq1tLTM4sYAACweg+m8fvBMhwolv+z8s+cvUzzoqCEakG1Vxd+qAAAAAAAAYIZVRaAkjf/18759+7Rv374TOscwDElSe3u7/vqv/1qXXnrpTKwHAMCiVCr5Wre9R09v7y07rw05uua8ZbItQ3UR2kkAAAAAAAALVdUESt/85jf12c9+VkuWLDmuhlKpVFI2m9Xw8LC6urq0ZcsWPfnkk3r00Uf1/ve/X9/5znf09a9/fRY3BwBg4eoZzeif1u2ccv7ltlUK2JYaY55M06jgZgAAAAAAAKikqgiUPvKRj+g73/nOjJz1qU99Sn/4h3+obdu26YYbbtDv/M7vqL6+Xtdee+2MnA8AwGJRKJb08OsH9cb+4bLz5bVBfei0RgUcU7Uhp8LbAQAAAAAAoJKq4kYHH/rQh2b8zFNPPVVPPvmkTj75ZP3Gb/yGenvLX6oHAACUt39oTLev75xyfstlLbJMQ01x78glZwEAAAAAALAwVUWg1NDQMCvnxuNx3XXXXRoeHta3v/3tWXkMAAAWomyhqPte3Ks9/emy8zOXxnTBqlqFApZiHu0kAAAAAACAhW7OA6U9e/bouuuum7XzL7nkEn3sYx/TvffeO2uPAQDAQtPZk9a9z+6ecn7r5a0yDENL4l4FtwIAAAAAAMBcmfNAadmyZQoGg7P6GDfeeKP279+vrVu3zurjAACwEKRzBd3zbKf607my88tPqtNJDRHFg45CblXcjhEAAAAAAACzbM4DpUr4wAc+IN/39cYbb8z1KgAAVL3NB4Z1/8v7ys5s09BNlzbLMKTGeKDCmwEAAAAAAGCuLIpAqaGhQdFoVAcOHJjrVQAAqGpDY3nd/kynxvLFsvNPrGlSQ8xTIuwqYFsV3g4AAAAAAABzZdFcpyYWi2l0dHSu15AkdXR06PHHH1dPT4+WLl2qK664Qi0tLXO9FgBgkfN9Xy929uuRN8r/AUbItfSFi1bJNKWGKO0kAAAAAACAxWRRNJQkaXh4WIZhzOkO+/bt03XXXafVq1frt37rt/R3f/d3uummm7R69Wpdc801Onjw4Iw+3k033STDMKb137333jujuwAAql9/KqcfPN2hkl9+ft0FyxXxbNVHArKtRfMSAgAAAAAAAFokgdLIyIhGRkYUDofnbIfnnntOF1xwgX7605/q+uuv1/79+3Xw4EH19fXpt3/7t/XQQw/p7LPP1quvvjojj9fb26sf//jH0/pewzD0/ve/f0b2AADMD6WSrye39Wjjzr6y82TY1dXnLJNtGaqL0E4CAAAAAABYbOY8UNq5c6dSqdSsPsYvfvELGYahJUuWzOrjTGXz5s362Mc+pq6uLn30ox/VD3/4QzU0NEiSampq9A//8A+64YYb1NPTo4985CN66623Tvgxb7vtNmUymWl97+WXX65ly5ad8A4AgPmjZySjHzy9c8r5je2r5NqmGmOeTHNuG78AAAAAAACovDkPlE4++WTdf//9s/oY3/ve9yRJp5566qw+Tjn5fF5f+MIXNDg4KMuy9P/+3/8re+m9//2//7ds21Z3d7duvvlm+f4U1xs6BoVCQd/73vfkeZ7+4i/+Qm+88YZGR0dVKpXk+37Z/4aGhhQIjP/F+Q033DDtxwYAzD/5Ykk/e3W/thwcKTtflQzp/ac2yHNM1YacCm8HAAAAAACAajDngZLv+xoeHp6182+77TY98cQTqqmp0ZlnnjlrjzOV73znO3rttdckSR//+Me1evXqsl+3cuVKfeQjH5EkrVu3Tv/0T/807cd88MEHZVmWnn32Wf3xH/+xzjzzTIXD4Xe9h9RDDz2kbDYry7J03XXXTfuxAQDzz/7BMd21YdeU81sua5FpGGqMe3N+P0IAAAAAAADMjTkPlCTp4YcfnvEzM5mM/vIv/1Lf+MY3ZBiGrr76aplmZZ/u2NiY/uZv/ubIx5/+9Kff9es/+clPHvn3X/3VX027pfT9739f9913n84555xj/p5//dd/lSR98IMfVH19/bQeFwAw/2TyRf3khT3aNzhWdn728rjOW1mrcMBSzKOdBAAAAAAAsFjZc72ANH6Po5tvvllf/vKXtWLFiiOXXjtWuVxOIyMj2rt3r3bu3KmNGzfqscceU39/v3zfl23b+qM/+qNZ2n5qDz30kLq7u4983NbW9q5f//73v//Ivzs7O/XLX/5SH/3oR4/7cf/qr/5KF1100TF//eDgoNauXStJuv7664/78QAA81dH76h++NzusjND0q2Xt0qSmuJeBbcCAAAAAABAtamKQEmS7rrrLt11110zdt7hdo9hGPrzP/9znXbaaTN29rH6yU9+cuTflmW95w6nnHKKAoGAstmsJOnHP/7xtAKliy+++Li+/qGHHlIul5PruvrsZz973I8HAJifUtmC7tqwS4Nj+bLzK0+pV0tdWPGgo5BbNS8ZAAAAAAAAMAeq4pJ30ngANFP/He0P/uAP9N/+23+bk+ezbt26Ix8vXbpUtv3ub8bZtq2WlpYjHz/77LOztt/RDl/u7iMf+Yhqa2sr8pgAgLn3xr4hPfirfWVnjmXo19ubZRhSY/z4msMAAAAAAABYeKomUDIMY8Zu9O37vk4++WQ98MAD+uu//usZOfN4bd++XQMDA0c+XrFixTF9X2Nj45F/b9u2TcPDwzO+29EGBgb06KOPSpJuuOGGWX0sAED1GErndfv6TmULpbLzXzt7ieqjASXCrgK2VeHtAAAAAAAAUG2q5vo1vu+rqalJK1euVDAYPKbvMQxDlmXJdV1Fo1HV19erpaVFF198sS677LIZC6imY8eOHZM+PtZAKZFIHPm37/vasWOHzj///Bnd7WgPPvig8vm8gsGgrr766hk9u7u7Wz09Pcf1PW//3w0AMPN839fznf1au/lg2XkkYOv6C1fKNKWGKO0kAAAAAAAAVEmgFAwG9fDDD+vKK6+c61VmzO7dk29wHovFjun7AoHJb9wd3XKaDYcvd/eJT3xC0Wh0Rs/+7ne/qz//8z+f0TMBACeuL5XTD57eqZJffn79hSsUDtiqjwZkW1VTZgYAAAAAAMAcqop3iW6++eYFFSZJ0sjIyKSPQ6HQMX2f67qTPh4cHJypld6hv79fjz32mCQudwcAi0Wx5OuxLd16rqO/7Lw+GtAnz14i2zJUF6adBAAAAAAAgHFVESideeaZc73CjMtkMpM+PtZAKZ/PT/p4bGxsxnZ6uwceeECFQkHRaFSf/OQnZ+1xAADVo3s4o39+ZueU819vb5ZjmWqKeTLNubt0LAAAAAAAAKrLnF/y7n3ve59aWlpm9TFefPFF/du//Zu+9a1vzerjHM3zvEkfW9ax3dD87YHSsd5PajoOX+7u6quvnpXH+cY3vqHrrrvuuL5nx44d+sxnPjPjuwAApFyhpIde2ac3u0bLzlvrwrry5Dp5jqmakFPh7QAAAAAAAFDN5jxQeuKJJ2b9MX7+85/rL/7iLyoaKL39fkRvbyxN5e1fN9P3NTqst7f3yP/2119//aw8RkNDgxoaGmblbADA8ds7kNZdG3ZNOb/1ihYZhqHGuCfDoJ0EAAAAAACACVVxybvZ5Pu+HnjggYo/bn19/aSPjzVQGhgYmPTx8uXLZ2ynox2+3F1tba0++tGPzspjAACqx1iuqB89v0cHh8v/PDp/ZY3WLKtROGAp5tFOAgAAAAAAwGQLOlAqFAr65je/qU2bNlX8sd9+X6iurq5j+r6jAyXTNNXc3DyTax1x+HJ311xzjVzXnZXHAABUjx09o/rxC7vLzgxDuuXyVknSkvjsXWoVAAAAAAAA89eCDZQefPBBnXPOOfre9743J49/8sknT7ov0d69e4/p+47+ujPPPFOhUGjGd+vp6dGTTz4pSbrhhhtm/HwAQHUZyeR194ZOjWQKZecfOLVBKxMh1YQcBd1ju+cfAAAAAAAAFpcFFSil02l997vf1emnn65rr71WW7Zske/7c7KLZVn64Ac/eOTj7du3v+f39Pb2anh4+MjHV1555azsdv/996tYLKq+vn7SjgCAhcf3fb2+d0g/e2V/2blrmbqxbZUMQ2qIBSq8HQAAAAAAAOaLBREodXR06Pd///e1bNkyffOb39S2bdvk+74Mw5jTm4pfc801R/7d29urXbumvhG6JG3evHnSx9ddd92s7HX4cnfXXnutLIu/RAeAhWwwndft6zuUK5bKzq8+d4mSkYCSEVcBm58JAAAAAAAAKG9eB0qPPvqorr76ap1yyin6zne+o6GhoUlBku/7c9ZQkqTPf/7zqq2tPfLxM888865f/+yzzx7598knnzwrDaWuri6tW7dOEpe7A4CFrlTy9WxHnx7b0l12HvVsXXfBCpmmVB+hnQQAAAAAAICpzbtAaWxsTN///vd11lln6aMf/aj+4z/+Q8Vi8R1BkuM4+vjHPz5rLZ9jEY1G9bu/+7tHPr7//vvf9esfeeSRI//+4z/+41lpVx2+3N2yZct0xRVXzPj5AIDq0ZvK6gdPd2iqP6244aIVCrm26qMB2da8e0kAAAAAAACACrLneoFj1dnZqX/8x3/U7bfffqSJdNjh4MX3fSUSCf3u7/6uvv71r6u+vl6SFAgEdO+9987J3n/wB3+g22+/XXv27NF//ud/6sCBA1qyZMk7vm779u166qmnJEltbW268cYby56XyWT0ox/9SMPDw/r85z9f9qx3c/hyd5///Ofn9HKAAIDZVSiWtHZzl17aNVB23hgL6BNnLZFjG6oL004CAAAAAADAu6v6P0d+/PHH9ZnPfEYnn3yy/u///b8aHBx8x/2RfN9XU1OTvv3tb2vXrl36sz/7syNhkjQe0MzVpe+i0aj+5V/+RbZtK5PJ6E/+5E/e8TWFQkHf+MY3VCqVVF9fr3vvvVemWf7/NB/+8Id1880367/+1/+qc845R11dXce8y8GDB/X0009Lkq6//vrpPSEAwLxwcDij25/pmHL+1UtbZFumGqOeTJM/MAAAAAAAAMC7q8pAKZPJ6LbbbtOaNWt01VVX6ec//3nZy9r5vq9zzjlHhmHojjvu0O///u8rHA6/47yPf/zjuueee+bgmYy78sordffdd8txHN1+++36gz/4A42OjkqSNm3apKuuukqPPvqoVqxYobVr16q1tbXsOf39/Vq/fv2Rj3t6eiZ9/F5++tOfqlQqqaWlRZdccsmJPSkAQNXKFop66Ff79FZPquz85IaILludlOeYqgk5Fd4OAAAAAAAA81FVBUq7d+/WH/7hH2rZsmX6+te/rk2bNh1pFh0dJIXDYX3ta1/TK6+8ov/8z/98z/ZRS0uLvvSlL1XiKUzpC1/4gp566imtWbNG/+f//B/V1NQomUzqrLPO0saNG/WNb3xDr776qs4555wpz0gkErr88suPfFxXV6dLL730mHc4fLk72kkAsLDt6RvT3Rt3TTm/9YoWGYahprjH5U8BAAAAAABwTKriHkpPPvmk/v7v/14///nPVSqVJoVIko58fPbZZ+vrX/+6vvSlLykSiUjScV3yba61t7frtdde08aNG/XCCy9odHRULS0tuuqqq1RXV3dMZ6xdu/bIPZSuu+46NTU1HdP3FYtFXXXVVfrgBz845f2ZAADzXzpX0A+f36XukWzZ+UXNtTpjSVwRz1bUo50EAAAAAACAYzOngdIPfvAD/cM//IPeeOMNSSobJHmep89//vP62te+pra2tjnbdSa1t7ervb19Wt/reZ5uuumm4/4+y7L0p3/6p9N6TADA/LHt4Ih+8uKesjPTkG65bPyyqk0xr5JrAQAAAAAAYJ6b00DpJz/5iV5//XVJE5e0k8aDpFNOOUW/9Vu/pa9+9auqra2dyzUBAJgXhsbyunvjLqWyxbLzD5/eqGW1QdWEHAVdq8LbAQAAAAAAYD6b03sorV27Vq+99ppuuukmBQKBIw2lFStW6G/+5m/0e7/3e4RJAAAcA9/39eqeQf381f1l5wHb1JfbVskwpEbaSQAAAAAAADhOcxooSdJZZ52lf/7nf9bu3bv1P/7H/1BjY6P27Nmjz3zmM1q9erW+/e1vq7+/f67XBACgqvWncrp9fYcKJb/s/DPnLVNtyFUy4sq15/zHPwAAAAAAAOaZqnlHqa6uTn/2Z3+mXbt26c4779Q555yjjo4O/dEf/ZFWrFihW265RS+//PJcrwkAQNUplnxteKtPT27rKTuPBx1de/5ymaZUHwlUeDsAAAAAAAAsBFUTKB3mOI5uvPFGvfzyy3riiSd09dVXK5vN6o477tBFF12kSy+9VD/84Q+Vz+fnelUAAKpCz0hGP3h655TzL168Up5jqSHqybaq7kc/AAAAAAAA5oGqflfpfe97nx588EFt375dv/u7v6tIJKJnn31WX/nKV7RixQr96Z/+qfbs2TPXawIAMGfyxZJ+salLr+4dKjtfGvf00TOb5NiGkmG3wtsBAAAAAABgoajqQOmwlpYW/d3f/Z327t2rv/3bv1Vzc7O6u7v1l3/5l2pra5NhGDp48OCU3/+zn/1MiUSighsDAFAZ+wfHdMf6jinnX72sRZZpqDHqyTSNCm4GAAAAAACAhWReBEqHRaNR/d7v/Z527Nih+++/X5dddplKpZJ839dNN92kT33qU3rhhRfe8X1vvvmmhobK/+U2AADzVSZf1IMv71NnX7rs/NSmqNpaEvIcU7W0kwAAAAAAAHAC5lWgdJhhGLrmmmu0bt06vfTSS/ryl78sx3H0H//xH2pra9PHP/5xPfHEE5Ik3/f10EMPze3CAADMgl29Kf3Lc7umnP/GFS0yDENNca+CWwEAAAAAAGAhmpeB0tHOO+883X333ers7NR//+//XXV1dfrFL36hD3/4w1q5cqVOO+00bdy4ca7XBABgRo1mC/rh83vUO5orO29rSejUxpginq2o51R4OwAAAAAAACw08z5QOqypqUn/83/+T+3evVvf//731dLSor1792rHjh1zvRoAADNu28ER3ffSnrIzyzR08+UtkqSmGO0kAAAAAAAAnLgFEygdFggE9Ju/+Zvatm2bvvOd7ygcDs/1SgAAzKihdF53behUOlcsO//IGY1aEg+qJuQo6FoV3g4AAAAAAAAL0YILlA6zLEvf/OY3tX79ekWj0bleBwCAGeH7vn61Z0APv36g7NxzTH3pklUyDKmRdhIAAAAAAABmyIINlA5bs2aNvvSlL831GgAAzIi+VE7//EyHCiW/7Pxz5y9XPOgoGXHl2gv+xzwAAAAAAAAqxJ7rBSrhs5/9rLZv3z7XawAAcEKKJV9Pv9mrp7f3lp3Xhhxdc94ymabUEKWdBAAAAAAAgJmzKAKlD3/4w/rwhz8812sAAHBCuocz+udndk45/3LbKgVsSw1RT5ZpVHAzAAAAAAAALHRcCwcAgHkgVyjpP984qDf2D5edL68N6kOnNcqxDdVF3ApvBwAAAAAAgIWOQAkAgHlg32Bad2zonHJ+82UtskxDTTFPhkE7CQAAAAAAADOLQAkAgCo3livq/pf2aU9/uuz8zKUxXbiqVkHXVE2IdhIAAAAAAABmHoESAABVrqM3pR8+t3vK+a2Xt8gwDDXFgxXcCgAAAAAAAIsJgRIAAFVsJJPXD5/bpf50ruz8stV1OqkhqohnKxKwK7wdAAAAAAAAFgsCJQAAqpTv+9pyYFj3v7yv7Nw2Dd10WbMkaUncq+BmAAAAAAAAWGwIlAAAqFKD6bzu2rBLY/li2fnHzmpSY8xTTciR51gV3g4AAAAAAACLCYESAABVqFTy9eKufj2y6WDZeci19MWLV8owpMYY7SQAAAAAAADMLgIlAACqUG8qqzvWd6pY8svOP3f+ckU9R3WRgFybH+cAAAAAAACYXbwDBQBAlSkUS1r3Zo82vNVXdp4Mu/rMuctkmYbqo4EKbwcAAAAAAIDFiEAJAIAq0zWc0T8/0znl/Cvtq+TaphpiAVmmUbnFAAAAAAAAsGgRKAEAUEWyhaIefv2gthwYLjtflQjpA6c2yLVNJcNuhbcDAAAAAADAYkWgBABAFdnXP6Y7N3ROOb/58haZhqHGWECGQTsJAAAAAAAAlUGgBABAlUjnCrrvpb3aNzhWdn728rjOX1mroGuqJkQ7CQAAAAAAAJVDoAQAQJV4q2dUP3p+d9mZIemWy1skSU3xYAW3AgAAAAAAAAiUAACoCkNjed377G4NjuXLzq88uV6tdRFFPVuRgF3h7QAAAAAAALDYESgBADDHfN/X5v1DevBX+8rOHcvQr1/aLElqinsV3AwAAAAAAAAYR6AEAMAc60/ldOeGXcoWSmXnn1yzRPXRgGrDjjzHqvB2AAAAAAAAAIESAABzqljy9ULngNZuPlh2Hg5YuuGilTIMqSFKOwkAAAAAAABzg0AJAIA51Dua1R3rO1Tyy88/f8EKhQO26iIBuTY/tgEAAAAAADA3eGcKAIA5ki+W9MTWbj3X0V92Xh8J6FPnLJVlGqqPBiq8HQAAAAAAADCBQAkAgDlycGhMt6/vmHJ+Y/sqOZaphlhAlmlUcDMAAAAAAABgMgIlAADmQCZf1L+/dlBvdo2WnbfUhfW+U+rl2qaSYbfC2wEAAAAAAACTESgBADAH9vSndffGzinnt17eIsMw1BTzZBi0kwAAAAAAADC3CJQAAKiw0WxB9724VweGMmXn562s0dnLaxR0LcVDToW3AwAAAAAAAN6JQAkAgArb0T2iH7+wu+zMMKRbLm+RJDXFvUquBQAAAAAAAEyJQAkAgAoaTOd077O7NZwplJ1/4NQGrUqEFfVsRQJ2hbcDAAAAAAAAyiNQAgCgQnzf1xv7hvWzV/aXnbuWqRvbVkminQQAAAAAAIDqQqAEAECF9I7mdOeGDuWKpbLzT52zRMlIQLVhR55jVXg7AAAAAAAAYGoESgAAVECx5Ov5jj49tqW77DwasPX5C1fIMKTGGO0kAAAAAAAAVBcCJQAAKqB7JKPb13fKn2J+/UUrFHJt1UcDcix+PAMAAAAAAKC68I4VAACzLFco6bEt3Xpp10DZeWMsoE+uWSLLNFQXCVR4OwAAAAAAAOC9ESgBADDLDgyN6Y71HVPOf729WbZlqiEWkGUaFdwMAAAAAAAAODYESgAAzKKxXFH/9sp+vdWTKjs/qT6sy0+qk2ubSobdCm8HAAAAAAAAHBsCJQAAZtGuvpTueXbXlPNbr2iVYRhqinkyDNpJAAAAAAAAqE4ESgAAzJKRTF73vbhX3SPZsvMLV9XqzKVxBV1L8ZBT4e0AAAAAAACAY0egBADALPB9X9u7RvSTF/eUnZuGdPPlzZKkJXGvgpsBAAAAAAAAx49ACQCAWTCYzutfnt2t0Wyh7PxDpzdqRW1YsaCtcMCu8HYAAAAAAADA8SFQAgBghpVKvl7dO6ifv7a/7Dxgm/pK2ypJUmOMdhIAAAAAAACqH4ESAAAzrDeV1V0bOpUv+mXnnzlvqWpDrmrDjjzHqvB2AAAAAAAAwPEjUAIAYAYViiU9+1afntzWU3YeC9q69vwVMgzaSQAAAAAAAJg/CJQAAJhB3SNZ3b6+U+W7SdIXL14pz7FUHw3IsfgxDAAAAAAAgPmBd7IAAJgh2UJRazd36ZU9g2XnS+KePnbmElmmobpIoLLLAQAAAAAAACeAQAkAgBmyfyCjO9Z3TDm/6bJmWaahxlhAlmlUcDMAAAAAAADgxBAoAQAwA9K5gn72yj519qXLzk9tjKqtJSnXNpUIuxXeDgAAAAAAADgxBEoAAMyAzt6U/uW5XVPOb72iRYZhqCnuyTBoJwEAAAAAAGB+IVACAOAEDY3l9ZMX9qp3NFd2fklLQqc1xRR0LcWDToW3AwAAAAAAAE4cgRIAACfA93292TWi+17aU3ZumYZuvrxZkrQk7lVwMwAAAAAAAGDmECgBAHAC+lM53bNxl9K5Ytn5Vac3amk8pFjQVjhgV3g7AAAAAAAAYGYQKAEAME3Fkq9X9gzq4dcPlJ17jqkvt62SYUiNMdpJAAAAAAAAmL8IlAAAmKbe0azu2tCpQskvO//secsUDzqqDbvyHKvC2wEAAAAAAAAzh0AJAIBpyBdLWr+jV+u295ad14QcXXPechmG1BANVHg7AAAAAAAAYGYRKAEAMA0Hh8Z0+zMdU86/dMlKeY6lhmhAjsWPWwAAAAAAAMxvvMMFAMBxyuSLWru5W2/sHy47X14b1FWnN8m2DNVFaCcBAAAAAABg/iNQAgDgOO0dSOuODZ1Tzm++rFmWaaghGpBpGpVbDAAAAAAAAJglBEoAAByH0WxBP3tlv/b0p8vOz1gS04WrEgo4phJht8LbAQAAAAAAALODQAkAgOPQ0Tuqe5/bPeX81itaZBiGGmOeDIN2EgAAAAAAABYGAiUAAI7RYDqnnzy/R/2pXNn5pauTOrkhqlDAUjzoVHg7AAAAAAAAYPYQKAEAcAx839fWg8O6/+V9Zee2aeimy5olSUviXgU3AwAAAAAAAGYfgRIAAMegdzSnezbu1li+WHb+0bOa1BQLKh50FHLtCm8HAAAAAAAAzC4CJQAA3kOx5OtXuwf0yKaDZech19KXLl4pw5AaYoEKbwcAAAAAAADMPgIlAADeQ/dIRndu6FSx5Jedf+78ZYp6jmrDrjzHqvB2AAAAAAAAwOwjUAIA4F3kCiU9s71XG97qKztPhF195tzl4+2kKO0kAAAAAAAALEwESgAAvIuDQ2O6fX3nlPMvt62Ua5tqiAbkWPxYBQAAAAAAwMLEO18AAExhLFfUI5u6tOXAcNn5ykRQHzqtUbZlqC5COwkAAAAAAAALF4ESAABT2NOf0l0bOqec33JZi0zDUGPMk2kalVsMAAAAAAAAqDACJQAAyhjO5PXQK/u1b3Cs7HzNsrjOX5VQwDFVG3IqvB0AAAAAAABQWQRKAAC8je/76ugZ1Q+f2112bki69fIWSVJjzJNh0E4CAAAAAADAwkagBADA2wym8/rx83s0OJYvO7/85Dq11kcUCliKB2knAQAAAAAAYOEjUAIA4Cilkq/NB4b14Cv7ys4dy9BNl463k5bEvUquBgAAAAAAAMwZAiUAAI7Sm8rqno27lMmXys4/sWaJ6qMBxYOOQq5d4e0AAAAAAACAuUGgBADAIYViSS/tGtAvNx8sOw8HLH3hopUyDKkxHqjwdgAAAAAAAMDcIVACAOCQ7pGs7lzfqZJffv75C1YoHLCVCLsK2FZllwMAAAAAAADmEIESAACSsoWi1r3Zo+c6+svO6yMBfeqcpTJNqSFKOwkAAAAAAACLC4ESAACSDg5mdPv6jinnX2lfKccyVR8JyLb48QkAAAAAAIDFhXfEAACLXjpX0MNvHNSbXaNl5y11Ib3vlAbZlqG6CO0kAAAAAAAALD4ESgCARW93f1p3b+yccn7zZS0yDUONMU+maVRuMQAAAAAAAKBKECgBABa1obG8Hnhpnw4MZcrOz10R17krauU5pmpDToW3AwAAAAAAAKoDgRIAYNHyfV9vdY/qxy/sLjs3DOmWy1olSY1xT4ZBOwkAAAAAAACLE4ESAGDR6k/l9KPnd2s4Uyg7f98p9WquCyscsBTzaCcBAAAAAABg8SJQAgAsSsWSr037hvWzV/aXnbuWqa+2N0uSmuJeBTcDAAAAAAAAqg+BEgBgUeodzeqeZ3cpVyyVnf/aOUuUjAQUDzoKuXaFtwMAAAAAAACqC4ESAGDRyRdLeqGjX49t7So7jwZsXX/hChmG1BgPVHg7AAAAAAAAoPoQKAEAFp2u4Yzu3NCpkl9+fv1FKxRybSXCrgK2VdnlAAAAAAAAgCpEoAQAWFQy+aKe3NajF3cNlJ03RgP65JolMk2pIUo7CQAAAAAAAJAIlAAAi8z+wTHdub5zyvmvX9os2zJVHw3ItvgxCQAAAAAAAEgESgCARWQ0W9B/vHZAO3pGy85X14d1+Ul1si1DdWHaSQAAAAAAAMBhBEoAgEVjd19K9zy7a8r5rVe0yjAMNcU8maZRwc0AAAAAAACA6kagBABYFAbTOd3/0j51j2TLzi9YVauzlsblOaZqQk6FtwMAAAAAAACqG4ESAGDB831f27tH9JMX95Sdm4Z0y+XNkqTGuCfDoJ0EAAAAAAAAHI1ACQCw4PWO5vSj5/ZoNFsoO//gaQ1aURtWOGAp5tFOAgAAAAAAAN6OQAkAsKAViiW9sW9QP39tf9l5wDZ1Y3uzJGlJPFjBzQAAAAAAAID5g0AJALCg9YxmdffGXcoX/bLzq89ZqtqQq5qQo6BrVXg7AAAAAAAAYH4gUAIALFi5QknPd/TryW09Zecxz9Z1F6yQYUgNsUCFtwMAAAAAAADmDwIlAMCC1TWc0R3rO1W+myR94eKVCrqWkhFXAZt2EgAAAAAAADAVAiUAwII0livq8a3demXPYNn5krinj5+1RKYp1UdoJwEAAAAAAADvhkAJALAg7R1I684NnVPOv3ppsyzTUH00INvixyEAAAAAAADwbngHDQCw4Axn8nr49QPq6E2VnZ/aGFF7a1KObaguTDsJAAAAAAAAeC8ESgCABcX3fe3uS+meZ3dP+TW3XNEqwzDUGPVkmkYFtwMAAAAAAADmJwIlAMCCMpDO66cv7VPvaLbs/OKWhE5vislzTNWEnApvBwAAAAAAAMxPBEoAgAWjVPK1vWtE9724p+zcMg3dcnmzJKkp7skwaCcBAAAAAAAAx4JACQCwYPSOZnXvc7uVyhXLzj98eoOWxkOKeLaiHu0kAAAAAAAA4FgRKAEAFoRCsaTX9g3p4dcPlJ17jqmvtDVLkppiXgU3AwAAAAAAAOY/AiUAwILQNZLV3Rs6VSj5ZeefOW+Z4kFHNSFHQdeq8HYAAAAAAADA/EagBACY9zL5op7b2ad123vLzmtCjj533nIZhtRIOwkAAAAAAAA4bgRKAIB57+DQmG5/pmPK+RcvXinPsZSMuHJtfvQBAAAAAAAAx4t31QAA81oqW9DjW3v0xv7hsvNlNUF95IwmmaZUHwlUeDsAAAAAAABgYSBQAgDMa3sHxnTHhs4p5zdd2izLNNQQ9WRb/NgDAAAAAAAApoN31gAA89bQWF7//tp+7elPl52fviSqi1sScmxDybBb4e0AAAAAAACAhYNACQAwL/m+r87elO59bveUX3PrFa0yDEONUU+maVRwOwAAAAAAAGBhIVACAMxL/amc7ntpr/pTubLzS1cndUpDVJ5jqpZ2EgAAAAAAAHBCCJQAAPNOseRr28ER3f/S3rJz2zR002XNkqSmuFfBzQAAAAAAAICFiUAJADDv9I5m9cPndmssXyw7/+iZjWqKBRXxbEU9p8LbAQAAAAAAAAsPgRIAYF7JF0t6Zc+g/nPTwbLzoGvpS5eskiQ1xWgnAQAAAAAAADOBQAkAMK90DWd094ZOFUt+2fnnzl+mqOeoJuQo6FoV3g4AAAAAAABYmAiUAADzRiZf1Ma3+rT+rb6y80TY1TXnLpdhSI20kwAAAAAAAIAZQ6AEAJg3DgyO6fb1nVPOv3zJSrm2qWTElWvzIw4AAAAAAACYKbzbBgCYF0azBa3d0q0tB4bLzlfUBvWh0xtlmlJDlHYSAAAAAAAAMJMIlAAA88Le/pTu2tA55fyWy1tkGoYaop4s06jcYgAAAAAAAMAiQKAEAKh6g+mc/u3VA9o3OFZ2ftbSmC5YlZBjG6qLuBXeDgAAAAAAAFj4CJQAAFWtVPK1s3dUP3xud9m5IemWK1olSU0xT4ZBOwkAAAAAAACYaQRKAICq1pfK6b4X9mpwLF92ftnJdTqpPqKga6omRDsJAAAAAAAAmA0ESgCAqlUolrT14LAefGVf2bltGrrp0mZJUlM8WMHNAAAAAAAAgMWFQAkAULV6RrO699ndyuRLZeefOGuJGqKeIp6tSMCu8HYAAAAAAADA4kGgBACoStlCUa/sHtQvNx8sOw8HLH3xkpWSpCVxr5KrAQAAAAAAAIsOgRIAoCp1D2d154ZOlfzy82svWK5wwFZNyJHnWJVdDgAAAAAAAFhkCJQAAFVnLFfU+h29eq6jv+y8LuLq0+csk2FIjTHaSQAAAAAAAMBsI1ACAFSd/YNp3bG+c8r5V9pWybFM1UUCcm1+lAEAAAAAAACzjXfhAABVZTiT19rN3drWNVJ23pwM6f2nNsgyDdVHAxXeDgAAAAAAAFicCJQAAFXD933t7U/rro2dU37NLZe3yDQMNcQCskyjcssBAAAAAAAAixiBEgCgagyk8/rZK/t1YChTdn7OirjOXVEr1zaVDLsV3g4AAAAAAABYvAiUAABVoVTytbNnVD96fnfZuWFIt1zWKklqjAVkGLSTAAAAAAAAgEohUAIAVIXe0ax+8sIeDWcKZefvO7leLXVhBV1TNSHaSQAAAAAAAEAlESgBAOZcoVjS5gPD+tkr+8vOHcvQr1+6SpLUFA9WcjUAAAAAAAAAIlACAFSBrpGs7n12t3LFUtn5r61ZqrqIp6hnKxKwK7wdAAAAAAAAAAIlAMCcyuSL+tWuAT22tavsPBKwdcPFKyRJTXGvkqsBAAAAAAAAOIRACQAwp7qGM7pzQ6dKfvn55y9crpBrqzbsyHOsyi4HAAAAAAAAQBKBEgBgDqWyBT29vVcv7hooO2+IBvSps5fKMKSGKO0kAAAAAAAAYK4QKAEA5sy+wTHdub5zyvmN7atkW6bqIgG5Nj+yAAAAAAAAgLnCu3MAgDkxlM7rl5u6tKNntOx8dX1YV55cL8s0VB8NVHg7AAAAAAAAAEcjUAIAVJzv+9rdn9bdGzun/JpbLm+RYRhqiAVkmUbllgMAAAAAAADwDgRKAICK60vl9NAr+9Q9ki07v2BljdYsq5Frm0qG3QpvBwAAAAAAAODtCJQAABVVLPl6q3tUP3lhT9m5aUg3X94iSWqKeTIM2kkAAAAAAADAXCNQAgBUVO9oVv/64h6NZgtl5x84tUErE2EFXUvxkFPh7QAAAAAAAACUQ6AEAKiYfLGkTfuH9G+v7i87d21TN166SpLUFPcquRoAAAAAAACAd0GgBAComK7hjO7ZuEv5ol92fvXZS5UIBRT1bEUCdoW3AwAAAAAAADAVAiUAQEVk8kW92DmgJ7f1lJ3HPFufv3CFJNpJAAAAAAAAQLUhUAIAVMTBoYzu3NCp8t0k6YaLVijoWqoNO/Icq6K7AQAAAAAAAHh3BEoAgFk3mi3oqTd79MqewbLzppinT6xZKsOQGmO0kwAAAAAAAIBqQ6AEAJh1+wbSunND55TzX790lSzTUH00IMfiRxMAAAAAAABQbXjXDgAwqwbTOT3yxkF19KbKzk9ujOiy1XWyTEN1kUCFtwMAAAAAAABwLAiUAACzplTytas/pXue3T3l19x6eYsMw1BDLCDLNCq4HQAAAAAAAIBjRaAEAJg1famcHnx5v3pHs2XnFzXX6owlcbm2qWTYrfB2AAAAAAAAAI4VgRIAYFYUiiXt6B7RfS/uKTu3TEO3XN4iSWqKeTIM2kkAAAAAAABAtSJQAgDMip7RrH78/B6lcsWy8w+d1qBlNSEFXUvxkFPh7QAAAAAAAAAcDwIlAMCMyxaK2rRvWP/x+oGyc88x9ZX2VZKkJXGvkqsBAAAAAAAAmAYCJQDAjOsezurujbtUKPll558+d5lqgq5iQVvhgF3h7QAAAAAAAAAcLwIlAMCMGssV9UJHv9Zt7yk7rwk5uvb85ZKkxhjtJAAAAAAAAGA+IFACAMyo/YNp3bGhc8r5Fy9eIc+xVBt25DlW5RYDAAAAAAAAMG0ESgCAGTOcyWvdm716fd9Q2fnSGk8fOWOJDIN2EgAAAAAAADCfECgBAGaE7/vaNzD2ru2kmy5tlmUaqo8G5Fj8CAIAAAAAAADmC97NAwDMiIF0Xg+/fkC7+9Nl56ctieqSlqQs01BdJFDh7QAAAAAAAACcCAIlAMAJK5V87epL6d7ndk/5Nbde1iLDMNQYC8gyjQpuBwAAAAAAAOBEESgBAE5Y72hW97+8T/2pXNl5e2tCpzbF5NqmEmG3wtsBAAAAAAAAOFEESgCAE5IvlvRm14juf2lv2bllGrrpshZJUlPck2HQTgIAAAAAAADmGwIlAMAJ6R7J6sfP79FYvlh2/pEzGrUkHlTQtRQPOhXeDgAAAAAAAMBMIFACAExbJl/UG/uG9J+bDpadBx1LX25bKUlaEvcquRoAAAAAAACAGUSgBACYtq7hjO7e0KliyS87/+z5yxTzXMWCtsIBu8LbAQAAAAAAAJgpBEoAgGlJZQt6vqNf69/qKztPhF199rzlMgypMUY7CQAAAAAAAJjPCJQAANOyf3BMd6zvnHL+pUtWyLVN1YZdeY5VucUAAAAAAAAAzDgCJQDAcRtK5/Xkth5tPjBcdr6iNqgPn94kw5AaooEKbwcAAAAAAABgphEoAQCOi+/72jc4pjs3dE75NTdd3izTMNQQDcix+FEDAAAAAAAAzHe8ywcAOC59qZz+/bX92jc4VnZ+1tKYLlqVlG0ZqovQTgIAAAAAAAAWAgIlAMAxK5Z87epN64fP7y47NyTdcnmLpPFL3ZmmUcHtAAAAAAAAAMwWAiUAwDHrGcnq/pf3ajCdLzu/7KSkTmqIKuCYSoTdCm8HAAAAAAAAYLYQKAEAjkmuUNL2rhE98Ku9Zee2aeirl463kxpjngyDdhIAAAAAAACwUBAoAQCOSddwRvc+t1uZfKns/GNnNakx5ikUsBQPOhXeDgAAAAAAAMBsIlACALynTL6o1/cO6ZebD5adh11LX7xkpSRpSdyr5GoAAAAAAAAAKoBACQDwng4MZXTXxk6V/PLzz12wXNGAo3jQUci1K7scAAAAAAAAgFlHoAQAeFcjmbye29mn5zr6y87rIq4+c+4yGYbUEAtUeDsAAAAAAAAAlUCgBAB4VweHxnTH+s4p519uWynHMlUbduU5VuUWAwAAAAAAAFAxBEoAgCkNpnN6bEuPtnWNlJ03J0P6wKmN4+2kKO0kAAAAAAAAYKEiUAIAlFUq+dozkNZdGzun/JqbLmuWaRhqiAbkWPxIAQAAAAAAABYq3v0DAJTVl8rp3189oANDmbLzc5bHdf7KhGzLUF2EdhIAAAAAAACwkBEoAQDeoVAsqbN3VD96fnfZuWFIt1zeIklqjHkyTaOS6wEAAAAAAACoMAIlAMA79Ixmdd9L+zScKZSdX3lynVrqIgo4pmpDToW3AwAAAAAAAFBpBEoAgEmyhaK2HRzR/9/efUdZVZ3/A36nMAzDDL0rSBEbInbBig1jC5agGBNN1CTGqNEUjcaeWBJNMRpNsUUFNcZINLFgRVFQbGBFQDpI72UYZs7vD7/cHxfuXIYyBeZ51mKtu2fvs8++Ax7vnM+8Zw/5YHrG/gZ5OXH2gZ0j4qvqpJwc1UkAAAAAsK0TKAGQZvbi0hj01pRYtboiY/9xPdtH6+LCKGqYF00bqU4CAAAAgPpAoARAyvJVq2P01IXx0qezMvYXN8yPb+7fKSIi2jctrMmlAQAAAAC1SKAEQMqXi1bGA29Oiookc/+AfbePooL8aNqoQRQV5Nfs4gAAAACAWiNQAiAiIhavLIsRE+bFO5MXZOxvU9Iwvr5Hh8jJiWjbtGENrw4AAAAAqE0CJQAiSZKYsXBF3P/GpErHnNVnh8jPy40WjQuiYX5ezS0OAAAAAKh1AiUAYsHysnjxk9kxfs7SjP1dWzWOQ7u3jtzcryqVAAAAAID6RaAEUM9VVCQxdf7yeHDEpErHnHNw58jJyYnWxQ0jP8//OgAAAACgvnFXEKCem7u0NJ4aPSNmLynN2L9Xp2bRa/vmkZ+XE62KVScBAAAAQH0kUAKox8rKK+KLOcvisVFTM/bn5kScd1CXiIho26QwcnNzanJ5AAAAAEAdIVACqMdmLymNx9+dGktLV2fs77tz6+jUsnEUNsiN5kUNanh1AAAAAEBdIVACqKdWlpXH2C8Xx1OjZ2TsL8jPjbP7dI6IiLZNCyMnR3USAAAAANRXAiWAemrW4pXx8IgpUVaeZOw/cY/20aJxw2jcMC+aFKpOAgAAAID6LL+2F1AfTZw4MV5++eWYM2dOdOjQIQ455JDo0qVLra1nxYoV8dZbb8XkyZNj5syZUVFREVdeeWWtrQeofstKV8cHUxbGK2NnZ+xvUpgfp+/bKSIi2jUtrMmlAQAAAAB1kECpBk2fPj0uueSSeOKJJyI3NzdatWoVc+bMiSRJon///nH33XdHu3btamQtq1atikcffTQeeuihGD58eDRq1CiOO+646NmzZ/Tq1atG1gDUnpmLVsYDb06KzLVJEaft1zEaFeRF00YNoqjA/yoAAAAAoL5zl7CGvPXWW9G/f/+YNWtWDBw4MG6//fZo06ZNLFy4MK6++uq4884744033ogXXnih2gOdp556Ki655JKYOHFi7LTTTjFo0KA48cQTo0EDj7SC+mDR8rJ4Y/zceH/qwoz97ZoUxgk9O0ROTkTbpg1rdnEAAAAAQJ1kD6Ua8Mknn8TXvva1mDVrVhxzzDExePDgaNOmTURENGvWLO64444YOHBgzJkzJ/r16xcTJkyolnWUlpbGD37wg+jfv39MnDgxLr/88vjoo4/ilFNOESZBPZEkScxYtCIeeHNSpWPOPnCHyMvNiRaNC6Jhfl7NLQ4AAAAAqLMEStWsrKwszjjjjFi4cGHk5eXFn//858jJyVlv3G9+85vIz8+P2bNnxznnnBNJUtmDqDbN/Pnz46ijjoq//e1vkZ+fH4MGDYpbbrlFkAT1zLxlq2Lox7Ni4txlGfu7tymOg7q1itzciDYlqpMAAAAAgK8IlKrZ7bffHmPGjImIiGOPPTa6deuWcVynTp2iX79+ERHx2muvxd///vcttoZ58+bFEUccEcOHD4+cnJy455574pvf/OYWmx/YOpRXJDFt/op4aOTkSsece3CXyMnJidYlDSM/z/8iAAAAAICvuFtYjVasWBG33nprqt2/f/+s448//vjU65tvvnmLVCmVlpbGCSecEKNHj46IiMsvvzzOPvvszZ4X2PrMWVIaQz6YHnOXlmbs369z8+jRoWnk5+VEq8aqkwAAAACA/0+gVI2GDBkSs2fPTrV79+6ddXzfvn1TrydNmhRDhw7d7DVcfPHFMXLkyIiI2H333eP666/f7DmBrc+q1RXxxZyl8fg7UzP25+ZEnHNQl4iIaNekMHJz1380JwAAAABQfwmUqtFjjz2Wep2Xlxe77LJL1vE77bRTNGz4/6sCHn300c06/9ChQ+Nvf/tbqv273/0uCgoKNmtOYOs0a/HKeGzU1Fi2qjxj/5G7to3tmxdFYYPcaFZkbzUAAAAAIJ1AqZokSRKvvfZaqt2hQ4fIz8/Pekx+fn506dIl1V5TWbQpysvL4+KLL061991339QeTUD9srKsPD77ckn878OZGfsL83PjrD47RERE26aFkZOjOgkAAAAASCdQqibjxo2LBQsWpNodO3as0nFt27ZNvR47dmwsXrx4k87/yCOPxNixY1PtCy64IK2/rKws5s+fHxUVFZs0P7D1mLloZTw0YnKsrsi8L9vX9+wQzRoVROOGedGkUHUSAAAAALA+gVI1GT9+fFq7qoFSixYtUq+TJFlvnqq66667Uq8bNGgQJ554Yvz3v/+Ns846K7p27RoFBQXRsmXLKCgoiEMPPTT++c9/btJ5gLptycqyeH/ygnht3JyM/c0aNYgB+3x1fWrftFFNLg0AAAAA2IpkfwYbm2zKlClp7SZNmlTpuLX3UIqItCqnqpo0aVKMGDEi1W7evHkceOCBUVRUFGeeeWaceuqpMXPmzBg0aFAMHz48Xn/99Xj99dfjsccei0GDBkVhYeFGnzOT2bNnx5w5mW9iV2ZTAzQgsy8XrYj735xUaf/A/TtGYYO8aFbUIBoV5NXcwgAAAACArYpAqZosWbIkrV1UVFSl4woKCtLaCxcu3Ohzv/DCC+ud+5ZbbolTTjkl7evnn39+XHPNNfGrX/0qIiL+/e9/x8CBA2PIkCEbfc5M7rrrrrj++uu3yFzAxluwbFUMHzcvPpy+KGN/h2aF8bUe7SMnJ6JNk4YZxwAAAAAARHjkXbVZuXJlWruqgVJZWVlae8WKFRt97lGjRqW177zzzvXCpDVuuOGGOO6441Lt//znP3Hvvfdu9DmBuqWiIokZG6hO+s6BnSMvNydaFhdEw3zVSQAAAABA5QRK1WTdx8bl5VXtZu26gVKjRhu/p8nYsWPT2p06dco6/qabbkpr33jjjZEkyUafF6g75i4rjec/+jKmzF+esX+XdiXRu0vLyM2NaF2sOgkAAAAAyM4j76pJSUlJWnvdiqXKrDtu3XmqYt68eWnttm3bZh3fq1evOOCAA+Ktt96KiIiJEyfGhx9+GHvsscdGn3ttF1xwQQwYMGCjjhk/fnycdNJJm3VeqO9Wl1fE1PnL4+G3plQ65tyDu0ROTk60LmkY+Xl+twAAAAAAyE6gVE1at26d1q5qoLRgwYK09vbbb7/R5y4tLU1rN2vWbIPHHHvssalAKSLinXfe2exAqU2bNtGmTZvNmgPYeLOXlMaQ92fE/GWrMvb37toidmnXJBrk50SrxqqTAAAAAIAN82vp1aRHjx5p7VmzZlXpuLUDpdzc3OjcufNGn7tly5Zp7dzcDf8177nnnmntOXPmbPR5gdpXuro8Js5dFv96d1rG/rzcnPjuQV0iIqJtSWHk5ubU5PIAAAAAgK2UQKmadO/ePW3/o2nTMt/cXdfa43r06BFFRUUbfe51q4KqEg7tsMMOae38fMVrsDWatag0Hnl7SqwoK8/Yf/SubaND00ZR2CA3mhU1qOHVAQAAAABbK4FSNcnLy4sjjjgi1R43btwGj5k7d24sXrw41T700EM36dzrVkdNmVL5PiprFBcXp7XbtWu3SecGas/yVavj05mL49mPvszY36hBXny7T6eIiGjXtDByclQnAQAAAABVI1CqRieffHLq9dy5c2Py5MlZx3/yySdp7QEDBmzSeY8//vi09vDhwzd4zLp7PPXp02eTzg3Uni8XrYwHR0yK8ookY/9Je3WIJoUFUVyYHyWFqpMAAAAAgKoTKFWj0047LZo3b55qbyjYGTlyZOp19+7dN7lCqU+fPtG+fftU+8UXX9zgMdOnT0+97tmzZ3Tt2nWTzg3UjsUry+LdyQvijQnzMva3KGoQ39i7Y0REtGtSWJNLAwAAAAC2AQKlalRSUhIXX3xxqv3EE09kHf/cc8+lXl955ZWb/DiqvLy8uPbaa1PtoUOHxsSJE7Me88Ybb6ReX3rppZt0XqB2JEkSMxeuiPvfmFTpmDMO6BQF+V/tm9SoIK/mFgcAAAAAbBMEStXspz/9aXTs+FVVwLPPPhszZ87MOG7cuHExbNiwiIjo3bt3nHXWWRnHrVy5Mu6///64/fbbK50rIuK8886L3XffPSIiKioq4tZbb6107MqVK+OBBx6IiIgDDjggzj777A2+L6DuWLC8LF77fG58MnNxxv7tmzeKfru1i5yciLaqkwAAAACATSBQqmYlJSXx8MMPR35+fqxcuTKuuuqq9casXr06LrjggqioqIjWrVvHoEGDIjc381/NUUcdFeecc05ccskl0atXr5g1a1bGcXl5eTFkyJBo3bp1RET85S9/iSFDhmQc+7Of/SymTp0abdu2zXpuoO6pqEhixsIV8cCbkyod890DO0duTk60LC6Ignz/fQMAAAAAG8+dxRpw6KGHxoMPPhgNGjSI++67L37605/G0qVLIyLi448/jqOPPjpefPHF6NixY7zwwguV7l80f/78tEfTzZkzJ629rm7dusV///vfaNasWSRJEt/61rfiz3/+c6xcuTIiImbMmBHf+c534s9//nO0b98+nnvuuejWrdsWfOdAdZu7tDSe+XBmTF+4ImN/jw5NYv8uLSM3N6J1ccMaXh0AAAAAsK0QKNWQM844I4YNGxY9e/aM3//+99GsWbNo2bJl7L777jFixIi44IILYvTo0dGrV69K52jRokUcfPDBqXarVq3iwAMPzHre/fffP95555049thjY9myZXHhhRdGcXFxtGvXLjp27BiPP/54nHvuufHRRx/FnnvuuaXeLlADysorYvK85TH47SkZ+3Mi4pyDukRERJuSwsjPc8kHAAAAADZNfm0voD7p06dPjBkzJkaMGBGjRo2KpUuXRpcuXeLoo4+OVq1aVWmOF154IR555JFYvHhxDBgwINq1a7fBY7p16xbPPPNMTJgwIV577bX48ssvo6SkJDp16hSHH354lJSUbO5bA2rB7CWl8eT702Ph8rKM/Qd2axk7tS2JBvk50bJxQQ2vDgAAAADYlgiUakGfPn2iT58+m3RsYWFhfPe7392kY7t16+aRdrCNWFlWHl/MXhr/fn9axv783Jz4zv9VJ7UtKYzc3JyaXB4AAAAAsI3x/COArdCcJaUx+O0psbKsImP/MT3aRbsmhVHYIDeaq04CAAAAADaTQAlgK1O6ujw+nL4onv/4y4z9RQV5cWbvThER0a5pYU0uDQAAAADYRgmUALYyc5aUxoMjJkVFkrn/1L23i5KGDaK4MD9KChvU7OIAAAAAgG2SQAlgK7JqdUW8MX5ujPxifsb+lsUFcfJe20dERLsmqpMAAAAAgC1DoASwFZm9ZGXc/8akSvvPPKBTNMjLjWZFDaJRQV7NLQwAAAAA2KYJlAC2EmXlFfHKZ7Pjsy+XZOzfoUVRHLlL28jJiWirOgkAAAAA2IIESgBbiTlLVsbgt6dW2v/dgzpHbk5OtCwuiIJ8l3cAAAAAYMtxxxFgK7C6vCJeHTsnPp25OGP/7h2axD47tIjc3Ig2JaqTAAAAAIAtS6AEsBWYt2xVPJqlOulbvXeIiK/CpLzcnJpaFgAAAABQTwiUAOq48ookXh07O8ZMX5Sxv0eHJtGjQ9NokJ8TrYoLanh1AAAAAEB9IFACqOPmLS2NR7JUJ515wFfVSe2aFEZOjuokAAAAAGDLEygB1GEVFUkMHzc3Ppi6MGP/ru1Koud2TaNRQW40K1KdBAAAAABUD4ESQB02b9mqGPz2lEr7v3lAp4iIaNuksKaWBAAAAADUQwIlgDqqoiKJNyfMjXcmL8jY371NcfTavlk0KsiLksIGNbw6AAAAAKA+ESgB1FELlq+KwW9VXp105gGdIicnJ9o2aViDqwIAAAAA6iOBEkAdlCRJjPxiXrw1cX7G/m6tG8fenZqrTgIAAAAAaoRACaAOWri8LAZlqU765v6qkwAAAACAmiNQAqhjkiSJtyfOjzcnzMvY37llUezXuYXqJAAAAACgxgiUAOqYRSvKYtBbkyvtX1Od1EZ1EgAAAABQQwRKAHXMu5MXxOvj5mbs69i8UfTu2jIaFeRFE9VJAAAAAEANESgB1CGLVpTFwyMnR1JJ/xmqkwAAAACAWiBQAqhDPpiyIIZ9PidjX4dmhXHQjq2iUUGu6iQAAAAAoEYJlADqiCUry+KhkZOjopLypDP26xS5OTnRpklhzS4MAAAAAKj3BEoAdcToaQvjlbGZq5PaNSmMQ7q3Vp0EAAAAANQKgRJAHbCsdHU8NGJKlFdSnjRw/46Rl5sTrUtUJwEAAAAANU+gBFAHfDh9Ubz06ayMfW1KGkbfndpEo4LcaNpIdRIAAAAAUPMESgC1bPmq1fHQiMmxupLqpNP2VZ0EAAAAANQugRJALftkxuJ4/uMvM/a1Ki6II3dRnQQAAAAA1C6BEkAtWllWHg9mqU4asE/HyM/LVZ0EAAAAANQqgRJALfp0xuJ47qPM1UktihrE0bu1jcIGqpMAAAAAgNolUAKoJSvLyuPBkZNjVXlFxv5v7NsxGuTlRpsmqpMAAAAAgNolUAKoJZ/PWhLPfDgzY1+zRg3imN3aqU4CAAAAAOoEgRJALVi1uiIeGjE5Sldnrk46ZZ/toyA/N9rYOwkAAAAAqAMESgC1YMKcpfHfMZmrk5oU5sexPf6vOqlIdRIAAAAAUPsESgA1rKy8Ih58c1KsKCvP2H/yXttFYYM81UkAAAAAQJ0hUAKoYRPnLo2nRs/I2FfcMD+O79lBdRIAAAAAUKcIlABq0OryivjHm5Nj2arM1Ukn7bVdNCpQnQQAAAAA1C0CJYAaNHne8vjPB5mrkxoX5MWJe7SPhqqTAAAAAIA6RqAEUEPKK5J4cOSkWFq6OmP/1/fsEEUF+dGmpGENrwwAAAAAIDuBEkANmTZ/eTz53vSMfY0a5MXXe233VXVSI9VJAAAAAEDdIlACqAEVFUk8NHJyLF6ZuTrphD3aR3HDr6qTcnJyanh1AAAAAADZCZQAasD0hSviX+9Ny9hXmJ8bJ+2pOgkAAAAAqLsESgDVrKIiiYdHTo6Fy8sy9h/Xs300adRAdRIAAAAAUGcJlACq2czFK+LxdzNXJxXk58bJe6lOAgAAAADqNoESQDVKkiQGvzUl5i9blbH/2B7tollRgeokAAAAAKBOEygBVKPZS0rjsVGZq5Ma5OXEqXtvHwX5qpMAAAAAgLpNoARQTdZUJ81dWpqx/5jd2kXzxqqTAAAAAIC6T6AEUE3mLi2NR96ekrEvPzcnvrHPV9VJzYpUJwEAAAAAdZtACaCaPDpqasxekrk66ahd20TL4oaqkwAAAACArYJACaAazFtWGoPfylydlJebEwP27ag6CQAAAADYagiUAKrB46OmxsxFKzP2HbFLm2hTUqg6CQAAAADYagiUALawBctXxUMjM1cn5eZEnLaP6iQAAAAAYOsiUALYwp54d1pMX7giY1/fnVtHu6aF0Vp1EgAAAACwFREoAWxBi1eUxYMjJmfsy8mJOH3fTlGQnxvNVScBAAAAAFsRgRLAFvTv96bFlPnLM/YdsmOr6NCskeokAAAAAGCrI1AC2EKWlZbFPyqrToqIgft1igb5OaqTAAAAAICtjkAJYAsZ8v6MmDh3Wca+g3ZsGR1bFEWbkkLVSQAAAADAVkegBLAFLC9dHfe/ManS/tP3VZ0EAAAAAGy9BEoAW8B/x8yM8XOWZuzr3bVFdG7VWHUSAAAAALDVEigBbKYVq1bHvcMnVtp/hr2TAAAAAICtnEAJYDM9+9GXMXbWkox9+3VuHl1bF0fr4oaqkwAAAACArZZACWAzrCxbHfe8Xnl10sD/q05q0bigBlcFAAAAALBlCZQANsPQT2bFJzMXZ+zbu1Oz2KltieokAAAAAGCrJ1AC2ESrVldkrU46Q3USAAAAALCNECgBbKKXPp0VY6Ytyti3x/ZNY5f2TVQnAQAAAADbBIESwCYoK6+Iv73+RaX939y/U+TnqU4CAAAAALYNAiWATTBs7Jx4f8rCjH09OjSJHh2aRusS1UkAAAAAwLZBoASwkVaXV8RfX5tQaf8Za6qTilQnAQAAAADbBoESwEZ6Y/zcGDVpQca+XdqVxB7bfVWdlJurOgkAAAAA2DYIlAA2QnlFEncPy1KdtF+naJCfqzoJAAAAANimCJQANsKIL+bGyC/mZ+zr3qY49urUTHUSAAAAALDNESgBVFFFRRJ/efWLSvsHqk4CAAAAALZRAiWAKho1eX4MHz83Y1+XVo1jv87NVScBAAAAANskgRJAFSRJEne/kmXvpP1VJwEAAAAA2y6BEkAVvDdlYQz7fE7Gvk4tiuKALi2iVbHqJAAAAABg2yRQAtiAJEnirlfHR1JJ/xn7d4oGebnRsrHqJAAAAABg2yRQAtiAMdMWxSufzc7Yt33zRnFgt5b2TgIAAAAAtmkCJYANuOvV8VFRSXnS6ft2VJ0EAAAAAGzzBEoAWXwyY3G8+Gnm6qQOTQvjkO6tVScBAAAAANs8gRJAFn9+ZXyUV1KedPp+HaMgX3USAAAAALDtEygBVOLzWUvi+Y+/zNjXtknDOGynNtGqpEB1EgAAAACwzRMoAVTizy+Pj9WVVCedtu9X1UmtGjes4VUBAAAAANQ8gRJABl/MWRrPfDQzY1/r4oZx+M6qkwAAAACA+kOgBJDBn18ZH2XlmauTBuy7fRQ2yFOdBAAAAADUGwIlgHVMnrcsnh6duTqpReOCOGrXtqqTAAAAAIB6RaAEsI67X50Qq8orMvYN2Oer6qSWqpMAAAAAgHpEoASwlhkLVsSQD6Zn7GtW1CCO3u2r6qQ81UkAAAAAQD0iUAJYy13DxsfKsszVSafuvX00KlCdBAAAAADUPwIlgP/z5aIV8cS7mauTmjZqEF/r0S5aFzdUnQQAAAAA1DsCJYD/85dhX8SKsvKMfSfvtV0UNcyLlsWqkwAAAACA+kegBBARc5eujMffmZqxr6QwP47bvb3qJAAAAACg3hIoAcRX1UnLVmWuTjppz+2icaHqJAAAAACg/hIoAfXe/GWr4rFRmauTGhfkxQl7qE4CAAAAAOo3gRJQ7/399S9iycrVGfv677ldFBfmq04CAAAAAOo1gRJQry1asSoGjZycsa+oIC9O3KNDtFKdBAAAAADUcwIloF675/WJsbiS6qQT9ugQTYryo5XqJAAAAACgnhMoAfXW0pVl8VAl1UmF+bnRv5fqJAAAAACACIESUI/d98akWLi8LGPf8Xt0iGaNG6hOAgAAAAAIgRJQTy0vXR3/eHNSxr6C/Nw4aU/VSQAAAAAAawiUgHrpgRGTYt6yVRn7jtu9XbQoLoiWjQtqeFUAAAAAAHWTQAmod1auKo/7h0/K2NcgLydO3mv7aFXcMPLzXCIBAAAAACIESkA99NDIyTFnaWnGvmN6tIuWqpMAAAAAANIIlIB6pbSsPO4dPjFjX35uTpy6t+okAAAAAIB1uWMK1CuD354SXy5embHv6N3aRuuShtGqWHUSAAAAAMDaBEpAvVG2ujz+/voXGfvycnPiG6qTAAAAAAAyctcUqDf++c60mLEwc3XSkbu0ibZNC1UnAQAAAABkIFAC6oXV5RXxl9cmZOzLzYkYsE9H1UkAAAAAAJVw5xSoF554b3pMnb8iY1/fndtE+2aqkwAAAAAAKiNQArZ5FRVJ3P3q+Ix9OTkRp+3TMVoWF6hOAgAAAACohLunwDbvyQ+mx6R5yzP2Hdq9dWzfolG0Lm5Yw6sCAAAAANh6CJSAbVqSJHHXK5n3TsqJiNP2VZ0EAAAAALAh7qAC27T/jpkRE+Yszdh30I6tYoeWRdFKdRIAAAAAQFYCJWCblSRJ3Ply5uqkiIjT/686qYHqJAAAAACArNxFBbZZz3/8ZYydtSRjX5+uLaNL68aqkwAAAAAAqkCgBGyTkiSJP700vtL+0/dTnQQAAAAAUFXupALbpJc+mx2fzFycsW+/zs1jxzbFqpMAAAAAAKpIoARsk/700rhK+wbu1ylaNFadBAAAAABQVe6mAtuc1z6fE2OmLcrYt3en5rFzu5JoXaI6CQAAAACgqgRKwDbnjy9+XmnfwP06qk4CAAAAANhI7qgC25Q3x8+N96YszNjXa/umsVuHJqqTAAAAAAA2kkAJ2Kb80d5JAAAAAABbnLuqwDZj1MT58fbE+Rn7enRoEj23bxqtilUnAQAAAABsLIESsM34Q5a9k87Yr1M0b1wQBfkuewAAAAAAG8udVWCb8MGUBfHmhHkZ+3ZtVxK9OjaN1qqTAAAAAAA2iUAJ2Cb8Pkt10un7dYoWxQ1VJwEAAAAAbCJ3V4Gt3kfTF8Zrn8/N2Ne9TXHss0Mz1UkAAAAAAJtBoARs9f7wwrhK+wbu11F1EgAAAADAZnKHFdiqfTpzcbz82eyMfV1bNY79u7RQnQQAAAAAsJkESsBW7Q8vfB5JJX0D9+sYzRsXqE4CAAAAANhM7rICW63xs5bEi5/Oyti3Q4ui6N2tZbQpKazhVQEAAAAAbHsESsBW6w8vjouKSsqTTt+vY7RQnQQAAAAAsEW40wpslSbOWRrPfjQzY1/H5o3ioB1bqU4CAAAAANhCBErAVumPL1VenXTavh2jZbHqJAAAAACALcXdVmCrM3X+svjvmMzVSR2aFsahO7WO1iUNa3hVAAAAAADbLoESsNX544vjoryS8qQ11UkN8/NqeFUAAAAAANsugRKwVZm+YHn854MZGfvaNmkYfXdWnQQAAAAAsKUJlICtyh0vj4/VlVQnDdinY7Qsbqg6CQAAAABgCxMoAVuN2YtXxhPvTcvY17qkYRy5a5to00R1EgAAAADAliZQArYaf3p5fJSVZ65O+sbe20cr1UkAAAAAANVCoARsFeYuLY3H35masa9l44Lo16Ot6iQAAAAAgGoiUAK2Cn96aVyUrq7I2Heq6iQAAAAAgGolUALqvJkLV8Q/K6lOalbUQHUSAAAAAEA1EygBdVpFRRLX//eTWFlWSXXSXttH2yaFqpMAAAAAAKqRQAmo0x5+a3I899GXGfuaNmoQX9u9XbQuUZ0EAAAAAFCdBEpAnfXpzEVxy7OfVdp/0p7bRbumhVHYQHUSAAAAAEB1EigBddKKVavj0sdGx/JV5Rn7W5c0jON7tledBAAAAABQAwRKQJ100zOfxmdfLsnYl5MT8bN+O0f7ZqqTAAAAAABqgkAJqHOe//jLeHjklEr7v7l/p9itfRPVSQAAAAAANUSgBNQpMxetiCv+/WEklfT36NAkBuzTMZoVNVCdBAAAAABQQwRKQJ1RUVERP3lsdMxftipjf3HD/PhZv52jUUFedGjWqIZXBwAAAABQfwmUgDrjrlcnxIgv5lXa/+Mju0frkobRqUVR5OXm1ODKAAAAAADqN4ESUCe8O3l+3P7SuEr7j+vZLnp3bRntmhZGowKPugMAAAAAqEkCJaDWLVlZFpc8+kGUlWfeOalTi6I456Au0aRRfrQqbljDqwMAAAAAQKAE1Lor/v1hTF2wImNfQV5uXP61XaK4MD+2b15UwysDAAAAACBCoATUssdGTYn/jplZaf/3DukaO7Qssm8SAAAAAEAtEigBteaLOUvjhqc/qbT/wG4t45gebaNtk8IoKsivwZUBAAAAALA2gRJQK8pWl8eFg9+PZavKM/a3Ki6Iiw7vHk0aNYjWJfZNAgAAAACoTQIloFbc/Oxn8cnMxRn7cnIifn7MLtG8uEFs37xRDa8MAAAAAIB1CZSAGvfqZ7Pj/jcmVdr/zf07RY8OTaJj86LIz3OZAgAAAACobe7UAjVq7pLS+OnjoyOppL9HhyYxYJ+O0aZJw2jc0L5JAAAAAAB1gUAJqDFJksSPH/sg5i1blbG/uGF+/KzfztG0qEG0KSms4dUBAAAAAFAZgRJQY/762hfxxvi5lfb/+Mju0a5pYXS0bxIAAAAAQJ0iUAJqxJhpC+N3Q8dW2n98z/bRu2vL6NTCvkkAAAAAAHWNu7ZAtVu+anVcOPj9KCvPvHPSDi2L4rsHdY629k0CAAAAAKiTBEpAtfvlkx/FlPnLM/YV5OfGZcfsEi0aF0TrkoY1vDIAAAAAAKpCoARUqyHvT48n359eaf/3Du4aXVs3jo4tiiInJ6cGVwYAAAAAQFUJlIBqM3X+svjlkA8r7T+wW8s4pkfb6NiiKBrYNwkAAAAAoM5yBxeoFqvLK+KHg96LZaXlGftbFzeMiw7vHm2bFkaxfZMAAAAAAOo0gRJQLX77/Nj4aPrijH25ORE/O2bnaNu0YbSxbxIAAAAAQJ0nUAK2uOHj5sTfX/ui0v4z9u8UPbdrat8kAAAAAICthEAJ2KLmL1sVlzz2QSSV9Pfo0CQG7NMxOrZoZN8kAAAAAICthLu5wBaTJElc+tgHMXfpqoz9JQ3z42f9do52TQujpLBBDa8OAAAAAIBNJVACtpj735gYwz6fU2n/RUd2j04ti6JtE/smAQAAAABsTQRKwBbx8YxFcfOzn1Xaf1zP9nHwjq2iY3P7JgEAAAAAbG0ESsBmW75qdfxo0HtRVp5556TOLYvinIM6x/YtGkVBvssOAAAAAMDWxp1dYLNd85+PY9K85Rn7CvJz4+fH7BLbNW8UTeybBAAAAACwVRIoAZvl6dEz4l/vTqu0/3sHd42d25VEuyaFNbgqAAAAAAC2JIESsMmmLVgeV/z7w0r7D+zWMo7t2TY6tbBvEgAAAADA1kygBGyS1eUVceGg92Np6eqM/a2KG8ZFh3ePji0a2zcJAAAAAGAr5y4vsEn+8MLn8cG0hRn7cnMiftZvp9ihVVE0bWTfJAAAAACArZ1ACdhoIybMjbtenVBp/8D9OsW+nZtH+6b2TQIAAAAA2BYIlICNMn/Zqrj4kQ8iqaS/R4cmMXD/jtHRvkkAAAAAANsMgRJQZUmSxM8eHx1zlpZm7C9pmB8/67dz7NCicTTMz6vh1QEAAAAAUF0ESkCV/ePNSfHyZ7Mr7b/oyO6xU7uSaFpk3yQAAAAAgG2JQAmokk9nLo6bnvms0v7jeraPw3duHe2b2DcJAAAAAGBbI1ACNmjFqvL40aD3YlV5Rcb+HVoUxbkHd46OLYoiN9e+SQAAAAAA2xqBErBB1z39cXwxd1nGvoK83Pj5MTtHt9bFUdjAvkkAAAAAANsigRKQ1f/GzIzHRk2ttP+8Q7rEnp2aRbOighpcFQAAAAAANUmgBFRq2oLlcfkTYyrtP7Bbyzhpzw7RoWmjGlwVAAAAAAA1TaAEZLS6vCIueuT9WFq6OmN/q+KGcfER3aNTy8b2TQIAAAAA2MYJlICMbn9pXLw/ZWHGvtyciJ/12yl2bldi3yQAAAAAgHpAoASsZ8SEeXHny+Mr7R+4X6c4aMdW0byxfZMAAAAAAOoDgRKQZsGyVXHJY+9HUkl/jw5N4tt9dojtmtk3CQAAAACgvhAoASlJksTP/zU6Zi0uzdhf3DA/ftZv5+jSyr5JAAAAAAD1iUAJSHl45OR48dPZlfZffGT36NWxmX2TAAAAAADqGYESEBERn85cHL/676eV9h/Xs30cu3u7aGHfJAAAAACAekegBMSKVeVx4eD3YlV5Rcb+HVoUxfmHdY0O9k0CAAAAAKiXBEpA3PDfj2PCnGUZ+wrycuOyr+0c3duURJ59kwAAAAAA6iWBEtRzz3w4Mx55e2ql/ecd0iV6d20ZjQrsmwQAAAAAUF8JlKAem7ZgefziiTGV9vfp2jJO37djtCxuWIOrAgAAAACgrhEoQT21urwifvzoB7F45eqM/a2KG8ZP+u0U27coquGVAQAAAABQ1wiUoJ7608vj493JCzL25eZE/KzfTrF7h6b2TQIAAAAAQKAE9dHIL+bFnS+Pq7R/4H6d4qjd2to3CQAAAACAiBAoQb2zYNmq+PGj70dFkrm/R4cmcd4hXaKVfZMAAAAAAPg/AiWoR5IkicueGBOzFpdm7C9umB+/OHaX2KFl4xpeGQAAAAAAdZlACeqRh0dOjhc+mVVp/8VH7hj77NDcvkkAAAAAAKQRKEE98dmXi+NX//u00v5jd28XJ++1fRQV5NfgqgAAAAAA2BoIlKAeWLGqPC4a/H6sWl2Rsb9Ti6K45Mju0brEvkkAAAAAAKxPoAT1wK/+90mMm700Y19BXm5cefwu0a1NcQ2vCgAAAACArYVACbZxOwZ//QAAQ4dJREFUz344Mwa/NaXS/u8d2iUO2bF15Oe5HAAAAAAAkJk7yLANm7ZgeVz+xJhK+/t0bRln9dkhGje0bxIAAAAAAJUTKME2anV5RVzy6AexeOXqjP2tihvGL47dJdo2aVTDKwMAAAAAYGsjUIJt1J9eHh/vTF6QsS83J+Lyr+0cPTo0qeFVAQAAAACwNRIowTZo5Bfz4s6Xx1XaP3C/TnFsz/b2TQIAAAAAoErcTYZtzIJlq+LSxz6IiiRzf48OTeLCI7pFsX2TAAAAAACoIneUa8HEiRPj5Zdfjjlz5kSHDh3ikEMOiS5dutT2stgGJEkSlz8xJmYuWpmxv7hhflx9/K7Rvql9kwAAAAAAqDqBUg2aPn16XHLJJfHEE09Ebm5utGrVKubMmRNJkkT//v3j7rvvjnbt2lXb+U855ZR48skns47JycmJd999N/baa69qWwfVY1np6rjsiTEx9JNZlY655KjusU/nFpGTk1ODKwMAAAAAYGvnkXc15K233op99tkn/vWvf8Xpp58eM2bMiC+//DLmzZsXP/rRj2LIkCGxxx57xOjRo6vl/O+9994Gw6SIiAEDBgiTtkIT5iyNk/78RvxvzMxKxxy7e7s4fb+O0cC+SQAAAAAAbCR3lmvAJ598El/72tdi1qxZccwxx8TgwYOjTZs2ERHRrFmzuOOOO2LgwIExZ86c6NevX0yYMGGLr+Gaa67Z4Ji8vLz41a9+tcXPTfV67qMvo/+db8S42UsrHdOpRVH84thdoqSwQQ2uDAAAAACAbYVAqZqVlZXFGWecEQsXLoy8vLz485//nPFxY7/5zW8iPz8/Zs+eHeecc04kSbLF1vDWW2/F//73v/jnP/8ZSZJU+mf16tWx0047bbHzUr3KK5L4zXOfxfkPvxtLS1dXOq4gLzeuOXG36NSiqAZXBwAAAADAtkSgVM1uv/32GDNmTEREHHvssdGtW7eM4zp16hT9+vWLiIjXXnst/v73v2+xNVx99dWx2267xTe+8Y0tNie1a/6yVXH2fW/H3a9mr2YryMuNXxy7Sxy2U2v7JgEAAAAAsMkEStVoxYoVceutt6ba/fv3zzr++OOPT72++eabt0iV0uuvvx4vvPBCXHXVVQKFbcToqQvjxDuGx/Dxc7OOa9ekMH5/ei/7JgEAAAAAsNncZa5GQ4YMidmzZ6favXv3zjq+b9++qdeTJk2KoUOHbvYarr766mjatGn06tVriz5Gj9rx6NtTYsBfRsT0hSuyjjt859bx7I8PieN7to/GDfNraHUAAAAAAGyrBErV6LHHHku9zsvLi1122SXr+J122ikaNmyYaj/66KObdf6XXnophg0bFosWLYoePXpEixYton///vGvf/0rSktLN2tuatbKsvL4xRNj4hf//jBWlVdUOi4nJ+KSo7rHvWfvF80bF6hKAwAAAABgixAoVZMkSeK1115LtTt06BD5+dkrRfLz86NLly6p9siRIzdrDVdffXVae+HChfHUU0/FgAEDomPHjvHXv/41KioqDyeoG6YvXBGn/XVEPDpqatZxTQrz476z94tLjtopcnMFSQAAAAAAbDkCpWoybty4WLBgQardsWPHKh3Xtm3b1OuxY8fG4sWLN+n8zzzzTIwYMaLS/jlz5sT5558fvXv3junTp2/SOah+w8fNjRP+9HqMmbYo67hd2zeJpy86OA7fpU0NrQwAAAAAgPrE5irVZPz48WntqgZKLVq0SL1OkiTGjx8fe++990afv02bNjFo0KBYuHBhTJs2LUaPHh1vvvlmLFy4MG3cqFGjYv/994/nnnsuevbsudHnoXokSRJ3D5sQtz0/Nio2sPXVKXttFzee3DMaFeTVzOIAAAAAAKh3BErVZMqUKWntJk2aVOm4tfdQioi0KqeNse+++8a+++6b9rVVq1bF008/HTfeeGO8//77qa/PmDEjjj/++Bg1alRahdTmmj17dsyZM2ejjlk3iKuPlqwsi589Pjqe/3hW1nH5uTlxzYm7xbd772CvJAAAAAAAqpVAqZosWbIkrV1UVFSl4woKCtLa61YUbY6CgoI49dRT4+STT44777wzfv7zn8eqVasiImLq1Klx/vnnx5NPPrnFznfXXXfF9ddfv8Xmqy/+88GMDYZJbZs0jLvO3Dv22aFF1nEAAAAAALAl2EOpmqxcuTKtXdVAqaysLK29YsWKLbamNXJzc+Piiy+OoUOHpq1ryJAhMXLkyC1+PjbOmQd0iq/1aFdp//5dWsTTFx0sTAIAAAAAoMYIlKpJYWFhWjsvr2r726wbKDVq1GiLrWldhx12WDz00ENpXxs8eHC1nY+qycnJiVsH7BHdWjder++8g7vEoPMOiDYlhRmOBAAAAACA6uGRd9WkpKQkrb1uxVJl1h237jxb2imnnBKnn356PPbYYxER8fLLL2+xuS+44IIYMGDARh0zfvz4OOmkk7bYGrZWJYUN4q/f3if63/lGLFtVHkUFefGbU/eIE3t1qO2lAQAAAABQDwmUqknr1q3T2lUNlBYsWJDW3n777bfYmirzy1/+MhUoTZ8+fYvN26ZNm2jTps0Wm6++2bFNSfz2G73id0PHxl++vU/s1LZ6w0UAAAAAAKiMQKma9OjRI609a9asKh23dqCUm5sbnTt33pLLyqhnz56x4447xvjx42PVqlXVfj6q7vg92sdRu7WJhvlVe2QiAAAAAABUB3soVZPu3bun7X80bdq0Kh239rgePXpEUVHRFl9bJrvvvntERGy33XY1cj6qTpgEAAAAAEBtEyhVk7y8vDjiiCNS7XHjxm3wmLlz58bixYtT7UMPPbRa1pZJYWFhRHxVrQQAAAAAALA2gVI1Ovnkk1Ov586dG5MnT846/pNPPklrDxgwoFrWlcnUqVMjImLgwIE1dk4AAAAAAGDrIFCqRqeddlo0b9481R4+fHjW8SNHjky97t69e41VKM2fPz/efvvt6Ny5c5x44ok1ck4AAAAAAGDrIVCqRiUlJXHxxRen2k888UTW8c8991zq9ZVXXhk5OTnVtra1/frXv46ysrK47bbbUo++AwAAAAAAWEOgVM1++tOfRseOHSMi4tlnn42ZM2dmHDdu3LgYNmxYRET07t07zjrrrIzjVq5cGffff3/cfvvtlc61dOnSuO666+Lyyy9f7zF663rkkUfij3/8Y1x00UVx6qmnVvVtAQAAAAAA9YhAqZqVlJTEww8/HPn5+bFy5cq46qqr1huzevXquOCCC6KioiJat24dgwYNitzczH81Rx11VJxzzjlxySWXRK9evWLWrFnrjfn1r38d119/ffz2t7+NPffcM6666qpYunRp2pilS5fGlVdeGWeeeWZ897vfjT/84Q9b5g0DAAAAAADbHIFSDTj00EPjwQcfjAYNGsR9990XP/3pT1MBz8cffxxHH310vPjii9GxY8d44YUXomvXrhnnmT9/frzxxhup9pw5c9Laa7Rp0yb1uqysLG688cbYbrvt4uSTT44f/OAHccIJJ0S7du3iz3/+c9xxxx1x7733Rl5e3hZ+1wAAAAAAwLYiJ0mSpLYXUV+MGDEifvCDH8SHH34YeXl50bRp05g/f340bNgwzj333Pj1r38dzZs3zzrHIYccEsOHD4+IiFatWsWHH34Y7dq1SxtTVlYW5557bjz00EMZ52jRokWcddZZcfnll693bG37+OOPY/fdd0+1P/roo+jRo0ctrggAAAAAAGpfbd8/z6+xMxF9+vSJMWPGxIgRI2LUqFGxdOnS6NKlSxx99NHRqlWrKs3xwgsvxCOPPBKLFy+OAQMGZAyEGjRoEA8++GBcffXV8cYbb8TMmTMjSZJo3bp17LHHHrHvvvuqSAIAAAAAAKpMoFQL+vTpE3369NmkYwsLC+O73/1ulcZ27949unfvvknnAQAAAAAAWMMeSgAAAAAAAGQlUAIAAAAAACArgRIAAAAAAABZCZQAAAAAAADISqAEAAAAAABAVgIlAAAAAAAAshIoAQAAAAAAkJVACQAAAAAAgKwESgAAAAAAAGQlUAIAAAAAACArgRIAAAAAAABZCZQAAAAAAADISqAEAAAAAABAVgIlAAAAAAAAshIoAQAAAAAAkJVACQAAAAAAgKwESgAAAAAAAGQlUAIAAAAAACArgRIAAAAAAABZCZQAAAAAAADISqAEAAAAAABAVgIlAAAAAAAAshIoAQAAAAAAkJVACQAAAAAAgKwESgAAAAAAAGQlUAIAAAAAACArgRIAAAAAAABZCZQAAAAAAADISqAEAAAAAABAVgIlAAAAAAAAshIoAQAAAAAAkJVACQAAAAAAgKzya3sBsLbS0tK09vjx42tpJQAAAAAAUHese7983fvp1U2gRJ0yderUtPZJJ51UOwsBAAAAAIA6bOrUqbH33nvX2Pk88g4AAAAAAICsBEoAAAAAAABklZMkSVLbi4A1Fi5cGMOGDUu1O3bsGA0bNqzFFdWu8ePHpz32b8iQIbHjjjvW3oKAOs91A9gUrh3AxnLdADaFawewsVw30pWWlqZtG3PYYYdFs2bNauz89lCiTmnWrFn079+/tpdRZ+24447Ro0eP2l4GsBVx3QA2hWsHsLFcN4BN4doBbCzXjajRPZPW5ZF3AAAAAAAAZCVQAgAAAAAAICuBEgAAAAAAAFkJlAAAAAAAAMhKoAQAAAAAAEBWAiUAAAAAAACyEigBAAAAAACQlUAJAAAAAACArARKAAAAAAAAZCVQAgAAAAAAICuBEgAAAAAAAFnl1/YCgMq1bt06rr322rQ2QDauG8CmcO0ANpbrBrApXDuAjeW6UbfkJEmS1PYiAAAAAAAAqLs88g4AAAAAAICsBEoAAAAAAABkJVACAAAAAAAgK4ESAAAAAAAAWQmUAAAAAAAAyEqgBAAAAAAAQFYCJQAAAAAAALISKAEAAAAAAJCVQAkAAAAAAICsBEoAAAAAAABkJVACAAAAAAAgK4ESAAAAAAAAWQmUAAAAAAAAyCq/thcAVG7ixInx8ssvx5w5c6JDhw5xyCGHRJcuXWp7WUANKisri7feeis+/PDDWLBgQTRt2jR23nnnOPjgg6OwsHCT5x01alSMHDkyVqxYEV26dIl+/fpF06ZNt+DKAYBtyfTp02PUqFExc+bMmDt3buyzzz5x3HHHbfA4nzlg2zd79ux44403YsqUKbFs2bJo1qxZ7LrrrnHAAQdEUVHRJs3p2gFQNwmUoA6aPn16XHLJJfHEE09Ebm5utGrVKubMmRNJkkT//v3j7rvvjnbt2tX2MoFqlCRJ3HnnnXHTTTfFl19+uV5/cXFxXHjhhXHVVVdF48aNqzzvyJEj40c/+lG89957UVhYGMXFxTF37twoKiqKCy+8MH71q19FQUHBlnwrQB0yb9686NmzZ8ycOTPOPvvseOCBBzbq+I8//jhef/31WLRoUXTs2DGOPPLIaNu2bfUsFqh1U6dOjbvvvjv+85//xCeffBI9evSIo446KnbZZZcN/qKbzxyw7Rs/fnxcdtll8Z///CcqKiqicePG0bRp05g3b16UlpZGkyZN4vzzz49rr722ysGSawdsG1asWBF333133HLLLfHPf/4z+vbtu8lzbemAuaKiIoYPHx7vvvtuVFRUxI477hj9+vWLRo0abfKc9UoC1CkjR45M2rZtm0REMnDgwGTWrFlJkiTJggULkgsvvDCJiKR169bJBx98UMsrBarLqlWrkq9//etJRGzwT48ePZJJkyZVad6//e1vSYMGDZLc3Nzk5ptvTlasWJEkSZJ8/vnnSd++fZOISPbbb79k4cKF1fn2gFp06qmnpq4fZ599dpWP+/TTT5MjjzwyiYikQYMGSZs2bVKvzznnnGTRokXVt2igxi1fvjy57LLLkoKCgiQiktNPPz355JNPqny8zxyw7Xv++eeTkpKSJCKSo48+OnnrrbeSioqKJEm++nnmqaeeSrp27ZpERLLbbrslM2fO3OCcrh2w9Vu5cmVyxx13JO3bt0/93PHKK69s0lwjRoxI9t577yQiksLCwqRVq1ZJRCRFRUXJZZddlpSWlm70nP/73/+SHXfcMYmIpLi4OGnWrFkSEUmzZs2S3/72t6nrGJUTKEEd8vHHH6cuZMccc0zGi9jAgQOTiEjatGmTjB8/vhZWCVS38847L/XBa4899kh++MMfJldccUVy1llnpQLntf/svPPOyYIFC7LOOWjQoCQnJyeJiOTGG29cr3/p0qVJt27dkohI+vTpk6xcubKa3h1QWx544IG0a0dVA6Wnn346KS4uTiIi+fGPf5wKj2bMmJEMGDAgiYikW7duyZQpU6px9UBN+fjjj5Pddtst9YtsL7300kYd7zMHbPs++eSTpHHjxqlfhK3sBuzMmTOTdu3aJRGR7Lvvvsnq1asrndO1A7Zuq1atSv76178mHTt2XO+exaYEStURMF9zzTWpcOree+9NysrKkiRJknfffTfZY489kohITjjhhE0KquoTgRLUEatWrUpdvPLy8ioNiyZPnpzk5+cnEZEceuihknPYxrzxxhtJRCQ77rhjxg9dK1asSK644or1PqBdeOGFlc45YcKEpKioKHXTt7If5AYNGpSa7+qrr95SbwmoAyZNmpQ0adJkowOlV155JVWh8L3vfW+9/tWrVycHHXRQEhFJ9+7dk7lz51bD6oGaMnTo0NS1YpdddqlyFfQaPnNA/XDcccelbsrOmzcv69hbb7019d/7Qw89lHGMawds3VauXJnss88+yZlnnplccskl6/3csbGBUnUEzDfddFNqPYMGDVqvf/r06UmLFi2SiEhOPfXUjVpvfSNQgjpi7Q9ZJ5xwQtaxaz68RUTy17/+tYZWCNSEAQMGJLvuuusGb8recsstaR/QGjVqlCxdujTj2OOPPz417rbbbqt0ztLS0qR58+apx1h9+OGHm/VegLqhvLw8OfTQQ5OioqKkS5cuVQ6U5s+fn3pURdOmTSv97b81QXhEJN/+9rer4R0ANeF///tf0rBhwyQikk6dOiVTp07d6Dl85oBt3/z585O8vLwkIpL9999/g+Pffvvt1HXhjDPOyDjGtQO2fmuqfZIkSe64445NDpSqI2B+4403ktzc3CQikr59+1Y67sYbb0zNee+991Z5zfVNbgC1bsWKFXHrrbem2v379886/vjjj0+9vvnmmyNJkmpbG1BzSktL45lnnolHH300WrZsmXXs5ZdfHvvss0+qvWLFinjrrbfWG/fuu+/G//73v1Q72/WloKAgjjrqqIiIKCsrS7suAVuv2267LV577bX4/e9/H506darycVdffXXMnDkzIiK+/e1vV7rx7YEHHhg9evSIiIiHHnoonn/++c1fNFCj3n777Tj11FOjtLQ0CgoK4umnn47tt99+o+bwmQPqhwkTJkR5eXlERCxdunSD45s0aZJ6PX/+/PX6XTtg25Cfn596vfa9io118cUXx/LlyyMi4oc//GHk5eVlHPeNb3wjmjdvHhERt9xyS3z00UcZxyVJEueff35UVFRERMSFF15Y6bnPOeec1Pl++tOfxqxZszb5fWzLBEpQBwwZMiRmz56davfu3Tvr+L59+6ZeT5o0KYYOHVpdSwNq0OjRo+P444+PPfbYo0rjv/e976W1176OrPG3v/0t9bply5ax4447Zp1z7evL448/HgsXLqzSWoC6afTo0XH11VfHiSeeGD/4wQ+qfNyMGTPinnvuSbU39Msuxx13XOr1TTfdtPELBWrNvHnz4uSTT46VK1dGRMS1115b5c8ia/OZA+qHwsLC1OvPPvssJk+enHX8l19+mXq96667rtfv2gHbnmbNmm3ScdURMP/73/+ODz/8MHXM1772tUrnbNeuXey9994REbFw4cK46667Nvo91AcCJagDHnvssdTrvLy82GWXXbKO32mnnaJhw4ap9qOPPlptawNqTq9eveL++++v8vh99903rd26deu0dkVFRfzrX/9KtXffffcNztmzZ8/U6xUrVsR//vOfKq8HqFtKS0vjW9/6VjRr1iwtHKqKf/zjH1FaWhoRETk5ObH//vtnHb/2zZ3XXnstxo4du9HrBWrHxRdfHDNmzIiIiE6dOsXPf/7zjZ7DZw6oP7p165a6H1FRURFXXnll1vEvvPBCRETk5ubGueeem9bn2gHbpoKCgk06rjoC5rXn7NmzZzRu3LjKc953332pikz+P4ES1LIkSeK1115LtTt06JBWJppJfn5+dOnSJdUeOXJkta0PqDkNGzaMoqKiKo8vLi5Oa3ft2jWtPWbMmLTHSlTlUVc77bRTWtv1BbZeV1xxRXz00Udx3333RZs2bTbq2LV/2aVTp05pj6vJZO2bOxF+2QW2FsOHD4/Bgwen2j//+c+jQYMGGz2PzxxQfzRq1CgGDhyYag8ePDj++Mc/Zhy7ePHiuO+++yIi4ic/+cl6gZFrB2ybKntMXTbVETDPmzcvXnrppU2ec9q0aTF8+PANHlPfCJSglo0bNy4WLFiQanfs2LFKx7Vt2zb1euzYsbF48eItvjagblv78RF77LFHWtAc8dV+CGuryvWlVatWkZv7/z8ejBo1ajNXCdSGl19+Of74xz/GD3/4w7S9F6tiwYIFMWbMmFS7Kjd3OnbsmPYIHDd3YOtw3XXXpV4XFRXFd7/73bT+ZcuWVennDJ85oH755S9/mfaLcJdeemlcddVVafs7V1RUxFlnnRUzZ86Mc845J37zm9+sN49rB7BGdQTMr7/+elqFkdB6yxAoQS0bP358WruqgVKLFi1Sr5MkWW8eYNs3evTo1Ouzzjprvf5Nub7k5eVF06ZNU+3PP/98M1YI1IaFCxfGd77zndhpp53itttu2+jjR40alXZDaFN+2eWdd97Z6PMCNevzzz9P+63d4447LpYvXx5/+tOf4qijjopmzZpFcXFxNG3aNJo3bx5nn312jBs3LuNcPnNA/dK9e/d4+OGH06oQbrzxxjj11FNj2bJlUVFREeedd148++yz8fvf/z7uvffetBBoDdcOYI3qCJg3Zc61f6bJNCcCJah1U6ZMSWtv6JEya6y9h1JEpFU5AfXD008/HRFffeA5//zz1+vfEteXJUuWeGYwbGV+9KMfxZdffhmDBg3aqMdorrElftll7ty5ab9hCNQ9jzzySFp7woQJseOOO8Ybb7wR3/rWt+Lee++Na665Jtq1axcLFy6MBx98MHr27BkPP/zwenP5zAH1z8knnxyDBw9Oe0zmk08+GQcffHCcdtppMWbMmHj77bfj0ksvrXQO1w5gjeoImDdlzrV/psk0JwIlqHVLlixJa1f1xs+6G9xl2ngO2HZ9/vnn8fLLL0dExK9//euMG0u6vkD98+ijj8bgwYPjuuuui3322WeT5vDLLlA/DB06NK3dqVOneO+99+Kxxx6L73znO3HqqafG9ddfH2PGjIm99947IiJKS0vjrLPOin//+99px/rMAfXTaaedFs8880w0a9Ys9bUPPvggnnjiidhzzz1jl112yXq8awewRnUEzJsyp59pNkygBLVs5cqVae2qfoAqKytLa69YsWKLrQmo+26++eaoqKiII488Ms4777yMY1xfoH6ZPn16XHDBBXHwwQfHL37xi02ex80d2PZVVFTEe++9l2q3atUqhgwZEt26dVtvbOvWrePxxx9P/fJKkiRxzjnnxLx581JjfOaA+uuoo46KW265JUpKStI+C9x7771xyCGHxMyZMys91rUDWKM6fgbZlDn9TLNhAiWoZWtvYB0Rac8gzmbdD1CNGjXaYmsC6raRI0fGgw8+GG3atIl//OMflY5zfYH6I0mS+M53vhPl5eXx0EMPZdynoKrc3IFt3+TJk9P+W9/QJtVdu3aN73//+6n2okWL4s4770y1feaA+uvGG2+MX/ziFzF06NB46aWXok2bNqm+UaNGxQEHHBCffPJJxmNdO4A1quNnkE2Z0880GyZQglpWUlKS1l73YleZdcetOw+wbVq1alWcd955kZubG4888khst912lY7dUteX4uLijV8oUKNuv/32ePHFF+OOO+6Izp07b9Zcbu7Atm/t6qKI9TegzmTtQCki4j//+U/qtc8cUP+Ul5fHWWedFVdddVUMGjQoevfuHQcffHCMGjUqdtttt9S4qVOnRt++fTOGSq4dwBrV8TPIpszpZ5oNEyhBLWvdunVau6ofoNZ9huf222+/xdYE1F2XXnppfPzxx/GXv/wljjjiiKxjN+X6snr16li6dGnaHOs+QxioWz755JO44oorYsCAAXHWWWdt9nx+2QW2faWlpWnttfc/qcwuu+ySFliPHj06ddPFZw6of84777x46KGH4swzz4zjjjsu9fVOnTrF8OHD48ADD0x9bc6cOXHiiSem/Tcf4doB/H/VETBvypx+ptkwgRLUsh49eqS1Z82aVaXj1g6UcnNzN/u3kYG67/7774+77rorrr/++jj33HM3OH5Tri/rhtVdu3bduEUCNaqsrCzOPPPMaNmyZfz1r3/dInP6ZRfY9rVs2TKtXdXHZO65556p1xUVFTF//vyI8JkD6pt77703HnjggYiI+OlPf7pef/PmzeP555+PPn36pL72xRdfxHXXXZc2zrUDWKM6AuZNmdPPNBsmUIJa1r1797TyyWnTplXpuLXH9ejRo8rPFgW2Ti+99FL84Ac/iEsuuSSuueaaKh2zxx57pLWrcn2ZOnVqWnv//fev+iKBGvfEE0/EBx98ENOnT48WLVpETk5O1j/Dhg1LHfuPf/wjrW/NjaEt8csubdu29dkE6rC19ziJ+Kp6oCp22GGHtHZ+fn5E+MwB9UlpaWlceeWVEfFVmLPXXntlHFdcXBzPPPNMdO/ePfW1v/zlL2n7kbh2AGtUR8AstK4eAiWoZXl5eWmPrRo3btwGj5k7d24sXrw41T700EOrZW1A3fDee+/FKaecEt/+9rfj97//fZWP23///dMeYVOV68sXX3yR1nZ9gbqtqtVDG2NTbu7Mnz8/li9fnmq7uQN1W4sWLaJ9+/ap9pQpU6p03NqPkWnYsGE0b948InzmgPpk6NChMXv27IiI2HHHHbOObdasWQwePDjVXrZsWYwcOTLVdu0A1qiOgFloXT0ESlAHnHzyyanXc+fOjcmTJ2cdv+5mlgMGDKiWdQG175NPPoljjjkmjj322Pj73/8eOTk5VT42Pz8/TjjhhFT7nXfeqdL51mjcuHHa89CBuqdJkybRrVu3Kv9Ze2PakpKStL4mTZpERESHDh3SfpvPzR3YNq39//ixY8fG3LlzN3jM2iH2/vvvn3pUns8cUH+s/d9uq1atNjh+3333jb59+6baX375Zeq1awewRnUEzEcddVTaY339XLNlCJSgDjjttNNSv90XETF8+PCs49f+jZ7u3bu7uME26rPPPosjjjgiDjrooHj44YertL/BxIkTI0mSVPv8889PvZ40adIGfyNn7evLGWec4ZFVUMedcsopMX78+Cr/OeCAAyo99pRTTkn1rf3LLmPGjIlVq1ZlXcfaN3dycnLiG9/4xhZ8l0B1OPXUU1OvkySJl156aYPHTJ8+PfX6pJNOSuvzmQPqh7X3J1m4cGGVjll7/7W1731EuHYAX6mOgLlNmzZx4IEHbvKcXbp0iX333XeDx9Q3AiWoA0pKSuLiiy9OtZ944oms45977rnU6yuvvHKjKhaArcNHH30Uffv2jb333jv++c9/pvYoyGb48OExcODAtGvCQQcdFIcddliq/e9//7vS41esWBGvvfZaRHz1Ye7yyy/fjHcAbM3OPffc1HVn1apVMWrUqKzj1765c+SRR0bnzp2rc3nAFnDsscdGnz59Uu2//OUvWccnSRJvvvlmRHxVHXnOOeek9fvMAfXDPvvsk3o9atSoqKioqPKx+fn5692cde0A1qiOgHntOd95550oLS2t8pznnnvuBtdcHwmUoI746U9/Gh07doyIiGeffTZmzpyZcdy4ceNSG2r37t07zjrrrBpbI1Az3n333Tj88MNj3333jSeffDIKCgoyjisvL4/FixfHmDFj4tprr41+/frFN7/5zfXG/e53v4u8vLyIiLj//vvTKpjWNnjw4Fi2bFlERPzkJz/Z4DPRgW1X586d48wzz0y1N/TLLs8//3zq9S9/+ctqWxewZd12222pCuhXX3013n777UrHPvvss6m9lm6++ea0x9Ks4TMHbPsOOuig1KNx58yZE08++WTW8UmSxNChQyPiq+roTI/Jc+2AbUt5eXlau6rBc3UEzAMHDoxu3bpFRMTSpUvTfm5Z15QpU+LTTz+NiIimTZvGj370oyqtu95JgDpj2LBhSX5+fhIRyTnnnLNef1lZWXLUUUclEZG0bt06mTBhQi2sEqhOw4YNS5o0aZJExEb/adCgQTJnzpyM8954442pcQ8++OB6/TNmzEjatWuXRERy4IEHJitXrqzutwrUgsMOOyx1LTj77LOzjp06dWpSUlKSRETSrl27ZPny5RnHvfjii6k5TzvttGpYNVCdbr/99tR/w127dk3mz5+/3phZs2YlXbp0SSIiGTBgQFJRUVHpfD5zwLZv+PDhSYMGDZKISNq3b59Mnjy50rG33HJLEhFJmzZtkqlTp1Y6zrUDth2jR49Ou1fx1FNPVfnYd955J8nLy0siItlzzz0r/cxxzz33pOa/7LLLss45ZMiQ1Nj+/ftXOu6qq65KjbvrrruqvOb6RqAEdczgwYNTH8x+8pOfJEuWLEmSJEk++uijpG/fvklEJB07dkw++OCDWl4psKU9+eSTSWFh4SaFSRGRnHTSSVnnv/DCC5OISAoLC5MHHnggWb16dVJeXp4888wzSefOnZOISPr27ZvMmzevht4xUNM2JlBKkiQZNGhQavwNN9ywXv+SJUuS3XffPYmIpHv37sncuXOrYdVAdbvyyitT/63vueeeyciRI1M3cF555ZVkp512St2EKS0t3eB8PnPAtu+JJ55I/ezSrl275IEHHkiWLVuW6v/ss8+S8847L4mIZLvttkvef//9Dc7p2gHbhvvuuy/tXsV11123UcdXR8D8ve99LzXnsGHD1uv/6KOPkqKioiQikm984xtZf3mmvhMoQR305ptvJj179kwiIsnLy0tatGiRRETSsGHD5IILLsj4W4PA1m3GjBmp38LZ1D9DhgzZ4Hnuu+++pHXr1qkf1IqLi1NVj7///e+TsrKyGni3QG3Z2EApSZLkt7/9bZKTk5Pk5uYmv/3tb1M3k998882kV69eSUQkPXv2TCZNmlSNKweq2yOPPJJ06tQpdY0oLi5OmjVrlkRE0rlz5+Tvf//7Rs3nMwds+z788MPkhBNOSHJyclJPTOjQoUPStGnTJCKSRo0aJRdccEGlT1HIxLUDtk6vvvpqctdddyWXXHJJKphZ8yc/Pz8577zzkjvuuCN5/vnnqzTflg6YV61alZx88slJRCQtW7ZMnn766aSioiIpKytLHn744dR157TTTktWrFixOd+KbV5OklTyYFKg1o0YMSJGjRoVS5cujS5dusTRRx+d8XnDABujtLQ0Xnrppfj4448jSZLYfffd44gjjojCwsLaXhpQzfr27Zvai/Hss8+OBx54oErH/fe//42LLrooJk2aFA0aNIiioqJYtGhRlJSUxMUXXxy//OUvo1GjRtW4cqAmrF69Ot58880YPXp0LF26NNq2bRu77bZbHHDAAZGTk7PR8/nMAfXDnDlz4rXXXotp06bFsmXLomnTprHzzjtHnz59onHjxhs9n2sHbH0GDhwYjz322AbHHXPMMfHcc89Vac77778/Lr/88pgzZ04UFhZGfn5+LF26NFq3bh1XXHFFXHTRRZGfn1/lNVZUVMStt94aN954YyxZsiSKi4ujvLw8VqxYETvssEPccMMN9qqvAoESAACwQeXl5TFs2LD44IMPYtWqVbHTTjvF0UcfHSUlJbW9NAAAYBtUHQHzkiVL4oUXXojPP/88GjRoEHvvvXcceuihkZeXtwVXvu0SKAEAAAAAAJBVbm0vAAAAAAAAgLpNoAQAAAAAAEBWAiUAAAAAAACyEigBAAAAAACQlUAJAAAAAACArARKAAAAAAAAZCVQAgAAAAAAICuBEgAAAAAAAFkJlAAAAAAAAMhKoAQAAAAAAEBWAiUAAAAAAACyEigBAAAAAACQlUAJAAAAAACArARKAAAAAAAAZCVQAgAAAAAAICuBEgAAAAAAAFkJlAAAAAAAAMhKoAQAAAAAAEBWAiUAAAAAAACyEigBAAAAAACQlUAJAAAAAACArARKAAAAAAAAZCVQAgAAAAAAICuBEgAAAAAAAFkJlAAAgHovSZIYOnRonHjiiZGXlxeTJk2qdOw777wTu+22WzRv3jxuueWWmlvkJpo0aVJcdtll0bJly7juuusqHVdaWhqnnXZalJSUxNFHHx0LFiyouUUCAAB1nkAJAACot5YsWRJ33nln7LrrrnHMMcfEf//736ioqMh6zCWXXBKffvppLFy4MK644ooYP358Da1247z44otx0kknRbdu3eLWW2+N+fPnZx3/0EMPxeOPPx5Lly6NF198MX73u9/V0EoBAICtQX5tLwAAAKA2jB07Nr7+9a9H48aNY+zYsVU+Ljf3//9eXk5OTlq7rujfv3/MnDkzPvvssw0GZGus+z7y8vKqY2kAAMBWqu795AMAAFADdtppp/jss8/ivffei3PPPbfKx/3pT3+KHj16RLNmzeI3v/lNdO3atRpXuWmefPLJePvtt+OZZ56p8jHf/va344wzzoji4uLo169fXHrppdW4QgAAYGujQgkAAKiXcnJyUq8PP/zwuPfee6t03J577hkfffTRRp1r8uTJMXHixOjbt+9GHbep1lQbHXTQQVFQUBCrVq3a4DENGjSIwYMHV/fS1vOf//wnDjvssGjWrFmNnxsAAKg6FUoAAEC917x582qd/84774xXX321Ws+RSU5OTjRt2rTGz1tVZWVl8cMf/jAWLlxY20sBAAA2QKAEAADUewUFBdU297Jly+K+++6rtvk3pDrf2+b617/+FTNnzqztZQAAAFUgUAIAAOq9NY+Iqw633XZbzJ8/v9rm35DqfG+bo7S0NG644YbaXgYAAFBFdfMnCwAAgBpUXaHLu+++GzfeeGO1zF1VdTVQuuKKK+Kzzz6r7WUAAABVVDd/sgAAANjKTZ48Ofr37x9lZWW1vZQ655577ok//OEPtb0MAABgIwiUAACAOuvtt9+OCy+8MHbbbbdo2rRpFBUVRbdu3eK73/1ujBw5ssrzJEkSQ4YMiW984xvRtWvXaNSoUbRs2TKOP/74GDp06EataeHChfHnP/859tprr+jcuXPGMR988EEceuihMX369NTXli5dGl9++WXqz7x58zbqvJX57LPP4rLLLotevXpF8+bNo3HjxrHnnnvGb37zm1ixYkWV56moqIihQ4fGaaedFg0bNoxXX3016/hJkybFj370o9hxxx2jsLAwWrduHf369Ys//OEPMWbMmLjyyivj17/+9XrH/e53v4sf/OAHaV+bM2dO2vdm+fLl6x23evXqePjhh6N///7RqVOnaNSoUTRu3Di6du0aX/va1+Lvf/97LF26NOualy9fHo899lj0799/vfc4fvz4uOiii6J79+5RVFQUO+64Y1x55ZWxZMmSrHOubfHixXH77bfHEUccER06dIiCgoJo2bJlHHbYYfGnP/0p4/vKJEmS+Pe//x1nnHFGdO3aNYqKiqJp06bRq1ev+PnPfx5Tp06t8poAAGBLyUmSJKntRQAAAKxt2bJlcf7558ejjz4aJ598chxyyCGxevXqeOWVV+J///tfVFRURETE9773vbjzzjujoKCg0rkmTZoUZ599drz22mvRunXrOPvss6Nr167x6aefxoMPPhiLFi2KI488Ml566aXUMRMnTkwLi5IkiWHDhsU999wTTzzxRKxcuTIiInbYYYeYNGlS2vl+/etfx69//esoLS3N+h579eoVH3zwwcZ9Y9ayevXquOGGG+Lmm2+O8vLyOPXUU6Nv376xePHieOSRR+LDDz+MXr16xbRp01Lh1bXXXhvXXXdd2jxTp06N+++/P+67776YPHly6uuvvPJK9O3bN+O5n3/++RgwYECUl5fHd7/73dhtt91i3rx58c4778TTTz8da37M/NWvfhVXXXVVRHwVGp122mkbDKoiIv7whz/EJZdckmpPnDgxTj755Bg9enS0atUqvve978X2228f48aNi3/84x+xYMGCiIjYeeedY+jQodGpU6e079Pzzz8fjzzySPznP/9JC51eeeWVOOyww+J3v/td/PKXv4xVq1att5bevXvHyy+/HI0aNcq65sGDB8cll1wSq1atijPPPDN23333WLJkSTz22GPx3nvvRUREt27dYsiQIbH77rtXOs+4cePiW9/6VowdOza+9a1vxe677x7z58+PJ554IjVPw4YN4/bbb18vmAMAgOqUX9sLAAAAWNvChQvj6KOPjmnTpsWIESNi3333TfVdeuml8eKLL8bJJ58cS5cuTVWlDB48OONckyZNioMPPjimT58eBx54YDz11FPRsmXLVP/ll18eJ554YlqYlMm9994bzz33XKxYsSIVJlXm8MMPT6357LPPjtmzZ0dExJlnnhnf+ta3UuOaNGmS/RuRRZIkcc4558RDDz0UxcXF8eSTT8ZRRx2V6r/88svjl7/8Zdxyyy1Z55k9e3acffbZ0bFjx1i4cGGVzj158uQ49dRTo7CwMEaMGBHdu3dP63///ffjhBNOiBkzZqR9vWHDhnH55ZfH5ZdfHmPGjInLL7881ffAAw9E27ZtU+1dd9019XrBggVx+OGHx+TJk6NFixbx3nvvRceOHVP9P/vZz6JPnz4xderUGDt2bHz/+9+P5557LtW/dOnSmDBhQlx66aUxd+7ceP7551N95eXl8e1vfztGjBgRN910U/Tp0yfy8/PjwQcfjD//+c8RETFy5Mi4/fbb4xe/+EWl35Prr78+rrvuuujZs2c8//zz0b59+1TfpZdeGr1794733nsvJkyYEIcffvh672Ht712/fv1i5513js8//zzatGmT6rvyyivjN7/5TfziF7+I0tLSOP/88yMnJye+//3vV7ouAADYohIAAIA65OSTT05yc3OTESNGVDrmT3/6UxIRqT///Oc/1xuzfPnyZOedd04iImnXrl0yd+7cjHNNmDAhKSwsTJtv4sSJlZ77wAMPTI3bYYcdsr6XHXbYITX22muvzTp2Y1xzzTWpeR9++OFKx/Xr1y/tfWVbw9/+9re0sa+88krGcT/+8Y+TiEguvPDCSucaNmxYEhHJr371q4z9r7zySpW/31dffXVq3GmnnZZxzK233po237x58zKOe/bZZ9PG7brrrsmPfvSjZPny5euNPfHEE1Pj2rZtm1RUVGSc87777ksiIikqKkrGjx+fccxtt92Wdt7vf//7641ZuHBh0rlz56R9+/bJggULKvluJMkpp5ySmqdhw4bJlClTKh0LAABbkj2UAACAOuOpp56KJ598Mo4++ujo3bt3peNOPvnktPZtt9223phrr702xo4dGxFfVZCsXZm0tq5du8Zpp51W5TXuscceVR5bHUaPHh033XRTRET06dMnzjzzzErHZquqWVdV39frr78eEZF1b6FDDz00rWJqc4waNSr1unHjxhnHHHDAAWntyvYY6tChQ1r75JNPjjvvvDPj4+wGDhyYej1r1qyYNm3aemNmzpwZP/rRjyLiq8cvduvWLeN599tvv7T2Rx99tN6Y66+/PiZNmhQXX3xxNGvWLOM8a9a8Rmlpadx5552VjgUAgC1JoAQAANQZv//97yMiYp999okvv/yy0j9r9lBa45133kl7ZNuMGTPij3/8Y0REFBYWxje/+c2s5z3yyCOrvMamTZtWeWx1uPLKK2P16tUREXHuuedmHXvwwQdn3V9qbVV9X2se+ff444/HxIkTKx33ne98p0rzbciOO+6Yer32o/DW1rp167T22vskrW3d4Ojoo4+u9Ly77LJLWvvLL79cb8ytt94aK1asiIiIM844o9K5Dj744Pja174WERG5ubnr/XtcsmRJ3HPPPRER0bNnz6z/9vPz059c/8ILL1R6XgAA2JLsoQQAANQJCxcuTFW/3HTTTakqnKqoqKiIyZMnpyo77rrrrigrK4uIiD333DOKi4uzHt+pU6cqn6uqAU11GDduXDz77LOp9sEHH5x1fIMGDaJ9+/YxefLkDc5d1fe14447xieffBLLly+PQw89NO67776MwUy2yqmN8atf/SpKSkqicePGcdFFF2Ucs2rVqrT2msBtXXl5eVU+77oB25rgaG2PPfZYRETk5+fH3nvvXelcubm58eyzz8a0adOiQYMGaftFRUS88sorqYqvE044ocprjIisoR4AAGxJAiUAAKBOGDlyZKry6Mc//nGqoqOq1g6FnnrqqdTrdStNNldubu096OHpp5+OJElS6+jevfsWm7uq7+t73/te6vs7bdq06NevXxx99NFx5ZVXRt++fbfYetZo1qxZxnCxoqIinnnmmbjvvvviv//9b1rfmu/Rujbm727d8GndqrixY8fGjBkzIiKiRYsW0aBBgw3Ouf3222f8+ptvvpl6fe+99673aL5scnJyqjwWAAA2h0AJAACoE6ZMmZJ63alTp40OlNZYuHBh2h412faj2dqsqeCKiGjSpEmthFsnnHBCXHjhhWl797zwwgvxwgsvxAEHHBCXX355nHTSSdUWdCxatCj++te/xl133RWlpaXxne98J374wx9Gv379quV8lZk0aVLq9cZUPmWy9r/9PffcM2u1EwAA1BZ7KAEAAHXCggULUq9nzpy5yfNMnz49rUJlW6rgmDZtWup1bb6vO+64Ix5++OFo06ZN2tffeuutOOWUU+KAAw6I0aNHb9FzrlixIn71q19Fp06d4p577ombbroppkyZEjfffPMWrdSqqvnz56der/1vd1NsqX/7AABQnQRKAABAnfPOO+9s8rELFy5May9atGgzV1N3rP3eFi9eXHsLia/2SBo3blxce+210aRJk7S+UaNGRe/evdMePbg53n333ejZs2dcc8018f3vfz8+/PDD+OY3v1mlx8xVl7X3nFq5cmV88cUXW2Tezfm3DwAA1UmgBAAA1AktWrRIvR45cuR6wVA25eXlqdfrhhvjx4/f7LXVFWu/t/Ly8pg4cWItruar9Vx33XUxadKkuOKKK6KwsDDVt3Llyjj99NPj888/36xzDB8+PA499NCYMGFC/OQnP4lbb701GjZsuLlL32xr/3uNiHj11VerfOzixYvT/s2uPdezzz67UetYex4AAKhOAiUAAKBO2HnnnVOvV65cGffff3+Vjz3vvPNiwoQJERHRoUOHtL73338/ysrKtswia9l2222X1n7rrbdqfA2HHHJIrFq1Ku1rzZs3j5tuuik++eSTOPjgg1NfX7lyZdx2222bfK7S0tIYOHBgLF++PHJzc+Oaa67Z5Lm2tN122y2t/eCDD1b52J///Ofx7rvvptpr/9t/66234v3336/SPBUVFXHkkUdW+bwAALA5BEoAAECdsP/++6dVntxwww0xY8aMDR43ceLEeOaZZ6Jz584REdGyZcvYddddU/1LlizZ6EevrV69eqPG15S1w5qIiEGDBm3U8Vvifa1YsSKGDx+esa9Lly7x0ksvxT777JP62ptvvrnJ5/rf//4X06dPj4iv/l6bNm26yXNtaW3btk0LgoYNGxYvv/zyBo8bO3ZsPPXUU7HvvvumvnbooYemjbnggguioqJig3M9+uijUVJSshGrBgCATSdQAgAA6oTCwsI4/fTTU+2FCxfGSSedlHUPpPLy8vj+978fAwYMiLy8vNTXTzvttLRxN9xww0ZVKa1YsaLSviRJMr7OJCcnJ/W6KgHBhpx66qmRm/v/f4x75plnYsSIEVU+vqrvK1N7bffdd1+lfQUFBWmVRGuvd421vy8RlX9vxo0bl3o9Z86cmDt3bsZx6661sr/rzfk7yPT9+O53v5vWPu+882LevHmVzrF8+fL49re/Hd/61rfSvi+HHHJIdO3aNdUeOXJkXHDBBVn/DmbNmhU/+9nP4uyzz96YtwEAAJtMoAQAANQZv/jFL6KgoCDVHjVqVBx00EHx9ttvrzd23rx58Y1vfCNGjhwZV1xxRVrfhRdemLbf0JgxY+LHP/5xpeedMmVKWnvmzJmVjl28eHHq9dKlSyt/MxFpFVdz5sxJ6xs3blzMnj076/Hr6tatWwwcODDVrqioiG9961uVrnfBggWxZMmSVLuq7ysi+3t75JFHsj6WbU21WETEnnvuuV7/unsgrfu9WVMBtfaeTBFfPSpu3ZDl1VdfjRNPPDHtawsWLIiIr/bPGjJkSOrr8+fPTxu3fPnySt/Dutb+Pq7x/e9/P1q3bp1qT5w4MQ4//PD49NNP1xv72WefxeGHHx5jx46NSy+9NK0vLy8vfvnLX6Z97a9//WucdNJJGav0Pvroozj88MOjQ4cOccopp1T5PQAAwOYQKAEAAHXGrrvuGr/73e/Svvbxxx/HAQccEAcccEBcdNFFceWVV8Zpp50WO+ywQwwZMiT+9Kc/rbe3UKtWreJvf/tb2tfuvvvuOOOMM9LCi/Ly8rjzzjvj+9//ftrYO++8M6ZMmRIvvfRSrFy5MvX1JEni9ddfT7Xnz58fn3zySaXvp2PHjqnXzz33XCqUmDVrVpx99tlRVFS0oW/JetZ9v1988UUcdNBBMWzYsLRx7777bhx88MFpIcozzzwTo0aNio8//ni9da97fGWPtYv4Ksg65ZRTYvLkyRn7X3zxxYj4qjrpRz/60Xr9a39fIiL++c9/pl7/61//isGDB0dERO/evdPGPfDAA3H00UfH3XffHb/73e/ikEMOiSOOOCIOOeSQtHF//OMf449//GP07ds3tt9++9TX1/67i/iqEqgyo0ePTmu/8cYb641p3rx5PPDAA2kVVx9++GHsvvvu0a9fv/jJT34SP//5z+Ooo46KHj16xNtvvx133HHHevt8RUScc845ceqpp6Z97amnnorOnTvH8ccfHz/72c/isssui6OOOip69eoVU6ZMifvvvz9jBRgAAFSLBAAAoI656aabkojY4J/rr78+6zx/+MMfkpycnLRjCgoKksMOOyw58cQTk/bt2yft27dPfv/73683d7NmzZILL7wwWbBgQTJx4sTkjjvuSE444YT1xnXs2DG54YYbkueee269899+++3rjT3hhBOSZs2aJQ899NAmf38+/vjjpEOHDuutZbfddkv69++f7L333klOTk5y0003JTvssEPamJycnOToo49Ohg8fniRJktx3333JZZddlhQVFaWNy8vLS773ve8ld911V7Jy5crUuffZZ5/UmFatWiV33313smjRoiRJkmTVqlXJPffckxQWFiYRkfzhD3+o9D3stddeaec76KCDkoMPPjjp1KlTMmPGjNS4vn37Vvr3X1xcnDzxxBPJypUrk/z8/PX6//73vydJkiT3339/8uMf/zgpKChI68/Pz08uvPDC5C9/+UsyY8aMZOXKlcnf//735IorrkiaN2++3vfjBz/4QXLXXXcly5cvT3svDz74YMbzr/0nNzc36/cjSZJkxYoVyUknnbTBf/dFRUXJs88+uzH/ZAAAYLMJlAAAgDrppZdeSnr16pXxhvoOO+yQPP7441WaZ+jQocnOO++83hw5OTnJ6aefnsyYMSN55ZVXUl/v3bt3cv/996eFBo8//vgGb/Iff/zx6527rKws6d+/f9q4Jk2aJPfcc89mf39mzJiRDBw4MMnNzV1vLd27d0+ef/75JEmSVKDUrl275Be/+EUyYcKEtHkaN268wfc2Z86c1Pi1A6W1w5Z27dqlQpVddtklY8C2ttGjRyft27dPm2fPPfdMxo0blzZu1qxZSZ8+fdY75z777JN89tlnqXHf/OY30wKX++67b6Pe4wsvvJDMmTOnSkHmzJkz13s/b7/9drL//vtnHL/33nsnw4YNq9Lfa3l5eXL33Xcnbdu2zTjXgQcemLz//vtVmgsAALaknCTZwC6yAAAAtejDDz+Mt99+O2bPnh0lJSXRq1evOOiggzbqUV9JksTIkSPj/fffj8WLF0f79u3jyCOPTD0ObdKkSTFo0KD4+te/Hj179tzi7+GVV16Jd955J9q3bx9f+9rXolWrVlts7hkzZsSLL74YM2bMiJKSkthrr72iT58+qcew/fGPf4yOHTvG17/+9WjQoMEWOWeSJDFr1qwYP358TJw4MebOnRvLli2Lpk2bxr777hu9e/dOewxcZZYsWRJDhgyJWbNmxR577BFHH310xuOSJImXXnop3nvvvSgoKIj99tsvDjzwwLSxZWVlMWjQoFixYkV8/etfX+8xiDXl448/jhEjRsScOXOiWbNm0adPn4z7SG1IeXl5DB8+PD7++ONYtGhRtGrVKg466KDYbbfdtvyiAQCgCgRKAAAAAAAAZGX3TgAAAAAAALISKAEAAAAAAJCVQAkAAAAAAICsBEoAAAAAAABkJVACAAAAAAAgK4ESAAAAAAAAWQmUAAAAAAAAyEqgBAAAAAAAQFYCJQAAAAAAALISKAEAAAAAAJCVQAkAAAAAAICsBEoAAAAAAABkJVACAAAAAAAgK4ESAAAAAAAAWQmUAAAAAAAAyEqgBAAAAAAAQFYCJQAAAAAAALISKAEAAAAAAJCVQAkAAAAAAICsBEoAAAAAAABkJVACAAAAAAAgK4ESAAAAAAAAWQmUAAAAAAAAyEqgBAAAAAAAQFYCJQAAAAAAALISKAEAAAAAAJCVQAkAAAAAAICsBEoAAAAAAABkJVACAAAAAAAgK4ESAAAAAAAAWQmUAAAAAAAAyEqgBAAAAAAAQFYCJQAAAAAAALISKAEAAAAAAJCVQAkAAAAAAICsBEoAAAAAAABk9f8A9WpTBPAfbIQAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 1920x1440 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "sns.lineplot(data=df, x='edit distance', y='AUC', markers=True, dashes=False)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 28,
+   "id": "8ec375f2",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>AUC</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>edit distance</th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>0.500000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>0.504326</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>0.534676</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>0.590877</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25</th>\n",
+       "      <td>0.742131</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>100</th>\n",
+       "      <td>0.909689</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                    AUC\n",
+       "edit distance          \n",
+       "0              0.500000\n",
+       "1              0.504326\n",
+       "5              0.534676\n",
+       "10             0.590877\n",
+       "25             0.742131\n",
+       "100            0.909689"
+      ]
+     },
+     "execution_count": 28,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df.groupby('edit distance').mean()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2c6c7d9a",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "phd9",
+   "language": "python",
+   "name": "phd9"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.7"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}