diff --git a/docs/attacks/quantile.html b/docs/attacks/quantile.html index 6e42fbd..c03cb29 100644 --- a/docs/attacks/quantile.html +++ b/docs/attacks/quantile.html @@ -180,7 +180,7 @@

Args

The function to use to form a batch from a list of elements of train_dataset or eval_dataset. Will default to [default_data_collator] if no tokenizer is provided, an instance of [DataCollatorWithPadding] otherwise. -train_dataset (torch.utils.data.Dataset or torch.utils.data.IterableDataset, optional): +train_dataset (Union[torch.utils.data.Dataset, torch.utils.data.IterableDataset, datasets.Dataset], optional): The dataset to use for training. If it is a [~datasets.Dataset], columns not accepted by the model.forward() method are automatically removed.

Note that if it's a <code>torch.utils.data.IterableDataset</code> with some randomization and you are training in a
@@ -189,7 +189,7 @@ 

Args

manually set the seed of this <code>generator</code> at each epoch) or have a <code>set\_epoch()</code> method that internally sets the seed of the RNGs used.
-

eval_dataset (Union[torch.utils.data.Dataset, Dict[str, torch.utils.data.Dataset]), optional): +

eval_dataset (Union[torch.utils.data.Dataset, Dict[str, torch.utils.data.Dataset, datasets.Dataset]), optional): The dataset to use for evaluation. If it is a [~datasets.Dataset], columns not accepted by the model.forward() method are automatically removed. If it is a dictionary, it will evaluate on each dataset prepending the dictionary key to the metric name. diff --git a/docs/config.html b/docs/config.html index fa45df3..9c1fb4f 100644 --- a/docs/config.html +++ b/docs/config.html @@ -172,7 +172,7 @@

Module mimir.config

max_substrs: Optional[int] = 20 """If full_doc, determines the maximum number of sample substrs to evaluate on""" dump_cache: Optional[bool] = False - "Dump data to cache? Exits program after dumping" + """Dump data to cache? Exits program after dumping""" load_from_cache: Optional[bool] = False """Load data from cache?""" load_from_hf: Optional[bool] = True @@ -216,9 +216,9 @@

Module mimir.config

pre_perturb_span_length: Optional[int] = 5 """Span length for pre-perturbation""" tok_by_tok: Optional[bool] = False - """FPRs at which to compute TPR""" - fpr_list: Optional[List[float]] = field(default_factory=lambda: [0.001, 0.01]) """Process data token-wise?""" + fpr_list: Optional[List[float]] = field(default_factory=lambda: [0.001, 0.01]) + """FPRs at which to compute TPR""" random_seed: Optional[int] = 0 """Random seed""" ref_config: Optional[ReferenceConfig] = None @@ -400,7 +400,7 @@

Class variables

max_substrs: Optional[int] = 20 """If full_doc, determines the maximum number of sample substrs to evaluate on""" dump_cache: Optional[bool] = False - "Dump data to cache? Exits program after dumping" + """Dump data to cache? Exits program after dumping""" load_from_cache: Optional[bool] = False """Load data from cache?""" load_from_hf: Optional[bool] = True @@ -444,9 +444,9 @@

Class variables

pre_perturb_span_length: Optional[int] = 5 """Span length for pre-perturbation""" tok_by_tok: Optional[bool] = False - """FPRs at which to compute TPR""" - fpr_list: Optional[List[float]] = field(default_factory=lambda: [0.001, 0.01]) """Process data token-wise?""" + fpr_list: Optional[List[float]] = field(default_factory=lambda: [0.001, 0.01]) + """FPRs at which to compute TPR""" random_seed: Optional[int] = 0 """Random seed""" ref_config: Optional[ReferenceConfig] = None @@ -539,7 +539,7 @@

Class variables

var fpr_list : Optional[List[float]]
-

Process data token-wise?

+

FPRs at which to compute TPR

var full_doc : Optional[bool]
@@ -639,7 +639,7 @@

Class variables

var tok_by_tok : Optional[bool]
-

FPRs at which to compute TPR

+

Process data token-wise?

var token_frequency_map : Optional[str]