-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathwheelslam_func.m
342 lines (264 loc) · 14.6 KB
/
wheelslam_func.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
function [wheelslam_rms, wheelins_rms] = wheelslam_func(paras)
% clear
% close all
format longG
datapath = paras.datapath;
rollSeqdimension = paras.rollSeqdimension; %Dimension of the roll sequence measurement
NPARTICLES = paras.NPARTICLES;
gridlen = paras.gridlen;
NEFFECTIVE = paras.NEFFECTIVE; %Threshold of the effective particles
sigmaDis_scale = paras.sigmaDis_scale; % unit: m
sigmaPhi = paras.sigmaPhi; % unit: radians
initheading = paras.initheading; % Initial heading of the vehicle
conRevisitNumThr = paras.conRevisitNumThr;% The number threshold for determining the revisit of the particle
corrCoefThr = paras.corrCoefThr;
corrCoefNumThr = paras.corrCoefNumThr;
gt_path = paras.gt_path;
freq = 10;
odom = read_bin(datapath, 4)';% time, dis(equal), headingInc, roll
%Import odometry info from Wheel-INS, including timestamp, dis_increment,
%heading increment and roll angle
revisit_tThr = 30; %Minimal time interval for revisit identification. Sometimes car stop
initmapsize = 101;
progrssThr = -100;
start_t = odom(1,1);
odomsize = floor(size(odom, 1)*paras.odomdata_scale);
particles = init_particles(NPARTICLES, initmapsize, odomsize, start_t, initheading, corrCoefNumThr);
res = zeros(odomsize, 4);
res(1, :) = [start_t particles(1).xv'];
pre_refstate = [start_t particles(1).xv'];
wheelinsDR = zeros(odomsize, 4);
wheelinsDR(1,:) = pre_refstate;
revisitParticles = 0;
% This is used to set the randanstream of the particles, so as to
% make the results the same everytime.
% for i = 1:NPARTICLES
% particles(i).randstream = RandStream.create('mlfg6331_64','Seed', i);
% end
%
% resample_randstream = RandStream.create('mlfg6331_64','Seed', idx);
%---------------------------------------------------------------------
for i = 2:odomsize
% Current measurement of roll sequence.
% curRollmeas = odom(i, 5:size(odom, 2));
curRollmeas = odom(i, 4);
ref_state = state_predict_ref(odom(i, :), pre_refstate);% Get the DR results from the odometry file for comparision.
wheelinsDR(i,:) = ref_state;
pre_refstate = ref_state;
t_s = clock;
revisitNum = 1;
curodom = odom(i, :);
for j = 1:NPARTICLES
particles(j) = state_predict(particles(j), curodom, sigmaDis_scale, sigmaPhi); %State prediction for every particle.
[particles(j), atRow, atCol] = extendMap(particles(j), gridlen); %Extend (or not) the grid map maintained by every particle.
if (particles(j).conRevisitNum ~= conRevisitNumThr)
particles(j).conRevisitNum = particles(j).conRevisitNum + 1;
else
% sliding window for loop closure detection.
particles(j).conCorrCoef(1:(conRevisitNumThr-1)) = particles(j).conCorrCoef(2:conRevisitNumThr);
particles(j).conCorrCoef(conRevisitNumThr) = -1;
end
particles(j).conCorrCoef(particles(j).conRevisitNum) = -1;
if (atRow == particles(j).preIdxinMap(1) && atCol == particles(j).preIdxinMap(2)...
&& particles(j).lastTrajRevisitIdx < i-1)
% If one step is too short (still in the same grid) and if last step is not a revisit
numforgrid = particles(j).mapattr(particles(j).gridmap(atRow, atCol)).Num;
particles(j).mapattr(particles(j).gridmap(atRow, atCol)).Value...
= (particles(j).mapattr(particles(j).gridmap(atRow, atCol)).Value ...
* (numforgrid/(numforgrid+1)) + curRollmeas./(numforgrid +1));
% Average the roll measurement in the same grid.
particles(j).mapattr(particles(j).gridmap(atRow, atCol)).Num = numforgrid + 1;
else
innerGridsIndex = [];
revisitGrids = [];
allRollSeq = [];
allheading = [];
curallheading = [allheading;particles(j).xv(3)];
curAllRollSeq = [allRollSeq;curRollmeas];
curGrid = [atRow, atCol];
curAllGrids = [innerGridsIndex; curGrid];
curAllGrids = unique(curAllGrids, 'rows','stable');
if (~isempty(curAllGrids))
%Update (or not) the grid map maintained by every particle
%and get the revisit grids after revisit time interval check.
%Check if current grid is a new grid.
[particles(j), revisitGrids] = updateGridmap(particles(j), curAllGrids, curAllRollSeq, curallheading, revisit_tThr, i);
end
if (~isempty(revisitGrids))
for ii = 1:size(revisitGrids, 1)
%Threshold for the heading difference between current entance and last one
headingdiff = abs(getheadingdiff(particles(j).xv(3), particles(j).mapattr(particles(j).gridmap(revisitGrids(ii,1), revisitGrids(ii,2))).enterheading));
if(headingdiff > (pi/6))
break;
end
particles(j).mapattr(particles(j).gridmap(revisitGrids(ii,1), revisitGrids(ii,2))).revisit = ...
particles(j).mapattr(particles(j).gridmap(revisitGrids(ii,1), revisitGrids(ii,2))).revisit + 1;
particles(j).mapattr(particles(j).gridmap(revisitGrids(ii,1), revisitGrids(ii,2))).Num = ...
particles(j).mapattr(particles(j).gridmap(revisitGrids(ii,1), revisitGrids(ii,2))).Num + 1;
%Get the historical index of the revisited grid in the
%roll sequence.
revisitIdx = particles(j).mapattr(particles(j).gridmap(revisitGrids(ii,1), revisitGrids(ii,2))).idx;
if( revisitIdx < rollSeqdimension)
break;
else
particles(j).lastTrajRevisitIdx = i; %where the particle detected a revisit by the traj.
currollseq = odom(i-rollSeqdimension+1:i,4);% Current roll sequence from the revisited grid
maprollseq = odom(revisitIdx-rollSeqdimension+1:revisitIdx,4); %Historical roll sequence
corrMat = corrcoef(currollseq, maprollseq);
corrvalue = corrMat(1,2); % Get the correlation value
particles(j).conCorrCoef(particles(j).conRevisitNum) = corrvalue;
corrCoefNumtmp = length(particles(j).conCorrCoef(particles(j).conCorrCoef> corrCoefThr));
if(particles(j).conRevisitNum == conRevisitNumThr && ...
corrCoefNumtmp > corrCoefNumThr &&...
corrvalue > corrCoefThr)
%criteria 1. Full of the correlation window;
%2.Enough value in the window larger than the
%threshold
%3.Current correlation value larger than the
%threshold;
tmpSeq = particles(j).conCorrCoef((particles(j).conCorrCoef > corrCoefThr ));
particles(j).w = particles(j).w * exp(rms(tmpSeq)* (corrCoefNumtmp/conRevisitNumThr)); %Update the weight of the particles reported a convinced loop closure
particles(j).mapattr(particles(j).gridmap(revisitGrids(ii,1), revisitGrids(ii,2))).last_vt = particles(j).t;
particles(j).totalrevisitNum = particles(j).totalrevisitNum + 1;
particles(j).revisitpos(particles(j).totalrevisitNum, :) = [particles(j).t particles(j).xv(1) particles(j).xv(2)];
end
% count the revisited particle only once
if (ii == 1)
revisitParticles(revisitNum) = j;
revisitNum = revisitNum + 1;
end
end
end
end
end
particles(j).preIdxinMap = [atRow, atCol];
particles(j).prepos = particles(j).xv;
particles(j).traj(i,:) = (particles(j).xv)';
end
% Check if resample is needed, if yes, do it. Generally this function
% needn't to be modified, we can set the parameters "NEFFECTIVE"
particles = resampleParticles(particles, NEFFECTIVE);%, resample_randstream
%particles = resampleParticles(particles, NEFFECTIVE, resample_randstream);
%save system output
w = [particles.w];
xv = [particles.xv];
if (mean(abs(xv(3,:))) > abs(mean(abs(xv(3,:))) - pi))
xv(3, :) = zero_to_2pi(xv(3, :));
else
xv(3, :) = pi_to_pi(xv(3, :));
end
ii = find(w == max(w),1);
w = w/sum(w);
xvmean = [mean(sum(w.* xv(1, :))) mean(sum(w.* xv(2, :))) mean(sum(w.* xv(3, :)))];
res(i,:) = [particles(1).t xvmean];
revisitParticles = 0;
runProgress = floor((i-1)/(odomsize) * 1000);
if(runProgress > progrssThr)
clc;
progrssThr = runProgress;
disp(['******Wheel SLAM RUNNING:' num2str(0.1*runProgress) '%******']);
end
end
% figure,
% plot3(res(:,3), res(:,2), res(:,1)-res(1,1), 'LineWidth', 1.5),grid on;
% title('Weighted mean traj.');hold on;
% plot(res(1,3), res(1,2), 'go');hold on;
% plot(res(end,3), res(end,2), 'ro');
% set(gca,'fontsize',10,'fontname','Times');
% plotMap(particles(ii),i, path);
% write_bin(resfile, res);
% write_bin(wheelinsDRpath, wheelinsDR);
particleres = [res(:, 1) particles(ii).traj];% trajectory of the particle with highest weight
[wheelslam_err, wheelslam_rms, wheelins_err, wheelins_rms, wheelslam_err_p, wheelslam_rms_p] =...
ResCompare(res, particleres, wheelinsDR, gt_path, freq);
%% plot the total revisit num of all the particles
% revisitNums = [particles.totalrevisitNum];
% figure,
% set(gcf,'unit','normalized','position',[0.05,0.05,0.64,0.48]);
% plot(revisitNums,'*'); set(gca,'fontsize',10,'fontname','Times');
% title('Total Revisit Num');
% figure,
% plot3(particles(ii).revisitpos(:,3), particles(ii).revisitpos(:,2), particles(ii).revisitpos(:,1),'*');
% title(['Particle =' num2str(ii) 'idx = ' num2str(idx)]);
% save particle data
% save([path 'particle_' num2str(ii) '_' s_curt], 'particles');
% format longG
% fprintf(fp_res,'%s\n', s_curt);
% fprintf(fp_res,'Particles = %d NEFFECTIVE = %d\n', NPARTICLES, NEFFECTIVE);
% fprintf(fp_res,'Gridlen = %.1f mode = %d\n', gridlen, mode);
% fprintf(fp_res,'Disstd = %.5f Phistd = %.5f \n', sigmaDis_scale, sigmaPhi);
% fprintf(fp_res,'RollSampleDis = %.1f RollSeqDim = %d\n', paras.sampleDis, rollSeqdimension);
% fprintf(fp_res,'RollSeqWindow = %d CorrCoefThr = %.1f CorrCoefNumThr = %d\n',conRevisitNumThr,corrCoefThr,corrCoefNumThr);
% fprintf(fp_res,'Start_t = %f TotalData_t = %f Process_t = %s s\n',start_t, totaldata_t, processtime);
% fprintf(fp_res,'%s\n', 'RMS [North East]');
% fprintf(fp_res,'WheelSLAM %.5f %.5f\n', wheelslam_rms(1), wheelslam_rms(2));
% fprintf(fp_res,'WheelSLAM_p %.5f %.5f\n', wheelslam_rms_p(1), wheelslam_rms_p(2));
% fprintf(fp_res,'WheelINS %.5f %.5f\n', wheelins_rms(1), wheelins_rms(2));
% fprintf(fp_res,'Heading RMSE: Wheel-SLAM:%.5f Wheel-INS:%.5f\n\n', wheelslam_rms(3), wheelins_rms(3));
end
function p = init_particles(np, mapsize, odomsize, start_t, initheading, corrCoefNumThr)
%Grid map attribute
gridattr.Num = 1; %how many times has this grid been visited
gridattr.visited = 1; %if this grid has been visited
gridattr.revisit = 0; %if this grid has been revisited
gridattr.last_vt = start_t;%last visit time of the grid
gridattr.Value = zeros(1, 1);%only single roll angle
gridattr.idx = 1;% the index of the current roll measurement in the full odometry file
initheadingrad = DEG2RAD(initheading);
gridattr.enterheading = initheadingrad;%the heading of the vehicle when it entering this grid
p.conRevisitNum = 0;%length of the correlation sliding window
p.conCorrCoef = zeros(1,corrCoefNumThr);
p.gridmap = zeros(mapsize, mapsize);% save the idx in the grid attibute matrix at every grid of the map
%the coordinates of the original point is (0,0), but it is at the
%central of the map
p.originIdx = [(mapsize+1)/2, (mapsize+1)/2];% the idx of the original point in the grid map (which would be updated with the extension of the map).
p.w = 1/np; %weight
p.xv = [0;0;initheadingrad]; %state: N, E, Phi
p.prepos = [0;0;initheadingrad]; %last position and heading of the vehicle
p.preIdxinMap = p.originIdx; %last idx of the vehicle in the grid map
p.t = start_t;
p.totalrevisitNum = 0; %how many convinced loop closure proposed by this particle
p.revisitpos = zeros(1,3);%The positions of the vehicle where the convinced loop closure proposed by this particle
p.mapattr(1) = gridattr;% attibute of the first grid in the map. A large grid attribute matrix would be built with the moving of the vehicle
p.totalGrids = 1;%
p.gridmap(p.originIdx(1), p.originIdx(2)) = 1;% grid map maintaind by every particle
p.traj = zeros(odomsize,3);% the trajectory of the vehicle estimated by this particle
p.traj(1,:) = (p.xv)';
p.lastTrajRevisitIdx = 0;%The Idx in the odom file where the particle detects a revisit by its traj, (no roll needed)
p = repmat(p, [np 1]);
end
function x_vec = zero_to_2pi(x_vec)
lenth = length(x_vec);
for i = 1:lenth
if(x_vec(i)<0)
x_vec(i) = x_vec(i) + 2*pi;
end
end
end
function x = pi_to_pi(x)
if x > pi
x= x - 2*pi;
elseif x < -pi
x= x + 2*pi;
end
end
function hdiff = getheadingdiff(heading1, heading2)
hdiff = heading1 - heading2;
if hdiff > pi
hdiff= hdiff - 2*pi;
elseif hdiff < -pi
hdiff= hdiff + 2*pi;
end
end
function [bestIdx, lagestcorrValue] = getBestMacth(currollseq, revisitIdx, searchRad, odom, rollSeqdimension)
lagestcorrValue = -exp(5);
for i = (revisitIdx-searchRad):(revisitIdx+searchRad)
maprollseq = odom(i-rollSeqdimension+1:i, 4);
corrMat = corrcoef(currollseq, maprollseq);
corrvalue = (corrMat(1,2) + corrMat(2, 1))/2;
if corrvalue > lagestcorrValue
lagestcorrValue = corrvalue;
bestIdx = i;
end
end
end