forked from zehuachenImperial/SkipConvNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
103 lines (85 loc) · 4.35 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import kaldiio
class SpecImages(Dataset):
def __init__(self,datadir, mode='train'):
self.local=''
self.mode = mode
self.reverbFiles = self.__readscpFiles__(self.local+datadir+'/Sim/wav.scp')
if self.mode == 'train':
self.cleanFiles = self.__readscpFiles__(self.local+datadir+'/Clean/wav.scp')
if self.mode == 'decode': # and 'Train' not in datadir
self.realFiles = self.__readscpFiles__(self.local+datadir+'/Real/wav.scp')
self.reverbFiles.update(self.realFiles)
self.uttID = list(self.reverbFiles.keys())
self.uttID = [n for n in self.uttID if 'MagdB' in n and 'smooth' not in n]
self.audioID = list(set([n.split('_frame')[0] for n in self.uttID]))
def __len__(self):
return len(self.uttID)
def __audiolen__(self):
return len(self.audioID)
def __getitem__(self, idx):
batch = {}
uttname = self.uttID[idx]
batch['noisy_mag'] = np.expand_dims(kaldiio.load_mat(self.local+self.reverbFiles[uttname]), axis=0)
batch['clean_mag'] = np.expand_dims(kaldiio.load_mat(self.local+self.cleanFiles[uttname]), axis=0)
batch['noisy_mag'] = torch.from_numpy(np.float32(batch['noisy_mag']))
batch['clean_mag'] = torch.from_numpy(np.float32(batch['clean_mag']))
return batch['noisy_mag'], batch['clean_mag']
def __readscpFiles__(self, filename):
with open(filename) as f:
lines = f.readlines()
f.close()
fileList = {}
for line in lines:
utt_name = line.split(' ')[0]
utt_loc = line.split(' ')[1]
fileList[utt_name] = utt_loc
return fileList
def uttname2idx(self, uttname):
idx = self.audioID.index(uttname)
return idx
def __getsample__(self, idx):
batch = {}
uttname = self.uttID[idx]
batch['noisy_mag'] = np.expand_dims(kaldiio.load_mat(self.local+self.reverbFiles[uttname]), axis=0)
batch['noisy_phase'] = kaldiio.load_mat(self.local+self.reverbFiles[uttname.replace('MagdB', 'Phase')])
batch['noisy_norm'] = kaldiio.load_mat(self.local+self.reverbFiles[uttname.replace('MagdB', 'Norm').split('_frame')[0]])
batch['noisy_mag'] = torch.from_numpy(np.float32(batch['noisy_mag']))
if self.mode == 'train':
batch['clean_mag'] = np.expand_dims(kaldiio.load_mat(self.local+self.cleanFiles[uttname]), axis=0)
batch['clean_phase'] = kaldiio.load_mat(self.local+self.cleanFiles[uttname.replace('MagdB', 'Phase')])
batch['clean_norm'] = kaldiio.load_mat(self.local+self.cleanFiles[uttname.replace('MagdB', 'Norm').split('_frame')[0]])
batch['clean_mag'] = torch.from_numpy(np.float32(batch['clean_mag']))
batch['samples'] = kaldiio.load_mat(self.local+self.reverbFiles[uttname.replace('MagdB', 'Samples').split('_frame')[0]])
return batch
def __getaudio__(self, idx):
uttname = self.uttID[idx].split('_frame_')[0]
idx = self.audioID.index(uttname)
frame_idx = [n for n in range(len(self.uttID)) if self.audioID[idx] in self.uttID[n]]
audio = {}
noisy_mag = []; noisy_phase = []; noisy_norm = [];
clean_mag = []; clean_phase = []; clean_norm = [];
for k in range(len(frame_idx)):
sample = self.__getsample__(frame_idx[k])
noisy_mag.append(sample['noisy_mag'])
noisy_phase.append(sample['noisy_phase'])
noisy_norm.append(sample['noisy_norm'])
if self.mode == 'train':
clean_mag.append(sample['clean_mag'])
clean_phase.append(sample['clean_phase'])
clean_norm.append(sample['clean_norm'])
audio['noisy_mag'] = torch.cat(noisy_mag, dim=0)
audio['noisy_phase'] = np.hstack(noisy_phase)
audio['noisy_norm'] = sample['noisy_norm']
if self.mode == 'train':
audio['clean_mag'] = torch.cat(clean_mag, dim=0)
audio['clean_phase'] = np.hstack(clean_phase)
audio['clean_norm'] = sample['clean_norm']
audio['utt_samples'] = int(sample['samples'][0])
audio['uttname'] = self.audioID[idx]
return audio