-
Notifications
You must be signed in to change notification settings - Fork 2
/
cifar-100.py
111 lines (91 loc) · 3.4 KB
/
cifar-100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# -*- coding: utf-8 -*-
from __future__ import print_function
from models.resnext import ResNeXt
"""
Created on Wed Oct 16 10:31:51 2019
@author: xingshuli, hyunwoong
"""
import os
import keras
# from keras.datasets import cifar10
from keras.datasets import cifar100
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import SGD
from keras import backend as K
from keras.callbacks import ReduceLROnPlateau
from util.conf import *
# set GPU config
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # '1' or '0' GPU
home_dir = home_dir_linux
num_classes = 100
img_height, img_width = 32, 32
if K.image_dim_ordering() == 'th':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
# the data shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = cifar100.load_data()
nb_train_samples = x_train.shape[0]
nb_validation_samples = x_test.shape[0]
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
# load model
model = ResNeXt(input_shape=input_shape,
n_class=num_classes,
weight_decay=weight_decay,
batch_size=batch_size,
cardinality=cardinality).model()
optimizer = SGD(lr=init_lr, momentum=momentum, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
# model.summary()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255.
x_test /= 255.
# prepare data augmentation configuration
train_datagen = ImageDataGenerator(width_shift_range=0.1,
height_shift_range=0.1,
rotation_range=30,
zoom_range=0.1,
horizontal_flip=True)
train_datagen.fit(x_train)
train_generator = train_datagen.flow(x_train, y_train, batch_size=batch_size)
# set learning rate schedule
lr_reduce = ReduceLROnPlateau(monitor=monitor,
factor=factor,
patience=patience,
mode=mode,
min_lr=min_lr)
# set callbacks for model fit
callbacks = [lr_reduce]
# model fit
hist = model.fit_generator(train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
callbacks=callbacks)
# print acc and stored into acc.txt
f = open(home_dir + 'train_acc_cifar100.txt', 'w')
f.write(str(hist.history['acc']))
f.close()
# print val_acc and stored into val_acc.txt
f = open(home_dir + 'val_acc_cifar100.txt', 'w')
f.write(str(hist.history['val_acc']))
f.close()
# print train_loss and stored into train_loss.txt
f = open(home_dir + 'train_loss_cifar100.txt', 'w')
f.write(str(hist.history['loss']))
f.close()
# print val_loss and stored into val_loss.txt
f = open(home_dir + 'val_loss_cifar100.txt', 'w')
f.write(str(hist.history['val_loss']))
f.close()
# save model
save_dir = os.path.join(os.getcwd(), 'Cifar_100_model')
model_name = 'keras_cifar100_model.h5'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
save_path = os.path.join(save_dir, model_name)
model.save(save_path)
print('the model has been saved at %s' % save_path)