- 21์ธ๊ธฐ ํต๊ณํ์ ๋ฐฐ์ฐ๋ ๋ฐฉ๋ฒ
- ํต๊ณ๋ ์ซ์๊ฐ ์๋๋ผ ๊ฒฝํ์ด ์ด๋ฆฐ๋ค
- Sample your data!
- ์ธตํ ์ถ์ถ(stratified sampling)
- qc ๊ธฐ์ค์ผ๋ก ์ธตํ ์ํ๋ง ํ๋ ๊ฒฝ์ฐ
- (query, query count) pair ์์ฑ ํ qc๋ก sort
- n๊ฐ ๊ตฌ๊ฐ์ผ๋ก ๋ถ๋ฆฌ ํ, k๊ฐ์ฉ random choice
- ๊ตฌ๊ฐ์ ์ ์ฒด ๊ฐ์๊ฐ k๋ณด๋ค ์์ ๊ฒฝ์ฐ
- ์ถ์ถ ๊ธฐ๊ฐ ์ฆ๊ฐ
- ๊ตฌ๊ฐ ๊ฐ์ ์ถ์
- qc ๊ธฐ์ค์ผ๋ก ์ธตํ ์ํ๋ง ํ๋ ๊ฒฝ์ฐ
- MCMC sampling for dummies
- Importance sampling ๋ฐฉ๋ฒ
- Sampling Techniques
- Understanding Variance, Co-Variance, and Correlation
- 13 Great Articles and Tutorials about Correlation
- SERIAL CORRELATION IN TIME SERIES ANALYSIS
- What is Correlation?
- uniform random float
- A Decentralized Lie Detector
- ์ด์ ํฌ ๊ทธ๋ฆฌ๊ณ ์์ผ ์ญ์ค
- Expectation and Variance from High School to Grad School
- Kernel Density Estimation(์ปค๋๋ฐ๋์ถ์ )์ ๋ํ ์ดํด
- The Price is Right Again
- Naive Bayesian, HMM, Maximum Entropy Model, CRF
- Maximum Likelihood and Maximum Entropy
- ์์คํจ์ Binary Cross Entropy
- bcho.tistory.com/category/๋น ๋ฐ์ดํ/ํต๊ณํ์ด๋ก
- P๊ฐ; '์๊ฐ์ค์ด ์ฐธ์ด๋ผ๊ณ ๊ฐ์ ํ ๋, ๊ด์ฐฐ๋(๋๋ ๊ทธ๋ณด๋ค ๋ ๊ทน๋จ์ ์ธ) ๊ฒฐ๊ณผ๊ฐ ์ผ์ด๋ ํ๋ฅ '๋ก ์ ์
- Statistics: P values are just the tip of the iceberg
- p-value... ์๊ด๊ณ์์ ๋ ๋ฆฝ
- P-value
- โp๊ฐ ๊ฐ์ ํ์โโฆ๊ณผํ์๋ค, ์ฐ๊ตฌ๊ฐ์ค ๊ฒ์ โ๋ฌธํฑ๊ฐโ ๊ฐํ ์ ์
- ๋ฏธ๊ตญ ํต๊ณํํ, P๊ฐ์ ์ค์ฉ(่ชค็จ)์ ๊ฒฝ๊ณ ํ๋ ์ฑ๋ช ์ ๋ฐํ
- Plot for distribution of common statistics and p-value
- P-value, ์ ์ํ๋ฅ | Hong's Data science
- Eyal Kazin - Everything That You Wanted To Know About P-Values But Were Afraid To Ask - YouTube
- Why We Need a Statistical Revolution
- Mean Shift Clustering
- Pattern Recognition
- The Extent and Consequences of P-Hacking in Science
- Exact computation of sums and means
- Why squared error?
- How to lie with statistics
- ์ ๊ท๋ถํฌ
- ๊ฐ์ฐ์์ ๋ถํฌ(Gaussian Distribution) = ์ ๊ท ๋ถํฌ(Normal Distribution)
- Gaussian Distributions are Soap Bubbles
- Gaussian Processes
- Industrial Gaussian Process Regression Introduction - ๋ณธ ์๋ฃ๋ ICMLA Tutorial๋ก ์งํ๋ Gaussian Process Regression ๋ด์ฉ์ ์ ๋ฆฌ
- Gaussian Process Regression Example in Sklearn Document
- Gaussian processing
- A Visual Exploration of Gaussian Processes
- Gaussian Process Practice (1) 1D | Pega Devlog
- Gaussian Process Practice (2) Kernels | Pega Devlog
- Gaussian Process Practice (3) Beware Boundaries | Pega Devlog
- Evaluating Splatoon's Ranking System
- Understanding the t-distribution and its normal approximation
- Statistics for Hackers by Jake VanderPlas
- Frequentism and Bayesianism: A Python-driven Primer
- ๋ฒ ์ด์ง์ธ ๋ฌ๋ 15 - ๋น๋์ฃผ์์ ๋ฒ ์ด์ง์ธ ์ฐจ์ด์ ์ดํดํ๊ธฐ - YouTube
- Probability, Mathematical Statistics, Stochastic Processes
- A Simple Introduction to Complex Stochastic Processes
- Probabilistic algorithms for fun and pseudorandom profit
- ์ธ์ง๋ชจ๋ธ๋ง - ์๋ฆฌ์ฌ๋ฆฌํ + ๋ฒ ์ด์ง์ ์ธ์ง๋ชจ๋ธ๋ง + IT ๋ชจ๋ธ๋ง
- ์์ ๋์ ์๋ฏธ
- The Automatic Statistician - An artificial intelligence for data science
- Common Probability Distributions: The Data Scientistโs Crib Sheet
- ๋ฐ์ดํฐ ์ฌ์ด์ธ์ค์ ๋ง์ด ์ฌ์ฉ๋๋ ํ๋ฅ ๋ฐ๋ํจ์๋ค
- Bernoulli
- ๋์ ์ ์/๋ค์ฒ๋ผ ์ด๋ฒคํธ๊ฐ 0 ๋๋ 1๋ฐ์ ์ผ์ด๋์ง ์๋ ๋ถํฌ
- ๋์ ์ ํ๋ฅ ์ด 0.5/0.5 ๊ฒ ์ง๋ง ๋ค๋ฅธ ๊ฒฝ์ฐ๋ ์์ ์ ์์
- Uniform
- ์ฃผ์ฌ์์ฒ๋ผ ๋ชจ๋ ๊ฒฐ๊ณผ์ ๋ํ ํ๋ฅ ์ด ๋์ผํ ํ๋ฅ ๋ถํฌ
- Binomial
- ๋์ ์ n๋ฒ ๋์ก์ ๋ p๋ฒ๋งํผ ์๋ฉด์ด ๋์ฌ ํ๋ฅ ์?
- Binomial์ ์ด๋ ๊ฒ 0 ๋๋ 1์ด ๋์ค๋ ์ด๋ฒคํธ(๊ฐ๊ฐ์ด Bernoulliํ๋ฅ ์ ๊ฐ๋ ์ด๋ฒคํธ)์ ๋ํด 1์ด ๋ฐ์ํ ํ์์ ๋ํ ํ๋ฅ
- Poisson
- 1์๊ฐ์ ํ๊ท 10๋ฒ์ ์ ํํตํ๊ฐ ์จ๋ค๊ณ ๊ฐ์ . ๊ทธ๋ ๋ค๋ฉด ํ์๊ฐ์ 12๋ฒ ์ ํํตํ๊ฐ ์ฌ ํ๋ฅ ์? ์ด๊ฒ์ด ๋ฐ๋ก poisson(ํฌ์์ก) ํ๋ฅ
- ์ด๊ฒ์, ์๋ฅผ ๋ค์ด, 60๋ถ ์ค 48๋ฒ์ ์คํจ(0)์ 12๋ฒ์ ์ฑ๊ณต(1)์ ํ๋ฉด ok. ๋๋, 60๋ถ์ด ์๋๋ผ ๋ ์๊ฒ ์ชผ๊ฐ์ 988๋ฒ์ ์คํจ์ 12๋ฒ์ ์ฑ๊ณต์ ํ๋ฉด ok
- ์ด์ฒ๋ผ ์ํํ์๊ฐ ํฌ๊ณ ์ด๋ฒคํธ๊ฐ ์ผ์ด๋ ํ๋ฅ ์ด ์์ bionomial ๋ถํฌ๊ฐ ๋ฐ๋ก poisson ๋ถํฌ์ ์๋ ด(์ด ๋๋ฌธ์ binomial์ ๊ทผ์ฌ๋ก๋ ์ฌ์ฉ)
- Hypergeometric
- ๊น๋ง๊ณต๊ณผ ํ์๊ณต์ด ์ ๋ฐ์ฉ ์๋๋ฐ ๊ทธ๊ฒ์ ์ฌ๋ฌ๋ฒ ๋ฝ๋๋ค๊ณ ๊ฐ์ . ๊ทธ๋ผ ์ด๊ฒ์ Binomial๊ณผ ๋์ผํ๊ฐ?
- ์๋. ์๋๋ฉด ๊ณต์ ๋ฝ์ ๋ ๋ง์ฝ ๊ทธ ๊ณต์ ๋ค์ ์ฑ์๋ฃ์ง ์๋๋ค๋ฉด ๋จ์์๋ ๊ณต์ ํ๋ฅ ์ ๋ฐ๋๊ธฐ ๋๋ฌธ
- Binomial์ ๊ฒฝ์ฐ์ ๋ฌ๋ฆฌ replacement(๋ค์ ๋ณด์ถฉ)๋ฅผ ํ์ฉํ์ง ์๋ ๊ฒ์ด ๋ฐ๋ก hypergeometric ํ๋ฅ ์ ๋๋ค.
- Geometric
- ์ฃผ์ฌ์๋ฅผ ๊ตด๋ ธ์ ๋ ํ๋ฒ์ 6์ด ๋์ฌ ํ๋ฅ ์? ๋๋ฒ๋ง์ 6์ด ๋์ฌ ํ๋ฅ ์? ์ธ๋ฒ๋ง์, ๋ค๋ฒ๋ง์...
- ์ด์ฒ๋ผ geometric ๋ถํฌ๋ ์ด๋ค ์ด๋ฒคํธ๊ฐ ์ผ์ด๋ ๋๊น์ง์ ํ์์ ๋ํ ํ๋ฅ
- ์ด๋ฒคํธ์ ํ๋ฅ ์ด ์ด๋ ํ๋ ๋ "๊ฐ์ฅ ์ฒซ๋ฒ์งธ"์ ์ด๋ฒคํธ๊ฐ ๋ฐ์ํ ํ๋ฅ ์ด ๊ฐ์ฅ ํฌ๋ค
- Negative Binomial
- Geometric์ด ํ๋ฒ ์ฑ๊ณตํ ๋๊น์ง ๊ฑธ๋ฆฌ๋ ํ์์ ๋ํ ๋ถํฌ๋ผ๋ฉด negative binominal์ n๋ฒ ์ฑ๊ณตํ ๋๊น์ง ๊ฑธ๋ฆฌ๋ ํ์์ ๋ํ ๋ถํฌ ๋น์ทํ๊ฒ ์์ง์๊ฑฐ์ผ?;;)
- Exponential
- bionomial์ ์ฐ์๋ฒ์ ์ด poisson์ด์๋ค๋ฉด, geometric์ ์ฐ์๋ฒ์ ์ด exponential๋ถํฌ
- ๋ค์๋งํด "ํ๊ท 5๋ถ๋ง์ ์ ํ๊ฐ ๊ฑธ๋ ค์จ๋ค๊ณ ํ ๋ ๋ค์ ์ ํ๊ฐ 7๋ถ ํ์ ๊ฑธ๋ ค์ฌ ํ๋ฅ ์?"
- Weibull
- exponential์ด "๋ค์ ์ด๋ฒคํธ๊ฐ ์ฑ๊ณตํ ๋ ๊น์ง์ ์คํจ๊ตฌ๊ฐ์"์ ๋ํ ํจ์์๋ค๋ฉด ๋ฐ๋๋ก Weibull์ "์ฒซ ์คํจ๊ฐ ๋ฐ์ํ ๋๊น์ง ์ด๋ฒ ์ด๋ฒคํธ๊ฐ ์ฑ๊ณตํ ๊ตฌ๊ฐ"์ ๋ํ ํ๋ฅ
- Gaussian (Normal)
- ๋๋ฌด ์ ๋ช ํ ํ๋ฅ ๋ถํฌ
- ํนํ ๋งค์ฐ ๋ง์ ์์ ๋์ผ ํ๋ฅ ๋ถํฌ๋ฅผ ๊ฐ์ง ์ํ๋ค์ ์ฐ์ ํ๊ท ์ ๊ทธ ์ํ๋ค์ด ์ด๋ค ๋ถํฌ๋ฅผ ๋ฐ๋ฅด๋ (binomial์ด๋ exponential์ด๋ ์๋ ๋ค๋ฅธ๊ฑฐ๋ ) ๊ฒฐ๊ตญ Gaussian ๋ถํฌ๋ก ์๋ ดํ๋ค๋ "์ค์ฌ๊ทนํ์ ๋ฆฌ"๊ฐ ๋งค์ฐ ์ ์ฉํ๊ธฐ์ ๋งค์ฐ ๋ง์ ๊ณณ์ ์ ์ฉ ๊ฐ๋ฅ
- Log-normal
- ๋ณ์์ log ๊ฐ์ด Gaussian์ ๋ํ๋ด๋ ๋ถํฌ
- ๋ค์๋งํด Gaussian์ exponential ํ ํจ์
- Studentโs t-distribution
- ์ ๊ท๋ถํฌ์ mean ๊ฐ์ ๋ํ ํ๋จ์ ๋ด๋ฆด ๋ ์ฌ์ฉํ๋ ํ๋ฅ ๋ถํฌ
- Chi-squared distribution
- Gaussian ๋ถํฌ๋ฅผ ๊ฐ์ง ํ๋ฅ ๋ณ์์ ์ ๊ณฑ๋ค์ ํฉ์ ๋ํ ๋ถํฌ
- ์๋ฅผ ๋ค์ด k์์ ๋์ chi-squared๋ k๊ฐ์ ๋ ๋ฆฝ์ ์ธ Gaussian๋ค์ ๋ํ ํฉ์ ํ๋ฅ ๋ถํฌ
- Bernoulli
- ๋ฐ์ดํฐ ์ฌ์ด์ธ์ค์ ๋ง์ด ์ฌ์ฉ๋๋ ํ๋ฅ ๋ฐ๋ํจ์๋ค
- ์ค์ฌ๊ทนํ์ ๋ฆฌ์ ๋ํ ์คํด, ๋ง์ผ๋ฉด ๋ฌด์กฐ๊ฑด ์ ๊ท๋ถํฌ OK???
- ํต์ปจ(ํต๊ณ์ปจ์คํ ) :: ์ฐ์ ํ๋ฅ ๋ถํฌ 4๊ฐ์ง(์ธ๊ฐ์ง?) ๋ง ์๋ฉด ๋ฉ๋๋ค
- (2) ํต๊ณ๊ธฐ๋ฒ 4๊ฐ์ง ์๊ธฐ-t๊ฒ์ ,ANOVA,์๊ด๋ถ์/ํ๊ท๋ถ์, ์นด์ด์ ๊ณฑ๋ฒ :: ํต์ปจ(ํต๊ณ์ปจ์คํ )
- Statistical Methods for HCI Research
- Statistics for everyone
- ๋ณ๋๊ณ์ ํ๊ท + ๋ถ์ฐ๊ฐ ํตํฉ ํ๊ฐ
- ํต๊ณํ ์ ๋ฌธ ์์ค์ ๊ณต๋ถ๋ฐฉ๋ฒ ๋ฐ ์ถ์ฒ ์์
- ํผ์ ์ ํ๊ฒ์ ์ ํตํ ๊ณ ๊ฐ๊ตฐ ์ํ๊ตฌ๋งค์กํ๊ท ์์ ๋ถ์
- ์ค์๊ฐ ๋ฐ์ดํฐ์ ํ๊ท ์ ํจ์จ์ ์ผ๋ก ๊ตฌํ๊ธฐ
- math7.tistory.com/m/category/ํต๊ณ
- Three common misuses of P values
- LEARNING STATISTICS ON YOUTUBE
- ๋งํ๋ก ์ฝ๊ฒ ๋ณด๋ ํต๊ณ๋ถ์ - ํ๋ฅ ์ ๊ณต๋ฆฌ ํธ -
- ๋ฅ๋ฌ๋ ์์ ๋ก ๋ณด๋ ๊ฐ๋ฐ์๋ฅผ ์ํ ํต๊ณ ์ต์ฌ๊ฑธ
- ์ ํํ ์ฒ๋ฆฌ ํจ๊ณผ ๋ถ์์ ์ํ ์ฑํฅ์ ์๋ถ์(PSA)
- STAT 501
- statground.org ์๋ฆฌํต๊ณํ pdf ์๋ฃ ๋ฐ์ ๊ณณ
- R Codes for "ํ๋ช ํ (2001), <์๋ฆฌํต๊ณํ ๊ฐ์>"
- ์๋น ๊ฐ ๋ค๋ ค์ฃผ๋ ํต๊ณ
- ์๋ฃ ์ ๋ฆฌ์ ์ค์์ฑ
- ์์ ์๋ฃ ์ ๋ฆฌ ํ
- P๊ฐ์ ์ดํด์ ์ํ ์ ๊ณ์ฐ์ ์ดํด
- chi-square goodness of fit test ์นด์ด์ ๊ณฑ ์ ํฉ๋ ๊ฒ์
- ๋ค์ค ๊ฒ์ ์ ์ํ: ํ๊ท๋ถ์์ ์์์
- Prediction Model & NIR, cfNIR, IDI
- Cox-Stuart test for trend
- Curve fitting ์ถ์ธ์ ํธ์ง
- Heat Map์ ๋์๋ค
- ๋ฐ์ดํฐ ์๊ฐํ dot bar chart
- ๋ฌด์์ ์ถ์ถ ์ฐ์ต
- step line chart ๊ณ๋จ ์ฐจํธ
- brick chart ๋ฒฝ๋ ์ฐจํธ
- ์์ธกํ๊ธฐ
- brick chart 2
- ํ์ด์ฐจํธ ์ ๋ฒ์คํธ ๋๋์ฐจํธ
- ์ ์ฃผ ๊ณตํญ ์น๊ฐ์ ์์ธก
- dot violin boxplot
- densitogram
- Common Probability Distributions: The Data Scientistโs Crib Sheet
- ๋ณด์ด์ง ์๋ ์ด์ ์๊ตญ - ๋จ๋ค์ ๋ฐ์ด๋๋ ์๊ฐ์ ์ฐจ์ด(์๋ธ๋ผํจ ๋ฐ๋)
- www.medicine.mcgill.ca/epidemiology/hanley/software
- seeing theory
- practice - ์กฐ๊ฑด๋ถ ํ๋ฅ ๋ฌธ์
- Why Mean Squared Error and L2 regularization? A probabilistic justification
- ๋ฐ์ดํฐ๊ฐ zero mean Gaussian ๋ถํฌ๋ฅผ ๋๋, maximizing probability์ ๊ณผ์ ์์ L2 loss function(MSE)์ด ์ ๋๋ ์ ์์
- ๋ํ L2 regularization๋ ๋์ถ ๊ฐ๋ฅ
- ๋ฐ์ดํฐ๊ฐ ๋ผํ๋ผ์ค ๋ถํฌ๋ฅผ ๋๋๋ L1 loss function ๋ฐ L1 regularization์ ์ป์ ์ ์์
- Why not Mean Squared Error(MSE) as a loss function for Logistic Regression?
- Introduction to Logistic Regression
- L2 Regularization and Batch Norm
- Agreement, Reliability๋ฅผ ๋ณด๋ Krippendorffโs alpha
- ํต๊ณํ์์์ ์ถ์ ๋ฒ
- So You Think You Can Stats
- ํ๊ท , ํ์คํธ์ฐจ, ํ์ค์ ๊ท๋ถํฌ์ ์ดํด์ ํ์ฉ
- ๋ ๋ฆฝ์ฌ๊ฑด (independent event), ์ข ์์ฌ๊ฑด (dependent event), ์กฐ๊ฑด๋ถ ํ๋ฅ (conditional probability), ๊ฒฐํฉ ํ๋ฅ (joint probability)
- ํ๋ฅ ์์๋ ์ง๊ด์ ์กฐ์ฌ ํด์ผ ํฉ๋๋ค. (feat.์ค์ง์ด ๊ฒ์, ๋๋ฐ, ์ฃผ์) - YouTube ๋ ๋ฆฝ์ฌ๊ฑด
- ์ง๋์น๊ฒ ์์ธํ ์๋ฆฌํต๊ณ(์)
- Frequency diagrams: A first look at Bayes
- ํต๊ณ์ ์ฌ์ฉ๋๋ ๊ธฐ์ด ๊ณต์๋ค
- ์๋ฆฌ์ฆ | ๊ธฐ์ด ํ๋ฅ ๋ก - ์ํํ๋ ์๋ฌ์ ๋ฒจ๋ก๊ทธ
- CHOOSING THE CORRECT STATISTICAL TEST IN SAS, STATA, SPSS AND R
- ํ๋ฅ ๋ณ์ ํจ์์ ๋ถํฌ๋ฅผ ์์๋ณด์ - Delta method์ ๋ํ์ฌ (1)
- ํ๋ฅ ๋ณ์์ ํจ๋ฌ๋ฏธํฐ ( feat. ๋ฒ ๋ฅด๋์ด) #10ํต๊ณ - YouTube
- ๐ฑ ์๋น์ํ ๊ต์ฌ๋ ๋ชจ๋ฅด๊ณ ์๋ ํ๋ฅ ๋ณ์! ๐ค
P([X=1])
์ ์๋ฏธ๋ฅผ ์ฐพ์์.. - Propensity Score Matching (PSM) ๊ธฐ๋ฒ ์์ฝ
- ๋ชจ์์ ๋ฐฉ๋ฒ๊ณผ ๋น๋ชจ์์ ๋ฐฉ๋ฒ
- Statistical Rethinking - Lecture 01
- ๋ฐ์ดํฐ์ ํ๋ณธ ํธํฅ(Sample Bias), ๊ทธ๋ฆฌ๊ณ ์์กด ํธํฅ(Survivorship Bias)
- Fair and Balanced? Thoughts on Bias in Probabilistic Modeling
- The 10 Statistical Techniques Data Scientists Need to Master
- Bias-Variance Tradeoff
- 4. Variance Bias Trade Off(๋ถ์ฐ-ํธํฅ์ ๊ด๊ณ)
- ํต์ปจ(ํต๊ณ์ปจ์คํ ) :: ๋ถ์ฐ์ ๊ตฌํ ๋ n์ผ๋ก ์ ๋๋๊ณ ์ (n-1)๋ก ๋๋์ง?
- Predicting NYC Real Estate Prices with Probabilistic Programming
- Degrees of Freedom
- ChoiFran's Analogy (์ตํ๋์ ๋น์ ) ํ๊ตญ์ด ๋ฒ์
- Skewness Formula
- Kurtosis Formula
- practice - ํต๊ณ์ ์ผ๋ก ์ ์๋ฏธํ ์ฐจ์ด vs ํ์ค์ ์ผ๋ก ์ ์๋ฏธํ ์ฐจ์ด
- The 5 Basic Statistics Concepts Data Scientists Need to Know
- ๋ฉ์ง๊ฒ ๋ฐ์ดํฐ ๋ถ์์ ํ๋ ค๊ณ ํ๋๋ฐ ์ด๋ก ์ด ๋ธ๋ฆฐ๋ค
- Understanding Boxplots
- Derivation of the Multivariate Normal Distribution
- Statistical-Inference
- Statistics for people in a hurry
- Statistical Significance Explained
- ์๋น ๊ฐ ๋ค๋ ค์ฃผ๋ ์์ธก๋ชจํ
- Dongjin | Basic Statistics(1)
- Dongjin | Basic Statistics(2)
- "ํ๋ณธ์ ์ ์ด๋ 30๊ฐ"๋ ์ด์ฉ๋ค ๊ตญ๋ฃฐ์ด ๋์๋๊ฐ
- ๋น์ทํ ๋ฏ ๋ค๋ฅธ ๋ชจ์ง๋จ๊ณผ ํ๋ณธ๊ณต๊ฐ! ์ฐจ์ด๊ฐ ๋ญ๊น?๐ง ๋ชจ์ง๋จ vs ํ๋ณธ๊ณต๊ฐ (Feat. CLT)
- ์ฝํธํธ๋ ๋ฌด์์ธ๊ฐ?
- How percentile approximation works (and why it's more useful than averages)
- Linear Regression and Linear Models - YouTube
- Hajime Takeda - Media Mix Modeling:How to Measure the Effectiveness of Advertising - YouTube
- ํต๊ณ, ๊ธฐ๋ณธ ๊ฐ๋ ์ ์ ๋ฆฌํด๋ณด์
- ์ด๋จ ๋ ์ด๋ค ํต๊ณ๋ฅผ ์จ์ผ ํ ๊น?
- ํต๊ณ, t-test์ ๋ํด ์์๋ณด์(R)
- ํต๊ณ, paired t-test์ ๋ํด ์์๋ณด์(R)
- ํต๊ณ, ANOVA์ ๋ํด ์์๋ณด์(R)
- ์ฝ๊ฒ ์ดํดํ๋ ๋ฒ ์ด์ฆ ์ ๋ฆฌ
- ๊ฐ์ฅ ์ฝ๊ฒ ์ดํดํ๋ ๋ฒ ์ด์ฆ ์ ๋ฆฌ(Bayes' Law)
- ๋ฒ ์ด์ง์ธ ํ๋ฅ
- ๋ฒ ์ด์์ ํต๊ณ ์ฒซ๊ฑธ์!
- ๋ฒ ์ด์์ ํต๊ณ ๋์งธ ๊ฑธ์!
- ๋ฒ ์ด์ง์ ์ถ๋ก - 1ํธ
- Intro to Bayes stat ๋ฒ ์ด์ง์ ํต๊ณํ ์ ๋ฌธ์ ๋ฐ ์ ์ฐจ, ๋๊ตฌ ์๊ฐ
- Bayes 101
- Bayesian Statistics explained to Beginners in Simple English
- The Bayesian Trap
- www.countbayesie.com
- The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification
- Bayesโ Theorem, Predictions and Confidence Intervals
- Bayesian truth serum
- Kalman and Bayesian Filters in Python
- Kalman Filter textbook using Ipython Notebook. Focuses on building intuition and experience, not formal proofs. Includes Kalman filters,extended Kalman filters, unscented Kalman filters, particle filters, and more. All exercises include solutions
- Kalman and Bayesian Filters in Python
- How a Kalman filter works, in pictures
- ์นผ๋ง ํํฐ๋ฅผ ์ด์ฉํ์ฌ ์์น์์ ์๋๋ฅผ ๊ตฌํ๋ ์์
- How a Kalman filter works, in pictures
- FilterPy - a Python library that implements a number of Bayesian filters, most notably Kalman filters
- Bayesian Inference : Kalman filter ์์ Optimization ๊น์ง - ๊นํ๋ฐฐ ๋ฐ์ฌ๋
- ๊ณตํ์๋ฅผ ์ํ Python ์ฌ์ฉ๋ฒ 25 - Quaternion์ ์ด์ฉํ ์์ธ ์ถ์ ์นผ๋ง ํํฐ
- Is the Kalman filter a low-pass filter? Sometimes!
- Using naive bayes to predict movie review sentiment
- Continuous Bayes
- A Case Study in Empirical Bayes
- BAYESIAN STATISTICS AS A WAY TO INTEGRATE INTUITION AND DATA
- ๋์ด๋ธ ๋ฒ ์ด์ฆ ๋ถ๋ฅ (Naive Bayesian classification) #1 - ์๊ฐ
- ๋ฒ ์ด์ง์ ๋คํธ์ํฌ
- Think Bayes
- Proper postulates
- Probabilistic Programming and Bayesian Methods for Hackers
- An intro to Bayesian methods and probabilistic programming from a computation/understanding-first, mathematics-second point of view
- BAYESIAN INFERENCE OF A BINOMIAL PROPORTION - THE ANALYTICAL APPROACH
- ์ง๋จ์ง์ฑํ๋ก๊ทธ๋๋ฐ ch6. ๋ฌธ์ ํํฐ๋ง
- An Intuitive Explanation of Bayes' Theorem
- Probabilistic Programming & Bayesian Methods for Hackers
- ๋ฉ๋ฅด์ค ๋ฐ๋ก ์๊ธฐ: ์์ฑ์ผ ๋ ๋ฉ๋ฅด์ค ํ์์ผ ํ๋ฅ ์ ์ผ๋ง๋ ๋ ๊น?
- ๋ฒ ์ด์ง์ธ์ด ๋์~!
- Bayesโ Theorem
- A Tutorial on Learning With Bayesian Networks
- Basic MCMC and Bayesian statistics in... BASIC!
- Bayesian๊ณผ MCMC ์๊ณ ๋ฆฌ์ฆ (Gibbs and Metropolis-Hastings Algorithm)
- Bayesian Financial Models
- Bayesian Cookies
- In praise of Bayes
- A Brief Introduction to Graphical Models and Bayesian Networks
- Bayesian democracy
- The Bayesian Reproducibility Project
- Using Bayes Factors to Get the Most out of Linear Regression: A Practical Guide Using R
- ๋ฒ ์ด์ฆ ์ด๋ก ์ด ํธ๋ฆฌ์ ์ ๋ฆฌ๋ฅผ ๋ง๋ฌ์ ๋
- Naive Bayesian Classification(๋์ด๋ธ ๋ฒ ์ด์ฆ ๋ถ๋ฅ)
- Bayes Theorem and Naive Bayes
- SigOpt for ML: Unsupervised Learning with Even Less Supervision Using Bayesian Optimization
- bayes.js - MCMC and Bayes in the browser
- Human-level concept learning through probabilistic program induction Bayesian Program Learning (BPL) model for one-shot learning
- Bayesian reasoning implicated in some mental disorders
- Bayesian Deep Learning
- Bayesian Machine Learning, Explained
- ์ด๋ป๊ฒ ํ๋ฉด ์ฑ์ฑํ ๋ฐ์ดํฐ๋ฅผ ๋ชจํ์ ๋ฐ๋ก ์ ์ฉํ ์ ์์๊น? โ Bayesian Online Leaning
- Conditional probability explained visually (Bayes Theorem formula)
- Bayesian Machine Learning, Explained
- Machine learning - Bayesian optimization and multi-armed bandits
- How Bayesian inference works
- A visual guide to Bayesian thinking
- Introduction to Bayesian Statistics, part 1: The basic concepts
- Introduction to Bayesian Statistics, part 2: MCMC and the Metropolis Hastings algorithm
- Learning to Love Bayesian Statistics
- Bayesian statistics made (as) simple (as possible)
- Bayesian statistics syllabus
- Bayesian Deep Learning NIPS 2016 Workshop
- bayesian_linear_regression.ipynb
- Introduction to Bayesian Linear Regression
- Bayesian Linear Regression in Python: Using Machine Learning to Predict Student Grades
- ์๋ฎฌ๋ ์ด์ ์ด ๋คํด์ฃผ์ค๊ฑฐ์ผ
- ๋ฒ ์ด์ง์ํต๊ณ
- Stan์ ์ด์ฉํ ๋ฒ ์ด์ง์ ํ๊ท๋ถ์
- Bayesian Deep Learning and Black Box Variational Inference
- The Power and Danger of Bayesโ Theorem
- How To Build a Simple Spam-Detecting Machine Learning Classifier
- Bayesian Statistics Course Overview.ipynb
- Thomas Huijskens - Bayesian optimisation with scikit-learn
- Bayesian Nonparametric Models
- Introduction to Bayesian Thinking: from Bayes theorem to Bayes networks
- Conditional probability explained visually (Bayes' Theorem)
- Statistical Computing for Scientists and Engineers
- Monty Hall & Bayes Thm
- Probability concepts explained
- Underestimating Estimation
- Chapter2: Likelihood-based approach
- Maximum Likelihood, Maximum a Posteriori, and Bayesian Parameter Estimation
- ์ต๋์ฌํํ๋ฅ (Maximum a Posterior)
- StatQuest: Probability vs Likelihood
- Bayesโ Rule Applied - Using Bayesian Inference on a real-world problem
- How Bayesian statistics convinced me to hit the gym
- Naive Bayes Algorithm In Python
- ๋ฒ ์ด์ฆ ์ ๋ฆฌ Bayes' Theorem - rel. ์ ํธ์ ์์
- Bayesโ Theorem: The Holy Grail of Data Science
- ๋ฒ ์ด์์ ํต๊ณ ์ฒซ์งธ๊ฑธ์
- ๋ฒ ์ด์ง์ ์ฌํ ํ์จ ๋ถํฌ(posterior probability distribution) ๋ถ์์ '๋ฐฑ์ ์ ๊น์น ๋ณถ์๋ฐฅ ๊ฐ๋ง์ถ๊ธฐ'์ด๋ค | ์ตํ๋์ ๋น์ - ์ธก์ ํต๊ณ ๋ฐ์ดํฐ ๋ถ์
- Bayes theorem, and making probability intuitive
- False positives/negatives and Bayes rule for COVID-19 testing
- ์คํ ์ฝ๋ฆฌ์ StanKorea ๋ฒ ์ด์ฆ ํต๊ณํ ์๊ฐ Introduction to Bayesian Statistics | ๋ฒ ์ด์ฆ ์ ๋ฆฌ & ๋ฒ ์ด์ฆ ์ถ๋ก | ๋ฒ ์ด์ง์์ด ๋์ด์ผ ํ ์ด์ - YouTube
- How Bayesian statistics works in updating probabilities | by Giovanni Organtini | Jul, 2022 | Towards Data Science
- ๋ฒ ์ด์ง์ธ ๋ฌ๋(Bayesian Learning) - YouTube
- Thomas Wiecki - Solving Real-World Business Problems with Bayesian Modeling | PyData London 2022 - YouTube
- Quan Nguyen - Bayesian Optimization- Fundamentals, Implementation, and Practice | PyData Global 2022 - YouTube
- ๊ธฐ์ด๋ถํฐ ์์ฉ๊น์ง ๋ฌด๋ฃ ํต๊ณํ eBook 19์ + ฮฑ
- ์ธ๊ณผ์ถ๋ก ์ ๋๊ฐ์ง ๋๊ตฌ - The Book of Why
- ๋๋ถ(TheBook): ํ๋ก๊ทธ๋๋จธ๋ฅผ ์ํ ๋ฒ ์ด์ง์ with ํ์ด์ฌ 1~2์ฅ๋ง
- An Adventure in STATISTICS
- An Introduction to Statistical Learning with Applications in R
- github.com/hyunblee/ISLR-with-Python Introduction to Statistical Learning in R (ISLR)์ Python์ผ๋ก
- Bayes Rules! An Introduction to Applied Bayesian Modeling
- Understanding The New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis (Multivariate Applications Series)
- Introduction to the New Statistics: Estimation, Open Science, and Beyond
- An Introduction to Statistical Learning
- Think Stats 2e python + statistics, free download
- Computer Age Statistical Inference: Algorithms, Evidence and Data Science
- naked statistics (์ฑ ์ถ์ฒ) ๋ฒ๊ฑฐ๋ฒ์ ํต๊ณํ | ์ด์ํ IN ๋ฒ ๋ฅผ๋ฆฐ
- Practical Statistics for Data Scientists - Chapter 1 - Exploratory Data Analysis - YouTube
- project mosaic book Computer-savvy textbooks on statistics and data science
- Statistics and Machine Learning in Python
- ๊ฒฝ์ ํต๊ณํ
- ํต๊ณ๊ต์ก์
- pubdata.tistory.com/category/Lecture_Statistics
- Engineering Statistics
- Introduction to Missing data framework for applied statistical model - YouTube
- CS109: Probability for Computer Scientists ๊ฐ์๋ ธํธ, ์ฌ๋ผ์ด๋, ๋ฐ๋ชจ ์ ๊ณต
- stat_rethinking_2022: Statistical Rethinking course winter 2022
- Javascript library for the visualization of statistical distributions
- KOSIS ๊ตญ๊ฐํต๊ณํฌํธ
- Stan is a probabilistic programming language implementing full Bayesian statistical inference
- Understanding Waiting Times Between Events with the Poisson and Exponential Distributions
- Predicting the Frequency of Asteroid Impacts with a Poisson Processes
- ํธ์์ก ๋ถํฌ์ ์์ด๋์ด์ ์ ๋ ๊ณผ์ ์ ๋ํ ๊ตฌ์ฒด์ ์ธ ์๋ฆฌ
- Poisson's Equation is the Most Powerful Tool not yet in your Toolbox
- Probability Cheatsheet
- Probability Cheat Sheet - Harvard University - Data Science Central
- Foundations of probability theory
- Heuristic models for marginal probability assessment updates
- Probability concepts explained: Marginalisation
- Statistics 110: Probability
- Probability.ipynb at main ยท norvig/pytudes
- What is probabilistic programming?
- Anglican - a open source, just-in-time-compiled probabilistic programming language
- An intro to Bayesian methods and probabilistic programming from a computation/understanding-first, mathematics-second point of view
- Probabilistic Programming for Anomaly Detection
- probabilistic graphical models
- Thomas Wiecki: The State of the Art for Probabilistic Programming | PyData Global 2022 - YouTube
- The State of the Art for Probabilistic Programming - YouTube
- Infer.NET - a framework for running Bayesian inference in graphical models. It can also be used for probabilistic programming
- ์๋ ์ ๋ฃ์๋๋ฐ ์คํ์์ค๋ก ๋ฐ๋์๋ค๊ณ ํจ
- pyro.ai Deep Universal Probabilistic Programming
- ๋ฅ๋ฌ๋๊ณผ ๋ฒ ์ด์ง์ ๋ชจ๋ธ๋ง์ ์์ฐ๋ฅด๋ Deep Probablistic Modeling์ ์ํด ๋ง๋ค์๋ค๊ณ ํจ
- Uber AI Labs Open Sources Pyro, a Deep Probabilistic Programming Language
- An intro to Probabilistic Programming with Ubers Pyro
- Financial forecasting with probabilistic programming and Pyro
- How To Implement These 5 Powerful Probability Distributions In Python
- An Introduction to Statistics with Python
- Computational Statistics in Python
- ํต๊ณ์ ์ฌ๊ณ : ํ์ด์ฌ์ ์ด์ฉํ ํ์์ ์๋ฃ ๋ถ์
- Fitting Multivariate Normal Distributions
- ํ์ด์ฌ ํ๋ฅ ๊ณผ ํต๊ณ ๊ธฐ์ด ์ดํดํ๊ธฐ
- Eric J Ma Bayesian Statistical Analysis with Python PyCon 2017
- Christine Waigl The Next Step Finding Model Parameters With Random Walks PyCon 2017
- Python For Sport Scientists: Descriptive Statistics ๊ธฐ์ด ๋ด์ฉ ์ค๋ช
- Statistical Modeling In Python
- ํ๋ฅ ๋ถํฌ ํํ ๋ฆฌ์ผ
- Christopher Fonnesbeck - Introduction to Statistical Modeling with Python - PyCon 2017
- Estimating Probabilities with Bayesian Modeling inย Python
- A Random Walk & Monte Carlo Simulation || Python Tutorial || Learn Python Programming
- Survival Analysis (์์กด๋ถ์) ์ด๋ค ์ฌ๊ฑด์ ๋ฐ์ ํ๋ฅ ์ ์๊ฐ์ด๋ ๋ณ์์ ํจ๊ป ์๊ฐํ๋ ํต๊ณ ๋ถ์ ๋ฐ ์์ธก ๊ธฐ๋ฒ
- Survival Analysis (2/3)
- Bayesian optimization
- 30๋ช ์ด๋ฉด ๋๋ค๊ณ ? ํ์์์ ๋น๋นํ๊ฒ, ์ค๋ฌธ์กฐ์ฌ๋ฅผ ์์๋ณด์
- Statistics Tutorial with Python - YouTube
- Statistics Tutorial 2 Real World Example - YouTube
- Moment Generating Function for Probability Distribution with Python | by Towards AI Team | Towards AIโโโMultidisciplinary Science Journal | Sep, 2020 | Medium
- Computational Survival Analysis - Allen Downey | PyData Global 2021 - YouTube
- Let's Implement Bayesian Ordered Logistic Regression - Marco Edward Gorelli | PyData Global 2021 - YouTube
- Some Attention for Attenuation Bias - Ruben Mak | PyData Global 2021 - YouTube
- bayesianPy
- DRL Monte Carlo Mothods
- ISLR-python
- m2cgen - Transform ML models into a native code (Java, C, Python, Go) with zero dependencies
- pomegranate - a package for graphical models and Bayesian statistics for Python, implemented in cython
- ํ๋ฅ ๋ถํฌ, GMM, HMM, Naive Bayes, Bayes Classifiers, Markov Chains ๋ฑ์ ์ง์
- powerlaw - Toolbox for testing if a probability distribution fits a power law
- PyMC: Bayesian Stochastic Modelling in Python http://pymc-devs.github.com/pymc
- Probabilistic Programming & Bayesian Methods for Hackers
- A/B Testing with Hierarchical Models in Python
- Bayesian Methods for Hackers - Using Python and PyMC
- Torsten Scholak, Diego Maniloff Intro to Bayesian Machine Learning with PyMC3 and Edward
- Christopher Fonnesbeck Probabilistic Programming with PyMC3 PyCon 2017
- Markov Chain Monte Carlo in Python - A Complete Real-World Implementation
- Probabilistic Programming: A Modern Bayesian Workflow || Peadar Coyle
- Hands On Bayesian Statistics with Python, PyMC3 & ArviZ
- Supercharging Decision Making with Bayes - YouTube
- Practicing Python With CSV Files and Extracting Values With "filter" | Real Python Podcast #66 - YouTube
- BAYESIAN A/B TESTING WITH EXPECTED LOSS
- The State of the Art for Probabilistic Programming - Thomas Wiecki | PyData Global 2021 - YouTube
- BayPiggies April 2021: Data Formats and PyMC3 - YouTube
- Probabilistic Python: An Introduction to Bayesian Modeling with PyM || Chris Fonnesbeck - YouTube
- Statistics Using Python Tutorial
- ThinkBayes (IPython notebook included)