forked from dmMaze/PyPatchMatchInpaint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nnf.cpp
298 lines (244 loc) · 12.1 KB
/
nnf.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#include <algorithm>
#include <iostream>
#include <cmath>
#include "masked_image.h"
#include "nnf.h"
/**
* Nearest-Neighbor Field (see PatchMatch algorithm).
* This algorithme uses a version proposed by Xavier Philippeau.
*
*/
template <typename T>
T clamp(T value, T min_value, T max_value) {
return std::min(std::max(value, min_value), max_value);
}
void NearestNeighborField::_randomize_field(int max_retry, bool reset) {
auto this_size = source_size();
for (int i = 0; i < this_size.height; ++i) {
for (int j = 0; j < this_size.width; ++j) {
if (m_source.is_globally_masked(i, j)) continue;
auto this_ptr = mutable_ptr(i, j);
int distance = reset ? PatchDistanceMetric::kDistanceScale : this_ptr[2];
if (distance < PatchDistanceMetric::kDistanceScale) {
continue;
}
int i_target = 0, j_target = 0;
for (int t = 0; t < max_retry; ++t) {
i_target = rand() % this_size.height;
j_target = rand() % this_size.width;
if (m_target.is_globally_masked(i_target, j_target)) continue;
distance = _distance(i, j, i_target, j_target);
if (distance < PatchDistanceMetric::kDistanceScale)
break;
}
this_ptr[0] = i_target, this_ptr[1] = j_target, this_ptr[2] = distance;
}
}
}
void NearestNeighborField::_initialize_field_from(const NearestNeighborField& other, int max_retry) {
const auto& this_size = source_size();
const auto& other_size = other.source_size();
double fi = static_cast<double>(this_size.height) / other_size.height;
double fj = static_cast<double>(this_size.width) / other_size.width;
for (int i = 0; i < this_size.height; ++i) {
for (int j = 0; j < this_size.width; ++j) {
if (m_source.is_globally_masked(i, j)) continue;
int ilow = static_cast<int>(std::min(i / fi, static_cast<double>(other_size.height - 1)));
int jlow = static_cast<int>(std::min(j / fj, static_cast<double>(other_size.width - 1)));
auto this_value = mutable_ptr(i, j);
auto other_value = other.ptr(ilow, jlow);
this_value[0] = static_cast<int>(other_value[0] * fi);
this_value[1] = static_cast<int>(other_value[1] * fj);
this_value[2] = _distance(i, j, this_value[0], this_value[1]);
}
}
_randomize_field(max_retry, false);
}
unsigned long NearestNeighborField::minimize(int nr_pass, bool is_source2target, bool conditional_skip) {
const auto& this_size = source_size();
unsigned long total_distance = 0;
while (nr_pass--) {
for (int i = 0; i < this_size.height; ++i)
for (int j = 0; j < this_size.width; ++j) {
if (m_source.is_globally_masked(i, j)) continue;
bool can_skip = false;
if (conditional_skip)
if (is_source2target)
can_skip = !m_source.is_masked(i, j);
else
can_skip = m_source.is_masked(i, j);
if (can_skip)
continue;
if (at(i, j, 2) > 0){
_minimize_link(i, j, +1);
auto this_ptr = mutable_ptr(i, j);
total_distance += this_ptr[2];
}
}
for (int i = this_size.height - 1; i >= 0; --i)
for (int j = this_size.width - 1; j >= 0; --j) {
if (m_source.is_globally_masked(i, j)) continue;
bool can_skip = false;
if (conditional_skip)
if (is_source2target)
can_skip = !m_source.is_masked(i, j);
else
can_skip = m_source.is_masked(i, j);
if (can_skip)
continue;
if (at(i, j, 2) > 0) {
_minimize_link(i, j, -1);
auto this_ptr = mutable_ptr(i, j);
total_distance += this_ptr[2];
}
}
}
return total_distance;
}
void NearestNeighborField::_minimize_link(int y, int x, int direction) {
const auto& this_size = source_size();
const auto& this_target_size = target_size();
auto this_ptr = mutable_ptr(y, x);
// propagation along the y direction.
if (y - direction >= 0 && y - direction < this_size.height && !m_source.is_globally_masked(y - direction, x)) {
int yp = at(y - direction, x, 0) + direction;
int xp = at(y - direction, x, 1);
int dp = _distance(y, x, yp, xp);
if (dp < at(y, x, 2)) {
this_ptr[0] = yp, this_ptr[1] = xp, this_ptr[2] = dp;
}
}
// propagation along the x direction.
if (x - direction >= 0 && x - direction < this_size.width && !m_source.is_globally_masked(y, x - direction)) {
int yp = at(y, x - direction, 0);
int xp = at(y, x - direction, 1) + direction;
int dp = _distance(y, x, yp, xp);
if (dp < at(y, x, 2)) {
this_ptr[0] = yp, this_ptr[1] = xp, this_ptr[2] = dp;
}
}
// random search with a progressive step size.
int random_scale = (std::min(this_target_size.height, this_target_size.width) - 1) / 2;
while (random_scale > 0) {
int yp = this_ptr[0] + (rand() % (2 * random_scale + 1) - random_scale);
int xp = this_ptr[1] + (rand() % (2 * random_scale + 1) - random_scale);
yp = clamp(yp, 0, target_size().height - 1);
xp = clamp(xp, 0, target_size().width - 1);
if (m_target.is_globally_masked(yp, xp)) {
random_scale /= 2;
}
int dp = _distance(y, x, yp, xp);
if (dp < at(y, x, 2)) {
this_ptr[0] = yp, this_ptr[1] = xp, this_ptr[2] = dp;
}
random_scale /= 2;
}
}
const int PatchDistanceMetric::kDistanceScale = 65535;
const int PatchSSDDistanceMetric::kSSDScale = 9 * 255 * 255;
namespace {
inline int pow2(int i) {
return i * i;
}
int distance_masked_images(
const MaskedImage& source, int ys, int xs,
const MaskedImage& target, int yt, int xt,
int patch_size
) {
long double distance = 0;
long double wsum = 0;
source.compute_image_gradients();
target.compute_image_gradients();
auto source_size = source.size();
auto target_size = target.size();
for (int dy = -patch_size; dy <= patch_size; ++dy) {
const int yys = ys + dy, yyt = yt + dy;
if (yys <= 0 || yys >= source_size.height - 1 || yyt <= 0 || yyt >= target_size.height - 1) {
distance += (long double)(PatchSSDDistanceMetric::kSSDScale) * (2 * patch_size + 1);
wsum += 2 * patch_size + 1;
continue;
}
const auto* p_si = source.image().ptr<unsigned char>(yys, 0);
const auto* p_ti = target.image().ptr<unsigned char>(yyt, 0);
const auto* p_sm = source.mask().ptr<unsigned char>(yys, 0);
const auto* p_tm = target.mask().ptr<unsigned char>(yyt, 0);
const unsigned char* p_sgm = nullptr;
const unsigned char* p_tgm = nullptr;
if (!source.global_mask().empty()) {
p_sgm = source.global_mask().ptr<unsigned char>(yys, 0);
p_tgm = target.global_mask().ptr<unsigned char>(yyt, 0);
}
const auto* p_sgy = source.grady().ptr<unsigned char>(yys, 0);
const auto* p_tgy = target.grady().ptr<unsigned char>(yyt, 0);
const auto* p_sgx = source.gradx().ptr<unsigned char>(yys, 0);
const auto* p_tgx = target.gradx().ptr<unsigned char>(yyt, 0);
for (int dx = -patch_size; dx <= patch_size; ++dx) {
unsigned int xxs = xs + dx, xxt = xt + dx;
wsum += 1;
//std::cerr << xxt << std::endl;
if (xxs <= 0 || xxs >= source_size.width - 1 || xxt <= 0 || xxt >= source_size.width - 1) {
distance += PatchSSDDistanceMetric::kSSDScale;
continue;
}
if (p_sm[xxs] || p_tm[xxt] || (p_sgm && p_sgm[xxs]) || (p_tgm && p_tgm[xxt])) {
distance += PatchSSDDistanceMetric::kSSDScale;
continue;
}
int ssd = 0;
for (int c = 0; c < 3; ++c) {
int s_value = p_si[xxs * 3 + c];
int t_value = p_ti[xxt * 3 + c];
int s_gy = p_sgy[xxs * 3 + c];
int t_gy = p_tgy[xxt * 3 + c];
int s_gx = p_sgx[xxs * 3 + c];
int t_gx = p_tgx[xxt * 3 + c];
ssd += pow2(static_cast<int>(s_value) - t_value);
ssd += pow2(static_cast<int>(s_gx) - t_gx);
ssd += pow2(static_cast<int>(s_gy) - t_gy);
}
distance += ssd;
}
}
distance /= (long double)(PatchSSDDistanceMetric::kSSDScale);
int res = int(PatchDistanceMetric::kDistanceScale * distance / wsum);
if (res < 0 || res > PatchDistanceMetric::kDistanceScale) return PatchDistanceMetric::kDistanceScale;
return res;
}
}
int PatchSSDDistanceMetric::operator ()(const MaskedImage& source, int source_y, int source_x, const MaskedImage& target, int target_y, int target_x) const {
return distance_masked_images(source, source_y, source_x, target, target_y, target_x, m_patch_size);
}
int DebugPatchSSDDistanceMetric::operator ()(const MaskedImage& source, int source_y, int source_x, const MaskedImage& target, int target_y, int target_x) const {
fprintf(stderr, "DebugPatchSSDDistanceMetric: %d %d %d %d\n", source.size().width, source.size().height, m_width, m_height);
return distance_masked_images(source, source_y, source_x, target, target_y, target_x, m_patch_size);
}
int RegularityGuidedPatchDistanceMetricV1::operator ()(const MaskedImage& source, int source_y, int source_x, const MaskedImage& target, int target_y, int target_x) const {
double dx = remainder(double(source_x - target_x) / source.size().width, m_dx1);
double dy = remainder(double(source_y - target_y) / source.size().height, m_dy2);
double score1 = sqrt(dx * dx + dy * dy) / m_scale;
if (score1 < 0 || score1 > 1) score1 = 1;
score1 *= PatchDistanceMetric::kDistanceScale;
double score2 = distance_masked_images(source, source_y, source_x, target, target_y, target_x, m_patch_size);
double score = score1 * m_weight + score2 / (1 + m_weight);
return static_cast<int>(score / (1 + m_weight));
}
int RegularityGuidedPatchDistanceMetricV2::operator ()(const MaskedImage& source, int source_y, int source_x, const MaskedImage& target, int target_y, int target_x) const {
if (target_y < 0 || target_y >= target.size().height || target_x < 0 || target_x >= target.size().width)
return PatchDistanceMetric::kDistanceScale;
int source_scale = m_ijmap.size().height / source.size().height;
int target_scale = m_ijmap.size().height / target.size().height;
// fprintf(stderr, "RegularityGuidedPatchDistanceMetricV2 %d %d %d %d\n", source_y * source_scale, m_ijmap.size().height, source_x * source_scale, m_ijmap.size().width);
double score1 = PatchDistanceMetric::kDistanceScale;
if (!source.is_globally_masked(source_y, source_x) && !target.is_globally_masked(target_y, target_x)) {
auto source_ij = m_ijmap.ptr<float>(source_y * source_scale, source_x * source_scale);
auto target_ij = m_ijmap.ptr<float>(target_y * target_scale, target_x * target_scale);
float di = fabs(source_ij[0] - target_ij[0]); if (di > 0.5) di = 1 - di;
float dj = fabs(source_ij[1] - target_ij[1]); if (dj > 0.5) dj = 1 - dj;
score1 = sqrt(di * di + dj * dj) / 0.707;
if (score1 < 0 || score1 > 1) score1 = 1;
score1 *= PatchDistanceMetric::kDistanceScale;
}
double score2 = distance_masked_images(source, source_y, source_x, target, target_y, target_x, m_patch_size);
double score = score1 * m_weight + score2;
return int(score / (1 + m_weight));
}