forked from ant-research/cvpr2020-plant-pathology
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
173 lines (144 loc) · 5.26 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# @Author: yican
# @Date: 2020-06-14 16:19:48
# @Last Modified by: yican
# @Last Modified time: 2020-06-30 10:11:22
# Standard libraries
import logging
import os
import random
from argparse import ArgumentParser
from logging import Logger
from logging.handlers import TimedRotatingFileHandler
# Third party libraries
import cv2
import numpy as np
import pandas as pd
import torch
IMG_SHAPE = (1365, 2048, 3)
# IMAGE_FOLDER = "/home/public_data_center/kaggle/plant_pathology_2020/images"
IMAGE_FOLDER = "data/images"
NPY_FOLDER = "/home/public_data_center/kaggle/plant_pathology_2020/npys"
LOG_FOLDER = "logs"
def mkdir(path: str):
"""Create directory.
Create directory if it is not exist, else do nothing.
Parameters
----------
path: str
Path of your directory.
Examples
--------
mkdir("data/raw/train/")
"""
try:
if path is None:
pass
else:
os.stat(path)
except Exception:
os.makedirs(path)
def seed_reproducer(seed=2020):
"""Reproducer for pytorch experiment.
Parameters
----------
seed: int, optional (default = 2019)
Radnom seed.
Example
-------
seed_reproducer(seed=2019).
"""
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = True
def init_hparams():
parser = ArgumentParser(add_help=False)
parser.add_argument("-backbone", "--backbone", type=str, default="se_resnext50_32x4d")
parser.add_argument("-tbs", "--train_batch_size", type=int, default=32 * 1)
parser.add_argument("-vbs", "--val_batch_size", type=int, default=16 * 1)
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--image_size", nargs="+", default=[480, 768])
parser.add_argument("--seed", type=int, default=2020)
parser.add_argument("--max_epochs", type=int, default=70)
parser.add_argument("--gpus", nargs="+", default=[0, 1]) # 输入1 2 3
parser.add_argument("--precision", type=int, default=16)
parser.add_argument("--gradient_clip_val", type=float, default=1)
parser.add_argument("--soft_labels_filename", type=str, default="")
parser.add_argument("--log_dir", type=str, default="logs_submit")
try:
hparams = parser.parse_args()
except:
hparams = parser.parse_args([])
print(type(hparams.gpus), hparams.gpus)
if len(hparams.gpus) == 1:
hparams.gpus = [int(hparams.gpus[0])]
else:
hparams.gpus = [int(gpu) for gpu in hparams.gpus]
hparams.image_size = [int(size) for size in hparams.image_size]
return hparams
def load_data(logger, frac=1):
data, test_data = pd.read_csv("data/train.csv"), pd.read_csv("data/sample_submission.csv")
# Do fast experiment
if frac < 1:
logger.info(f"use frac : {frac}")
data = data.sample(frac=frac).reset_index(drop=True)
test_data = test_data.sample(frac=frac).reset_index(drop=True)
return data, test_data
def init_logger(log_name, log_dir=None):
"""日志模块
Reference: https://juejin.im/post/5bc2bd3a5188255c94465d31
日志器初始化
日志模块功能:
1. 日志同时打印到到屏幕和文件
2. 默认保留近一周的日志文件
日志等级:
NOTSET(0)、DEBUG(10)、INFO(20)、WARNING(30)、ERROR(40)、CRITICAL(50)
如果设定等级为10, 则只会打印10以上的信息
Parameters
----------
log_name : str
日志文件名
log_dir : str
日志保存的目录
Returns
-------
RootLogger
Python日志实例
"""
mkdir(log_dir)
# 若多处定义Logger,根据log_name确保日志器的唯一性
if log_name not in Logger.manager.loggerDict:
logging.root.handlers.clear()
logger = logging.getLogger(log_name)
logger.setLevel(logging.DEBUG)
# 定义日志信息格式
datefmt = "%Y-%m-%d %H:%M:%S"
format_str = "[%(asctime)s] %(filename)s[%(lineno)4s] : %(levelname)s %(message)s"
formatter = logging.Formatter(format_str, datefmt)
# 日志等级INFO以上输出到屏幕
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
if log_dir is not None:
# 日志等级INFO以上输出到{log_name}.log文件
file_info_handler = TimedRotatingFileHandler(
filename=os.path.join(log_dir, "%s.log" % log_name), when="D", backupCount=7
)
file_info_handler.setFormatter(formatter)
file_info_handler.setLevel(logging.INFO)
logger.addHandler(file_info_handler)
logger = logging.getLogger(log_name)
return logger
def read_image(image_path):
""" 读取图像数据,并转换为RGB格式
32.2 ms ± 2.34 ms -> self
48.7 ms ± 2.24 ms -> plt.imread(image_path)
"""
return cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)