forked from julianser/rnn-lm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
238 lines (181 loc) · 8.03 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#!/usr/bin/env python
from data_iterator import *
from state import *
from recurrent_lm import *
from utils import *
import time
import traceback
import os.path
import sys
import argparse
import cPickle
import logging
import pprint
import numpy
import collections
import signal
class Unbuffered:
def __init__(self, stream):
self.stream = stream
def write(self, data):
self.stream.write(data)
self.stream.flush()
def __getattr__(self, attr):
return getattr(self.stream, attr)
sys.stdout = Unbuffered(sys.stdout)
logger = logging.getLogger(__name__)
### Unique RUN_ID for this execution
RUN_ID = str(time.time())
timings = {}
timings["train_cost"] = []
timings["valid_cost"] = []
###
def save(model):
print "Saving the model..."
# ignore keyboard interrupt while saving
start = time.time()
s = signal.signal(signal.SIGINT, signal.SIG_IGN)
model.save(model.state['save_dir'] + '/' + RUN_ID + "_" + model.state['prefix'] + 'model.npz')
cPickle.dump(model.state, open(model.state['save_dir'] + '/' + RUN_ID + "_" + model.state['prefix'] + 'state.pkl', 'w'))
numpy.savez(model.state['save_dir'] + '/' + RUN_ID + "_" + model.state['prefix'] + 'timing.npz', **timings)
signal.signal(signal.SIGINT, s)
print "Model saved, took {}".format(time.time() - start)
def load(model, filename):
print "Loading the model..."
# ignore keyboard interrupt while saving
start = time.time()
s = signal.signal(signal.SIGINT, signal.SIG_IGN)
model.load(filename)
signal.signal(signal.SIGINT, s)
print "Model loaded, took {}".format(time.time() - start)
def main(args):
global timings
state = eval(args.prototype)()
logging.basicConfig(level=getattr(logging, state['level']), \
format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")
state['model_id'] = RUN_ID
state['prefix'] = "lm_" + state['prefix']
if args.resume != "":
logger.debug("Resuming %s" % args.resume)
state_file = args.resume + '_state.pkl'
timings_file = args.resume + '_timing.npz'
if os.path.isfile(state_file):
logger.debug("Loading previous state")
state = cPickle.load(open(state_file, 'r'))
timings = dict(numpy.load(open(timings_file, 'r')))
timings['train_cost'] = list(timings['train_cost'])
timings['valid_cost'] = list(timings['valid_cost'])
else:
raise Exception("Cannot resume, cannot find files!")
logger.debug("State:\n{}".format(pprint.pformat(state)))
logger.debug("Timings:\n{}".format(pprint.pformat(timings)))
logger.debug("Compile trainer")
logger.debug(str(timings))
if args.force_train_all_wordemb == True:
state['fix_pretrained_word_embeddings'] = False
rng = numpy.random.RandomState(state['seed'])
model = RecurrentLM(rng, state)
train_batch = model.build_train_function()
eval_batch = model.build_eval_function()
sample = model.build_sampling_function()
if args.resume != "":
filename = args.resume + '_model.npz'
if os.path.isfile(filename):
logger.debug("Loading previous model")
load(model, filename)
logger.debug("Load data")
train_data, \
valid_data = get_batch_iterator(rng, state)
train_data.start()
# Start looping through the dataset
step = 0
patience = state['patience']
start_time = time.time()
old_valid_cost = 1e21
train_cost = 0
train_done = 0
ex_done = 0
while (step < state['loopIters'] and
(time.time() - start_time)/60. < state['timeStop'] and
patience >= 0):
# Sample stuff
if step % 200 == 0:
for param in model.params:
print "%s = %.4f" % (param.name, numpy.sum(param.get_value() ** 2) ** 0.5)
samples, log_probs = sample(1, 40)
print "Sampled : {}".format(model.indices_to_words(numpy.ravel(samples)))
# Training phase
batch = train_data.next()
# Train finished
if not batch:
# Restart training
logger.debug("Got None...")
break
logger.debug("[TRAIN] - Got batch %d,%d" % (batch['x'].shape[1], batch['max_length']))
x_data = batch['x']
x_cost_mask = batch['x_mask']
max_length = batch['max_length']
c = train_batch(x_data, max_length, x_cost_mask)
if numpy.isinf(c) or numpy.isnan(c):
logger.warn("Got NaN cost .. skipping")
continue
train_cost += c
train_done += batch['num_preds']
this_time = time.time()
if step % state['trainFreq'] == 0:
elapsed = this_time - start_time
h, m, s = ConvertTimedelta(this_time - start_time)
print ".. %.2d:%.2d:%.2d %4d mb # %d bs %d maxl %d acc_cost = %.4f" % (h, m, s,\
state['timeStop'] - (time.time() - start_time)/60.,\
step, \
batch['x'].shape[1], \
batch['max_length'], \
float(train_cost/train_done))
if valid_data is not None and\
step % state['validFreq'] == 0 and\
step > 1:
valid_data.start()
valid_cost = 0
valid_done = 0
logger.debug("[VALIDATION START]")
while True:
batch = valid_data.next()
# Train finished
if not batch:
break
logger.debug("[VALID] - Got batch %d,%d" % (batch['x'].shape[1], batch['max_length']))
x_data = batch['x']
x_cost_mask = batch['x_mask']
max_length = batch['max_length']
pc, _ = eval_batch(x_data, max_length, x_cost_mask)
if numpy.isinf(pc) or numpy.isnan(pc):
continue
valid_cost += pc
valid_done += batch['num_preds']
logger.debug("[VALIDATION END]")
valid_cost /= valid_done
if valid_cost >= old_valid_cost * state['cost_threshold']:
patience -= 1
elif valid_cost < old_valid_cost:
patience = state['patience']
old_valid_cost = valid_cost
# Saving model if decrease in validation cost
save(model)
print "** validation error = %.4f, patience = %d" % (float(valid_cost), patience)
timings["train_cost"].append(train_cost/train_done)
timings["valid_cost"].append(valid_cost)
# Reset train cost and train done
train_cost = 0
train_done = 0
step += 1
logger.debug("All done, exiting...")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--resume", type=str, default="", help="Resume training from that state")
parser.add_argument("--force_train_all_wordemb", action='store_true', help="If true, will force the model to train all word embeddings in the incoming (encoder) connection. This switch can be used to fine-tune a model which was trained with fixed (pretrained) word embeddings.")
parser.add_argument("--prototype", type=str, help="Use the prototype", default='prototype_web')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)