forked from julianser/rnn-lm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
recurrent_lm.py
443 lines (350 loc) · 18.3 KB
/
recurrent_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
"""
General class for a recurrent language model
"""
__docformat__ = 'restructedtext en'
__authors__ = ("Alessandro Sordoni, Iulian Vlad Serban")
__contact__ = "Alessandro Sordoni <[email protected]>"
import theano
import theano.tensor as T
import numpy as np
import cPickle
import logging
import operator
logger = logging.getLogger(__name__)
from theano.sandbox.rng_mrg import MRG_RandomStreams
from theano.tensor.shared_randomstreams import RandomStreams
from collections import OrderedDict
from model import *
from utils import *
# Theano speed-up
theano.config.scan.allow_gc = False
#
def add_to_params(params, new_param):
params.append(new_param)
return new_param
class ComponentBase():
def __init__(self, state, rng, parent):
patience = state['patience']
self.rng = rng
self.trng = MRG_RandomStreams(max(self.rng.randint(2 ** 15), 1))
self.parent = parent
self.state = state
self.__dict__.update(state)
self.rec_activation = eval(self.rec_activation)
self.params = []
class LanguageModel(ComponentBase):
TRAINING = 0
EVALUATION = 1
SAMPLING = 2
BEAM_SEARCH = 3
def init_params(self):
###################
# RECURRENT WEIGHTS
###################
# Build word embeddings, which are shared throughout the model
if self.initialize_from_pretrained_word_embeddings:
# Load pretrained word embeddings from pickled file
logger.debug("Loading pretrained word embeddings")
pretrained_embeddings = cPickle.load(open(self.pretrained_word_embeddings_file, 'r'))
# Check all dimensions match from the pretrained embeddings
print 'pretrained_embeddings[0].shape', pretrained_embeddings[0].shape
assert(self.idim == pretrained_embeddings[0].shape[0])
assert(self.rankdim == pretrained_embeddings[0].shape[1])
assert(self.idim == pretrained_embeddings[1].shape[0])
assert(self.rankdim == pretrained_embeddings[1].shape[1])
self.W_emb_pretrained_mask = theano.shared(pretrained_embeddings[1].astype(numpy.float32), name='W_emb_mask')
self.W_emb = add_to_params(self.params, theano.shared(value=pretrained_embeddings[0].astype(numpy.float32), name='W_emb'))
else:
# Initialize word embeddings randomly
self.W_emb = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.idim, self.rankdim), name='W_emb'))
self.W_in = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.rankdim, self.qdim), name='W_in'))
self.W_hh = add_to_params(self.params, theano.shared(value=OrthogonalInit(self.rng, self.qdim, self.qdim), name='W_hh'))
self.b_hh = add_to_params(self.params, theano.shared(value=np.zeros((self.qdim,), dtype='float32'), name='b_hh'))
if self.step_type == "gated":
self.b_r = add_to_params(self.params, theano.shared(value=np.zeros((self.qdim,), dtype='float32'), name='b_r'))
self.b_z = add_to_params(self.params, theano.shared(value=np.zeros((self.qdim,), dtype='float32'), name='b_z'))
self.W_in_r = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.rankdim, self.qdim), name='W_in_r'))
self.W_in_z = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.rankdim, self.qdim), name='W_in_z'))
self.W_hh_r = add_to_params(self.params, theano.shared(value=OrthogonalInit(self.rng, self.qdim, self.qdim), name='W_hh_r'))
self.W_hh_z = add_to_params(self.params, theano.shared(value=OrthogonalInit(self.rng, self.qdim, self.qdim), name='W_hh_z'))
self.bd_out = add_to_params(self.params, theano.shared(value=np.zeros((self.idim,), dtype='float32'), name='bd_out'))
self.Wd_emb = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.idim, self.rankdim), name='Wd_emb'))
######################
# Output layer weights
######################
out_target_dim = self.qdim
if not self.maxout_out:
out_target_dim = self.rankdim
self.Wd_out = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.qdim, out_target_dim), name='Wd_out'))
# Set up deep output
if self.deep_out:
self.Wd_e_out = add_to_params(self.params, theano.shared(value=NormalInit(self.rng, self.rankdim, out_target_dim), name='Wd_e_out'))
self.bd_e_out = add_to_params(self.params, theano.shared(value=np.zeros((out_target_dim,), dtype='float32'), name='bd_e_out'))
def plain_step(self, x_t, h_tm1):
#### Handle the bias from the document
h_t = T.dot(x_t, self.W_in) + T.dot(h_tm1, self.W_hh) + self.b_hh
h_t = self.rec_activation(h_t)
return h_t
def gated_step(self, x_t, h_tm1):
r_t = T.nnet.sigmoid(T.dot(x_t, self.W_in_r) + T.dot(h_tm1, self.W_hh_r) + self.b_r)
z_t = T.nnet.sigmoid(T.dot(x_t, self.W_in_z) + T.dot(h_tm1, self.W_hh_z) + self.b_z)
h_tilde = T.dot(x_t, self.W_in) + T.dot(r_t * h_tm1, self.W_hh) + self.b_hh
h_tilde = self.rec_activation(h_tilde)
h_t = (np.float32(1.0) - z_t) * h_tm1 + z_t * h_tilde
return h_t, r_t, z_t, h_tilde
def approx_embedder(self, x):
return self.W_emb[x]
def build_lm(self, x, y=None, mode=TRAINING, prev_h=None, step_num=None):
"""
x is the input sequence
y are the targets
mode is the evaluation or sampling mode
prev_h is used in the sampling mode
step_num is the step number of decoding
"""
one_step = False
# Check parameter consistency
if mode == LanguageModel.EVALUATION or mode == LanguageModel.TRAINING:
assert y
else:
assert not y
assert prev_h
one_step = True
# if x.ndim == 2 then
# x = (n_steps, batch_size)
if x.ndim == 2:
batch_size = x.shape[1]
# else x = (word_1, word_2, word_3, ...)
# or x = (last_word_1, last_word_2, last_word_3, ..)
# in this case batch_size is
else:
batch_size = 1
if not prev_h:
prev_h = T.alloc(np.float32(0.), batch_size, self.qdim)
xe = self.approx_embedder(x)
# Gated Encoder
if self.step_type == "gated":
f_enc = self.gated_step
o_enc_info = [prev_h, None, None, None]
else:
f_enc = self.plain_step
o_enc_info = [prev_h]
# Run through all the sentence (encode everything)
if not one_step:
_res, _ = theano.scan(f_enc,
sequences=[xe],\
outputs_info=o_enc_info)
# Make just one step further
else:
_res = f_enc(xe, prev_h)
h = _res[0]
# Store last h for further use
pre_activ = self.output_layer(h, xe)
# EVALUATION : Return target_probs
# target_probs.ndim == 3
outputs = self.output_softmax(pre_activ)
if mode == LanguageModel.EVALUATION:
target_probs = GrabProbs(outputs, y)
return target_probs, h, outputs
# BEAM_SEARCH : Return output (the softmax layer) + the new hidden states
elif mode == LanguageModel.BEAM_SEARCH:
return outputs, h
# SAMPLING : Return a vector of n_sample from the output layer
# + log probabilities + the new hidden states
elif mode == LanguageModel.SAMPLING:
if outputs.ndim == 1:
outputs = outputs.dimshuffle('x', 0)
sample = self.trng.multinomial(pvals=outputs, dtype='int64').argmax(axis=-1)
if outputs.ndim == 1:
sample = sample[0]
log_prob = -T.log(T.diag(outputs.T[sample]))
return sample, log_prob, h
def output_layer(self, h, x):
pre_activ = T.dot(h, self.Wd_out)
if self.deep_out:
pre_activ += T.dot(x, self.Wd_e_out) + self.bd_e_out
if self.maxout_out:
pre_activ = Maxout(2)(pre_activ)
return pre_activ
def output_softmax(self, pre_activ):
# returns a (timestep, bs, idim) matrix (huge)
return SoftMax(T.dot(pre_activ, self.Wd_emb.T) + self.bd_out)
def build_next_probs_predictor(self, x, prev_h, d=None):
return self.build_lm(x, d, mode=LanguageModel.BEAM_SEARCH, prev_h=prev_h)
def sampling_step(self, *args):
args = iter(args)
# Arguments that correspond to scan's "sequences" parameteter:
step_num = next(args)
assert step_num.ndim == 0
# Arguments that correspond to scan's "outputs" parameteter:
prev_word = next(args)
assert prev_word.ndim == 1
# skip the previous word log probability
log_prob = next(args)
assert log_prob.ndim == 1
prev_h = next(args)
assert prev_h.ndim == 2
# When we sample we shall recompute the lm for one step...
sample, log_prob, h = self.build_lm(prev_word, prev_h=prev_h, step_num=step_num, mode=LanguageModel.SAMPLING)
assert sample.ndim == 1
assert log_prob.ndim == 1
assert h.ndim == 2
return [sample, log_prob, h]
def build_sampler(self, n_samples, n_steps):
# For the naive sampler, the states are:
# 1) a vector [<s>] * n_samples to seed the sampling
# 2) a vector of [ 0. ] * n_samples for the log_probs
# 3) prev_h hidden layers
# TODO: This does not support the document bias
states = [T.alloc(np.int64(self.sos_sym), n_samples),
T.alloc(np.float32(0.), n_samples),
T.alloc(np.float32(0.), n_samples, self.qdim)]
outputs, updates = theano.scan(self.sampling_step,
outputs_info=states,
sequences=[T.arange(n_steps, dtype='int64')],
n_steps=n_steps,
name="sampler_scan")
# Return sample, log_probs and updates (for tnrg multinomial)
return (outputs[0], outputs[1]), updates
####
def __init__(self, state, rng, parent):
ComponentBase.__init__(self, state, rng, parent)
self.init_params()
class RecurrentLM(Model):
def indices_to_words(self, seq, stop_at_eos = True):
sen = []
for k in range(len(seq)):
sen.append(self.idx_to_str[seq[k]])
if (seq[k] == self.eos_sym) and stop_at_eos:
break
return ' '.join(sen)
def words_to_indices(self, seq):
sen = []
for k in range(len(seq)):
sen.append(self.str_to_idx.get(seq[k], self.unk_sym))
return sen
def compute_updates(self, training_cost, params):
updates = {}
grads = T.grad(training_cost, params)
grads = OrderedDict(zip(params, grads))
# Clip stuff
c = numpy.float32(self.cutoff)
clip_grads = []
norm_gs = T.sqrt(sum(T.sum(g ** 2) for p, g in grads.items()))
normalization = T.switch(T.ge(norm_gs, c), c / norm_gs, np.float32(1.))
notfinite = T.or_(T.isnan(norm_gs), T.isinf(norm_gs))
for p, g in grads.items():
clip_grads.append((p, T.switch(notfinite, numpy.float32(.1) * p, g * normalization)))
grads = OrderedDict(clip_grads)
if self.initialize_from_pretrained_word_embeddings and self.fix_pretrained_word_embeddings:
# Keep pretrained word embeddings fixed
logger.debug("Will use mask to fix pretrained word embeddings")
grads[self.language_model.W_emb] = grads[self.language_model.W_emb] * self.language_model.W_emb_pretrained_mask
else:
logger.debug("Will train all word embeddings")
if self.updater == 'adagrad':
updates = Adagrad(grads, self.lr)
elif self.updater == 'sgd':
raise Exception("Sgd not implemented!")
elif self.updater == 'adadelta':
updates = Adadelta(grads)
elif self.updater == 'rmsprop':
updates = RMSProp(grads, self.lr)
elif self.updater == 'adam':
updates = Adam(grads)
else:
raise Exception("Updater not understood!")
return updates
def build_train_function(self):
if not hasattr(self, 'train_fn'):
# Compile functions
logger.debug("Building train function")
model_updates = self.compute_updates(self.softmax_cost_acc / self.x_data.shape[1], self.params)
self.train_fn = theano.function(inputs=[self.x_data, self.x_max_length, self.x_cost_mask],
outputs=self.softmax_cost_acc, updates=model_updates, name="train_fn")
return self.train_fn
def build_eval_function(self):
if not hasattr(self, 'eval_fn'):
# Compile functions
logger.debug("Building evaluation function")
self.eval_fn = theano.function(inputs=[self.x_data, self.x_max_length, self.x_cost_mask],
outputs=[self.softmax_cost_acc, self.softmax_cost], name="eval_fn")
return self.eval_fn
def build_eval_misclassification_function(self):
if not hasattr(self, 'eval_misclass_fn'):
# Compile functions
logger.debug("Building misclassification evaluation function")
self.eval_misclass_fn = theano.function(inputs=[self.x_data, self.x_max_length, self.x_cost_mask],
outputs=[self.prediction_misclassification_acc, self.prediction_misclassification], name="eval_misclass_fn",
on_unused_input='ignore')
return self.eval_misclass_fn
def build_sampling_function(self):
if not hasattr(self, 'sample_fn'):
logger.debug("Building sampling function")
self.sample_fn = theano.function(inputs=[self.n_samples, self.n_steps], outputs=[self.sample, self.sample_log_prob], \
updates=self.sampling_updates, name="sample_fn")
return self.sample_fn
def build_next_probs_function(self):
if not hasattr(self, 'next_probs_fn'):
outputs, h = self.language_model.build_next_probs_predictor(self.beam_source, prev_h=self.beam_h)
self.next_probs_fn = theano.function(inputs=[self.beam_h, self.beam_source],
outputs=[outputs, h],
name="next_probs_fn")
return self.next_probs_fn
def build_encoder_function(self):
if not hasattr(self, 'encoder_fn'):
_, h, _ = self.language_model.build_lm(self.training_x, y=self.training_y, mode=LanguageModel.EVALUATION, prev_h=self.beam_h)
self.encoder_fn = theano.function(inputs=[self.x_data, self.x_max_length, self.beam_h], outputs=h, \
on_unused_input='warn', name="encoder_fn")
return self.encoder_fn
def __init__(self, rng, state):
Model.__init__(self)
# Compatibility towards older models
if not 'initialize_from_pretrained_word_embeddings' in state:
state['initialize_from_pretrained_word_embeddings'] = False
self.state = state
self.__dict__.update(state)
self.rng = rng
# Load dictionary
raw_dict = cPickle.load(open(self.dictionary, 'r'))
# Probabilities for each term in the corpus
self.str_to_idx = dict([(tok, tok_id) for tok, tok_id, _ in raw_dict])
self.idx_to_str = dict([(tok_id, tok) for tok, tok_id, freq in raw_dict])
# if '<s>' not in self.str_to_idx \
# or '</s>' not in self.str_to_idx:
# raise Exception("Error, malformed dictionary!")
# Number of words in the dictionary
self.idim = len(self.str_to_idx)
self.state['idim'] = self.idim
logger.debug("Initializing language model")
self.language_model = LanguageModel(self.state, self.rng, self)
# Init params
self.params = self.language_model.params
self.x_data = T.imatrix('x_data')
self.x_cost_mask = T.matrix('cost_mask')
self.x_max_length = T.iscalar('x_max_length')
# The training is done with a trick. We append a special </q> at the beginning of the session
# so that we can predict also the first query in the session starting from the session beginning token (</q>).
self.aug_x_data = T.concatenate([T.alloc(np.int32(self.eos_sym), 1, self.x_data.shape[1]), self.x_data])
self.training_x = self.aug_x_data[:self.x_max_length]
self.training_y = self.aug_x_data[1:self.x_max_length+1]
self.training_x_cost_mask = self.x_cost_mask[:self.x_max_length].flatten()
target_probs, self.eval_h, target_probs_full_matrix = self.language_model.build_lm(self.training_x,
y=self.training_y,
mode=LanguageModel.EVALUATION)
# Prediction cost
#self.prediction_cost = T.sum(-T.log(target_probs) * self.training_x_cost_mask)
self.softmax_cost = -T.log(target_probs) * self.training_x_cost_mask
self.softmax_cost_acc = T.sum(self.softmax_cost)
# Prediction accuracy
self.prediction_misclassification = T.neq(T.argmax(target_probs_full_matrix, axis=2), self.training_y).flatten() * self.training_x_cost_mask
self.prediction_misclassification_acc = T.sum(self.prediction_misclassification)
# Sampling variables
self.n_samples = T.iscalar("n_samples")
self.n_steps = T.iscalar("n_steps")
(self.sample, self.sample_log_prob), self.sampling_updates \
= self.language_model.build_sampler(self.n_samples, self.n_steps)
# Beam-search variables
self.beam_source = T.lvector("beam_source")
self.beam_h = T.matrix("beam_h")
self.beam_step_num = T.lscalar("beam_step_num")