forked from j-min/reinforcement-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn.py
executable file
·418 lines (340 loc) · 16.1 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import gym
import itertools
import numpy as np
import os
import random
import sys
import tensorflow as tf
if "../" not in sys.path:
sys.path.append("../")
from lib import plotting
from collections import deque, namedtuple
env = gym.envs.make("Breakout-v0")
# Atari Actions: 0 (noop), 1 (fire), 2 (left) and 3 (right) are valid actions
VALID_ACTIONS = [0, 1, 2, 3]
class StateProcessor():
"""
Processes a raw Atari iamges. Resizes it and converts it to grayscale.
"""
def __init__(self):
# Build the Tensorflow graph
with tf.variable_scope("state_processor"):
self.input_state = tf.placeholder(shape=[210, 160, 3], dtype=tf.uint8)
self.output = tf.image.rgb_to_grayscale(self.input_state)
self.output = tf.image.crop_to_bounding_box(self.output, 34, 0, 160, 160)
self.output = tf.image.resize_images(
self.output, 84, 84, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
self.output = tf.squeeze(self.output)
def process(self, sess, state):
"""
Args:
sess: A Tensorflow session object
state: A [210, 160, 3] Atari RGB State
Returns:
A processed [84, 84, 1] state representing grayscale values.
"""
return sess.run(self.output, { self.input_state: state })
class Estimator():
"""Q-Value Estimator neural network.
This network is used for both the Q-Network and the Target Network.
"""
def __init__(self, scope="estimator", summaries_dir=None):
self.scope = scope
# Writes Tensorboard summaries to disk
self.summary_writer = None
with tf.variable_scope(scope):
# Build the graph
self._build_model()
if summaries_dir:
summary_dir = os.path.join(summaries_dir, "summaries_{}".format(scope))
if not os.path.exists(summary_dir):
os.makedirs(summary_dir)
self.summary_writer = tf.train.SummaryWriter(summary_dir)
def _build_model(self):
"""
Builds the Tensorflow graph.
"""
# Placeholders for our input
# Our input are 4 RGB frames of shape 160, 160 each
self.X_pl = tf.placeholder(shape=[None, 84, 84, 4], dtype=tf.uint8, name="X")
# The TD target value
self.y_pl = tf.placeholder(shape=[None], dtype=tf.float32, name="y")
# Integer id of which action was selected
self.actions_pl = tf.placeholder(shape=[None], dtype=tf.int32, name="actions")
X = tf.to_float(self.X_pl) / 255.0
batch_size = tf.shape(self.X_pl)[0]
# Three convolutional layers
conv1 = tf.contrib.layers.conv2d(
X, 32, 8, 4, activation_fn=tf.nn.relu)
conv2 = tf.contrib.layers.conv2d(
conv1, 64, 4, 2, activation_fn=tf.nn.relu)
conv3 = tf.contrib.layers.conv2d(
conv2, 64, 3, 1, activation_fn=tf.nn.relu)
# Fully connected layers
flattened = tf.contrib.layers.flatten(conv3)
fc1 = tf.contrib.layers.fully_connected(flattened, 512)
self.predictions = tf.contrib.layers.fully_connected(fc1, len(VALID_ACTIONS))
# Get the predictions for the chosen actions only
gather_indices = tf.range(batch_size) * tf.shape(self.predictions)[1] + self.actions_pl
self.action_predictions = tf.gather(tf.reshape(self.predictions, [-1]), gather_indices)
# Calcualte the loss
self.losses = tf.squared_difference(self.y_pl, self.action_predictions)
self.loss = tf.reduce_mean(self.losses)
# Optimizer Parameters from original paper
self.optimizer = tf.train.RMSPropOptimizer(0.00025, 0.99, 0.0, 1e-6)
self.train_op = self.optimizer.minimize(self.loss, global_step=tf.contrib.framework.get_global_step())
# Summaries for Tensorboard
self.summaries = tf.merge_summary([
tf.scalar_summary("loss", self.loss),
tf.histogram_summary("loss_hist", self.losses),
tf.histogram_summary("q_values_hist", self.predictions),
tf.scalar_summary("max_q_value", tf.reduce_max(self.predictions))
])
def predict(self, sess, s):
"""
Predicts action values.
Args:
sess: Tensorflow session
s: State input of shape [batch_size, 4, 160, 160, 3]
Returns:
Tensor of shape [batch_size, NUM_VALID_ACTIONS] containing the estimated
action values.
"""
return sess.run(self.predictions, { self.X_pl: s })
def update(self, sess, s, a, y):
"""
Updates the estimator towards the given targets.
Args:
sess: Tensorflow session object
s: State input of shape [batch_size, 4, 160, 160, 3]
a: Chosen actions of shape [batch_size]
y: Targets of shape [batch_size]
Returns:
The calculated loss on the batch.
"""
feed_dict = { self.X_pl: s, self.y_pl: y, self.actions_pl: a }
summaries, global_step, _, loss = sess.run(
[self.summaries, tf.contrib.framework.get_global_step(), self.train_op, self.loss],
feed_dict)
if self.summary_writer:
self.summary_writer.add_summary(summaries, global_step)
return loss
def copy_model_parameters(sess, estimator1, estimator2):
"""
Copies the model parameters of one estimator to another.
Args:
sess: Tensorflow session instance
estimator1: Estimator to copy the paramters from
estimator2: Estimator to copy the parameters to
"""
e1_params = [t for t in tf.trainable_variables() if t.name.startswith(estimator1.scope)]
e1_params = sorted(e1_params, key=lambda v: v.name)
e2_params = [t for t in tf.trainable_variables() if t.name.startswith(estimator2.scope)]
e2_params = sorted(e2_params, key=lambda v: v.name)
update_ops = []
for e1_v, e2_v in zip(e1_params, e2_params):
op = e2_v.assign(e1_v)
update_ops.append(op)
sess.run(update_ops)
def make_epsilon_greedy_policy(estimator, nA):
"""
Creates an epsilon-greedy policy based on a given Q-function approximator and epsilon.
Args:
estimator: An estimator that returns q values for a given state
nA: Number of actions in the environment.
Returns:
A function that takes the (sess, observation, epsilon) as an argument and returns
the probabilities for each action in the form of a numpy array of length nA.
"""
def policy_fn(sess, observation, epsilon):
A = np.ones(nA, dtype=float) * epsilon / nA
q_values = estimator.predict(sess, np.expand_dims(observation, 0))[0]
best_action = np.argmax(q_values)
A[best_action] += (1.0 - epsilon)
return A
return policy_fn
def deep_q_learning(sess,
env,
q_estimator,
target_estimator,
state_processor,
num_episodes,
experiment_dir,
replay_memory_size=500000,
replay_memory_init_size=50000,
update_target_estimator_every=10000,
discount_factor=0.99,
epsilon_start=1.0,
epsilon_end=0.1,
epsilon_decay_steps=500000,
batch_size=32,
record_video_every=50):
"""
Q-Learning algorithm for fff-policy TD control using Function Approximation.
Finds the optimal greedy policy while following an epsilon-greedy policy.
Args:
sess: Tensorflow Session object
env: OpenAI environment
q_estimator: Estimator object used for the q values
target_estimator: Estimator object used for the targets
state_processor: A StateProcessor object
num_episodes: Number of episodes to run for
experiment_dir: Directory to save Tensorflow summaries in
replay_memory_size: Size of the replay memory
replay_memory_init_size: Number of random experiences to sampel when initializing
the reply memory.
update_target_estimator_every: Copy parameters from the Q estimator to the
target estimator every N steps
discount_factor: Lambda time discount factor
epsilon_start: Chance to sample a random action when taking an action.
Epsilon is decayed over time and this is the start value
epsilon_end: The final minimum value of epsilon after decaying is done
epsilon_decay_steps: Number of steps to decay epsilon over
batch_size: Size of batches to sample from the replay memory
record_video_every: Record a video every N episodes
Returns:
An EpisodeStats object with two numpy arrays for episode_lengths and episode_rewards.
"""
Transition = namedtuple("Transition", ["state", "action", "reward", "next_state", "done"])
# The replay memory
replay_memory = []
# Keeps track of useful statistics
stats = plotting.EpisodeStats(
episode_lengths=np.zeros(num_episodes),
episode_rewards=np.zeros(num_episodes))
# Create directories for checkpoints and summaries
checkpoint_dir = os.path.join(experiment_dir, "checkpoints")
checkpoint_path = os.path.join(checkpoint_dir, "model")
monitor_path = os.path.join(experiment_dir, "monitor")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
if not os.path.exists(monitor_path):
os.makedirs(monitor_path)
saver = tf.train.Saver()
# Load a previous checkpoint if we find one
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
if latest_checkpoint:
print("Loading model checkpoint {}...\n".format(latest_checkpoint))
saver.restore(sess, latest_checkpoint)
total_t = sess.run(tf.contrib.framework.get_global_step())
# The epsilon decay schedule
epsilons = np.linspace(epsilon_start, epsilon_end, epsilon_decay_steps)
# The policy we're following
policy = make_epsilon_greedy_policy(
q_estimator,
len(VALID_ACTIONS))
# Populate the replay memory with initial experience
print("Populating replay memory...")
state = env.reset()
state = state_processor.process(sess, state)
state = np.stack([state] * 4, axis=2)
for i in range(replay_memory_init_size):
action_probs = policy(sess, state, epsilons[total_t])
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
next_state, reward, done, _ = env.step(VALID_ACTIONS[action])
next_state = state_processor.process(sess, next_state)
next_state = np.append(state[:,:,1:], np.expand_dims(next_state, 2), axis=2)
replay_memory.append(Transition(state, action, reward, next_state, done))
if done:
state = env.reset()
state = state_processor.process(sess, state)
state = np.stack([state] * 4, axis=2)
else:
state = next_state
# Record videos
env.monitor.start(monitor_path,
resume=True,
video_callable=lambda count: count % record_video_every == 0)
for i_episode in range(num_episodes):
# Save the current checkpoint
saver.save(tf.get_default_session(), checkpoint_path)
# Reset the environment
state = env.reset()
state = state_processor.process(sess, state)
state = np.stack([state] * 4, axis=2)
loss = None
# One step in the environment
for t in itertools.count():
# Epsilon for this time step
epsilon = epsilons[min(total_t, epsilon_decay_steps-1)]
# Add epsilon to Tensorboard
episode_summary = tf.Summary()
episode_summary.value.add(simple_value=epsilon, tag="epsilon")
q_estimator.summary_writer.add_summary(episode_summary, total_t)
# Maybe update the target estimator
if total_t % update_target_estimator_every == 0:
copy_model_parameters(sess, q_estimator, target_estimator)
print("\nCopied model parameters to target network.")
# Print out which step we're on, useful for debugging.
print("\rStep {} ({}) @ Episode {}/{}, loss: {}".format(
t, total_t, i_episode + 1, num_episodes, loss), end="")
sys.stdout.flush()
# Take a step
action_probs = policy(sess, state, epsilon)
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
next_state, reward, done, _ = env.step(VALID_ACTIONS[action])
next_state = state_processor.process(sess, next_state)
next_state = np.append(state[:,:,1:], np.expand_dims(next_state, 2), axis=2)
# If our replay memory is full, pop the first element
if len(replay_memory) == replay_memory_size:
replay_memory.pop(0)
# Save transition to replay memory
replay_memory.append(Transition(state, action, reward, next_state, done))
# Update statistics
stats.episode_rewards[i_episode] += reward
stats.episode_lengths[i_episode] = t
# Sample a minibatch from the replay memory
samples = random.sample(replay_memory, batch_size)
states_batch, action_batch, reward_batch, next_states_batch, done_batch = map(np.array, zip(*samples))
# Calculate q values and targets (Double DQN)
q_values_next = q_estimator.predict(sess, next_states_batch)
best_actions = np.argmax(q_values_next, axis=1)
q_values_next_target = target_estimator.predict(sess, next_states_batch)
targets_batch = reward_batch + np.invert(done_batch).astype(np.float32) * \
discount_factor * q_values_next_target[np.arange(batch_size), best_actions]
# Perform gradient descent update
states_batch = np.array(states_batch)
loss = q_estimator.update(sess, states_batch, action_batch, targets_batch)
if done:
break
state = next_state
total_t += 1
# Add summaries to tensorboard
episode_summary = tf.Summary()
episode_summary.value.add(simple_value=stats.episode_rewards[i_episode], node_name="episode_reward", tag="episode_reward")
episode_summary.value.add(simple_value=stats.episode_lengths[i_episode], node_name="episode_length", tag="episode_length")
q_estimator.summary_writer.add_summary(episode_summary, total_t)
q_estimator.summary_writer.flush()
yield total_t, plotting.EpisodeStats(
episode_lengths=stats.episode_lengths[:i_episode+1],
episode_rewards=stats.episode_rewards[:i_episode+1])
env.monitor.close()
return stats
tf.reset_default_graph()
# Where we save our checkpoints and graphs
experiment_dir = os.path.abspath("./experiments/{}".format(env.spec.id))
# Create a glboal step variable
global_step = tf.Variable(0, name='global_step', trainable=False)
# Create estimators
q_estimator = Estimator(scope="q", summaries_dir=experiment_dir)
target_estimator = Estimator(scope="target_q")
# State processor
state_processor = StateProcessor()
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for t, stats in deep_q_learning(sess,
env,
q_estimator=q_estimator,
target_estimator=target_estimator,
state_processor=state_processor,
experiment_dir=experiment_dir,
num_episodes=10000,
replay_memory_size=500000,
replay_memory_init_size=50000,
update_target_estimator_every=10000,
epsilon_start=1.0,
epsilon_end=0.1,
epsilon_decay_steps=500000,
discount_factor=0.99,
batch_size=32):
print("\nEpisode Reward: {}".format(stats.episode_rewards[-1]))