diff --git a/tensorgraph/progbar.py b/tensorgraph/progbar.py new file mode 100644 index 0000000..dd84699 --- /dev/null +++ b/tensorgraph/progbar.py @@ -0,0 +1,87 @@ +from __future__ import absolute_import +import numpy as np +import time +import sys + + +class ProgressBar(object): + def __init__(self, target, width=30, verbose=1): + ''' + @param target: total number of steps expected + ''' + self.width = width + self.target = target + self.sum_values = {} + self.unique_values = [] + self.start = time.time() + self.total_width = 0 + self.seen_so_far = 0 + self.verbose = verbose + + def update(self, current, values=[]): + ''' + @param current: index of current step + @param values: list of tuples (name, value_for_last_step). + The progress bar will display averages for these values. + ''' + for k, v in values: + if k not in self.sum_values: + self.sum_values[k] = [v * (current-self.seen_so_far), current-self.seen_so_far] + self.unique_values.append(k) + else: + self.sum_values[k][0] += v * (current-self.seen_so_far) + self.sum_values[k][1] += (current-self.seen_so_far) + self.seen_so_far = current + + now = time.time() + if self.verbose == 1: + prev_total_width = self.total_width + sys.stdout.write("\b" * prev_total_width) + sys.stdout.write("\r") + + numdigits = int(np.floor(np.log10(self.target))) + 1 + barstr = '%%%dd/%%%dd [' % (numdigits, numdigits) + bar = barstr % (current, self.target) + prog = float(current)/self.target + if current > self.target: + prog = 1 + prog_width = int(self.width*prog) + if prog_width > 0: + bar += ('='*(prog_width-1)) + if current < self.target: + bar += '>' + bar += ('.'*(self.width-prog_width-1)) + bar += ']' + sys.stdout.write(bar) + self.total_width = len(bar) + + if current: + time_per_unit = (now - self.start) / current + else: + time_per_unit = 0 + eta = time_per_unit*(self.target - current) + info = '' + if current < self.target: + info += ' - ETA: %ds' % eta + else: + info += ' - %ds' % (now - self.start) + for k in self.unique_values: + info += ' - %s: %.4f' % (k, self.sum_values[k][0]/ max(1, self.sum_values[k][1])) + + self.total_width += len(info) + if prev_total_width > self.total_width: + info += ((prev_total_width-self.total_width) * " ") + + sys.stdout.write(info) + sys.stdout.flush() + + if self.verbose == 2: + if current >= self.target: + info = '%ds' % (now - self.start) + for k in self.unique_values: + info += ' - %s: %.4f' % (k, self.sum_values[k][0]/ max(1, self.sum_values[k][1])) + sys.stdout.write(info + "\n") + + + def add(self, n, values=[]): + self.update(self.seen_so_far+n, values)