-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
614 lines (463 loc) · 18.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
"""
Code that houses the class that creates and uses the random forest classifier
"""
# Data wrangling
import pandas as pd
# Numerical operations
import numpy as np
# Random selections
import random
# Quick value count calculator
from collections import Counter
# Tree growth tracking
from tqdm import tqdm
# Accuracy metrics
from sklearn.metrics import precision_score, recall_score
class RandomForestTree():
"""
Class that grows one random forest tree
"""
def __init__(
self,
X,
Y=None,
min_samples_split=None,
max_depth=None,
depth=None,
X_features_fraction=None,
node_type=None,
rule=None,
father = None
):
# Saving the data for the random forest
self.Y = Y
self.X = X
# Saving the hyper parameters
self.min_samples_split = min_samples_split if min_samples_split else 20
self.max_depth = max_depth if max_depth else 5
# Default current depth of the tree
self.depth = depth if depth else 0
# Saving the final feature list
self.features = list(X.columns)
# Type of node
self.node_type = node_type if node_type else 'root'
# Rule for spliting
self.rule = rule if rule else ""
# Supervised or Not
self.supervise = True if Y is not None else False
# Calculating the counts of Y in the node
self.counts = Counter(Y) if Y is not None else None
# Getting the GINI impurity based on the Y distribution
self.gini_impurity = self.get_GINI() if Y is not None else None
# Getting the number of features
self.n_features = len(self.features)
# Saving the hyper parameters specific to the random forest
self.X_features_fraction = X_features_fraction if X_features_fraction is not None else 1.0
# Sorting the counts and saving the final prediction of the node
counts_sorted = list(sorted(self.counts.items(), key=lambda item: item[1])) if Y is not None else None
# Getting the last item
yhat = None
if len(counts_sorted) > 0 and Y is not None:
yhat = counts_sorted[-1][0]
# Saving to object attribute. This node will predict the class with the most frequent class
self.yhat = yhat
# Saving the number of observations in the node
self.n = X.shape[0]
# Initiating the left and right nodes as empty nodes
self.left = None
self.right = None
self.father = father
# Default values for splits
self.best_feature = None
self.best_linear = None
self.best_value = None
def get_random_X_colsample(self):
# Getting the random subset of features
n_ft = int(self.n_features * self.X_features_fraction)
# Selecting random features without repetition
features = random.sample(self.features, n_ft)
# Subseting the X to chosen features
X = self.X[features].copy()
# Returning the subseted features
return X
@staticmethod
def GINI_impurity(y1_count: int, y2_count: int) -> float:
"""
Given the observations of a binary class calculate the GINI impurity
"""
# Ensuring the correct types
if y1_count is None:
y1_count = 0
if y2_count is None:
y2_count = 0
# Getting the total observations
n = y1_count + y2_count
# If n is 0 then we return the lowest possible gini impurity
if n == 0:
return 0.0
# Getting the probability to see each of the classes
p1 = y1_count / n
p2 = y2_count / n
# Calculating GINI
gini = 1 - (p1 ** 2 + p2 ** 2)
# Returning the gini impurity
return gini
@staticmethod
def ma(x: np.array, window: int) -> np.array:
"""
Calculates the moving average of the given list.
"""
return np.convolve(x, np.ones(window), 'valid') / window
def get_GINI(self):
"""
Function to calculate the GINI impurity of a node
"""
# Getting the 0 and 1 counts
y1_count, y2_count = self.counts.get(0, 0), self.counts.get(1, 0)
# Getting the GINI impurity
return self.GINI_impurity(y1_count, y2_count)
def split_val(self, vec) -> tuple:
"""
Given the X features and Y targets calculates the best split
for a decision tree
"""
# Creating a dataset for spliting
vec["Y"] = self.Y
# Getting the GINI impurity for the base input
GINI_base = self.get_GINI()
# Finding which split yields the best GINI gain
max_gain = 0
# Default best feature and split
best_value = None
# Droping missing values
# Sorting the values and getting the rolling average
Xdf = vec.dropna().sort_values(0)
xmeans = self.ma(Xdf[0].unique(), 2)
if self.supervise:
for value in xmeans:
# Spliting the dataset
left_counts = Counter(vec[vec[0] < value]['Y']) #
right_counts = Counter(vec[vec[0] >= value]['Y']) #
# Getting the Y distribution from the dicts
y0_left, y1_left, y0_right, y1_right = left_counts.get(0, 0), left_counts.get(1, 0), \
right_counts.get(0,0), right_counts.get( 1, 0)
# Getting the left and right gini impurities
gini_left = self.GINI_impurity(y0_left, y1_left)
gini_right = self.GINI_impurity(y0_right, y1_right)
# Getting the obs count from the left and the right data splits
n_left = y0_left + y1_left
n_right = y0_right + y1_right
# Calculating the weights for each of the nodes
w_left = n_left / (n_left + n_right)
w_right = n_right / (n_left + n_right)
# Calculating the weighted GINI impurity
wGINI = w_left * gini_left + w_right * gini_right
# Calculating the GINI gain
GINIgain = GINI_base - wGINI
# Checking if this is the best split so far
if GINIgain > max_gain:
best_value = value
# Setting the best gain to the current one
max_gain = GINIgain
return (best_value)
def spec_split(self) -> tuple:
"""
Given the X features and Y targets calculates the best split with Spectral Method and
"""
# Creating a dataset for spliting
df = self.X.copy()
# Default best feature and split
best_feature = None
best_value = None
best_linear = None
# Getting a random subsample of features
n_features = len(df.columns)
n_ft = int(self.n_features * self.X_features_fraction)
# Selecting random features without repetition
features_subsample = random.sample(self.features, n_ft)
best_feature = features_subsample
if best_feature is not None:
A = df.loc[best_feature, best_feature]
#print(self.depth, " : ", A.shape[0])
D = np.diag(A.sum(axis = 0))
U, V, D = np.linalg.svd(D-A)
best_linear = D[:,-2]
self.best_linear = best_linear
best_vec = df.loc[:, best_feature].dot(best_linear.reshape(-1,1))
best_value = self.split_val(best_vec)
return (best_feature, best_value)
def grow_tree(self):
"""
Recursive method to create the decision tree
"""
# If there is GINI to be gained, we split further
if (self.depth < self.max_depth) and (self.n >= self.min_samples_split):
# Getting the best split
best_feature, best_value = self.spec_split()
if best_feature is not None:
# Saving the best split to the current node
self.best_feature = best_feature
self.best_value = best_value
vec = self.X.loc[:,best_feature].dot(self.best_linear.reshape(-1,1))[0]
# Getting the left and right dataframe indexes
#left_index, right_index = tree.X.loc[vec <= best_value, vec <= best_value].index,\
# tree.X.loc[vec > best_value, vec > best_value].index
# Extracting the left X and right X
left_X, right_X = self.X.loc[vec <= best_value, vec <= best_value], \
self.X.loc[vec > best_value, vec > best_value]
# Reseting the indexes
# left_X.reset_index(inplace=True, drop=True)
# right_X.reset_index(inplace=True, drop=True)
# Extracting the left Y and the right Y
left_Y, right_Y = self.Y.loc[vec <= best_value, ], self.Y.loc[vec > best_value, ]
# Creating the left and right nodes
left = RandomForestTree(
left_X,
left_Y,
depth=self.depth + 1,
max_depth=self.max_depth,
min_samples_split=self.min_samples_split,
node_type='left_node',
rule=None,#f"{best_feature} <= {round(best_value, 3)}",
father=self
)
self.left = left
self.left.grow_tree()
right = RandomForestTree(
right_X,
right_Y,
depth=self.depth + 1,
max_depth=self.max_depth,
min_samples_split=self.min_samples_split,
node_type='right_node',
rule=None,#f"{best_feature} > {round(best_value, 3)}",
father=self
)
self.right = right
self.right.grow_tree()
def predict(self, X: pd.DataFrame):
"""
Batch prediction method
"""
predictions = []
for _, x in X.iterrows():
#values = {}
#for feature in self.features:
# values.update({feature: x[feature]})
values = x.loc[self.features]
predictions.append(self.predict_obs(values))
return predictions
def predict_obs(self, values: dict) -> int:
"""
Method to predict the class given a set of features
"""
cur_node = self
while cur_node.depth < cur_node.max_depth:
# Traversing the nodes all the way to the bottom
if (cur_node.n < cur_node.min_samples_split) | (cur_node.best_value is None):
break
best_feature = cur_node.best_feature
best_value = cur_node.best_value
best_linear = cur_node.best_linear
value = values.loc[best_feature].dot(best_linear)
if (value < best_value):
if cur_node.left is not None:
cur_node = cur_node.left
else:
if cur_node.right is not None:
cur_node = cur_node.right
return cur_node.yhat
def affinity(self, X: pd.DataFrame):
predictions = []
for _, x in X.iterrows():
#values = {}
#for feature in self.features:
# values.update({feature: x[feature]})
values = x.loc[self.features]
predictions.append(self.predict_obs(values))
return predictions
def affinity_obs(self, values: dict) -> int:
cur_node = self
while cur_node.depth < cur_node.max_depth:
# Traversing the nodes all the way to the bottom
if (cur_node.n < cur_node.min_samples_split) | (cur_node.best_value is None):
break
best_feature = cur_node.best_feature
best_value = cur_node.best_value
best_linear = cur_node.best_linear
value = values.loc[best_feature].dot(best_linear)
if (value < best_value):
if cur_node.left is not None:
cur_node = cur_node.left
else:
if cur_node.right is not None:
cur_node = cur_node.right
return cur_node.yhat
def print_info(self, width=4):
"""
Method to print the information about the tree
"""
# Defining the number of spaces
const = int(self.depth * width ** 1.5)
spaces = "-" * const
if self.node_type == 'root':
print("Root")
else:
print(f"|{spaces} Split rule: {self.rule}")
print(f"{' ' * const} | GINI impurity of the node: {round(self.gini_impurity, 2)}")
print(f"{' ' * const} | Class distribution in the node: {dict(self.counts)}")
print(f"{' ' * const} | Predicted class: {self.yhat}")
def print_tree(self):
"""
Prints the whole tree from the current node to the bottom
"""
self.print_info()
if self.left is not None:
self.left.print_tree()
if self.right is not None:
self.right.print_tree()
class RandomForestClassifier():
"""
Class that creates a random forest for classification problems
"""
def __init__(
self,
X,
Y = None,
min_samples_split=None,
max_depth=None,
n_trees=None,
X_features_fraction=None,
X_obs_fraction=None
):
# Saving the data for the random forest
self.Y = Y
self.X = X
# Saving the hyper parameters
self.min_samples_split = min_samples_split if min_samples_split else 20
self.max_depth = max_depth if max_depth else 5
# Saving the final feature list
self.features = list(X.columns)
# Getting the number of features
self.n_features = len(self.features)
# Saving the hyper parameters specific to the random forest
self.n_trees = n_trees if n_trees is not None else 30
self.X_features_fraction = X_features_fraction if X_features_fraction is not None else 1.0
self.X_obs_fraction = X_obs_fraction if X_obs_fraction is not None else 1.0
def bootstrap_sample(self):
"""
Function that creates a bootstraped sample with the class instance parameters
"""
# Sampling the number of rows with repetition
Xbootstrap = self.X.sample(frac=self.X_obs_fraction, replace=True)
# Getting the index of samples
indexes = Xbootstrap.index
# Getting the corresponding X,Y variables
Xbootstrap = self.X.loc[indexes, indexes]
Ybootstrap = self.Y.loc[indexes]
# Droping the index of X
Xbootstrap.reset_index(inplace=True, drop=True)
Ybootstrap.reset_index(inplace=True, drop=True)
# Returning the X, Y pair
return Xbootstrap, Ybootstrap
def grow_random_forest(self):
"""
Main method of the class; Creates **n_trees** random trees
"""
# List to hold trees in
random_forest = []
# Iterating
for _ in tqdm(range(self.n_trees)):
# Getting the bootstrapped sample
X, Y = self.bootstrap_sample()
# Initiating the random tree
tree = RandomForestTree(
X=self.X,
Y=self.Y,
min_samples_split=self.min_samples_split,
max_depth=self.max_depth,
X_features_fraction=self.X_features_fraction
)
# Growing the tree
tree.grow_tree()
# Appending the tree to the list of trees (the forest)
random_forest.append(tree)
# Saving the random forest list to memory
self.random_forest = random_forest
def print_trees(self):
"""
Method to print out all the grown trees in the classifier
"""
for i in range(self.n_trees):
print("------ \n")
print(f"Tree number: {i + 1} \n")
self.random_forest[i].print_tree()
print("------ \n")
def tree_predictions(self, X: pd.DataFrame) -> list:
"""
Method to get the predictions from all the trees
"""
predictions = []
for i in range(self.n_trees):
yhat = self.random_forest[i].predict(X)
# Apending to prediction placeholder
predictions.append(yhat)
# Returning the prediction list
return predictions
def predict(self, X: pd.DataFrame) -> list:
"""
Method to get the final prediction of the whole random forest
"""
# Getting the individual tree predictions
yhat = self.tree_predictions(X)
# Saving the number of obs in X
n = X.shape[0]
# Getting the majority vote of each coordinate of the prediction list
yhat_final = []
for i in range(n):
yhat_obs = [x[i] for x in yhat]
# Getting the most frequent entry
counts = Counter(yhat_obs)
most_common = counts.most_common(1)[0][0]
# Appending the most common entry to final yhat list
yhat_final.append(most_common)
# Returning the final predictions
return yhat_final
def kernel(self, X: pd.DataFrame) -> list:
"""
Method to generate Random Forest Kernel
"""
kmat = self.tree_prediction(X)
if __name__ == '__main__':
# Reading data for classification
d = pd.read_csv("telecom_churn.csv")
# Setting the features used
features = [
'AccountWeeks',
'DataUsage',
'DayMins',
'DayCalls',
'MonthlyCharge',
'OverageFee',
'RoamMins'
]
Y = d['Churn']
a = d[features]
D = a.dot(a.T)
# Initiating the random forest object
rf = RandomForestClassifier(
X=D,
Y= Y,
min_samples_split=10,
max_depth=100,
n_trees=1,
X_features_fraction=0.8
)
# Growing the random forest
rf.grow_random_forest()
# Printing out the trees
rf.print_trees()
# Making predictions
yhat = rf.predict(D)
# Measurring accuracy
np.mean(yhat == Y)