-
Notifications
You must be signed in to change notification settings - Fork 282
/
Copy pathquery_data.py
107 lines (89 loc) · 3.95 KB
/
query_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
from langchain.prompts.prompt import PromptTemplate
from langchain.vectorstores.base import VectorStoreRetriever
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
import pickle
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
You can assume the question about the most recent state of the union address.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
template = """You are an AI assistant for answering questions about the most recent state of the union address.
You are given the following extracted parts of a long document and a question. Provide a conversational answer.
If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer.
If the question is not about the most recent state of the union, politely inform them that you are tuned to only answer questions about the most recent state of the union.
Lastly, answer the question as if you were a pirate from the south seas and are just coming back from a pirate expedition where you found a treasure chest full of gold doubloons.
Question: {question}
=========
{context}
=========
Answer in Markdown:"""
QA_PROMPT = PromptTemplate(template=template, input_variables=[
"question", "context"])
def load_retriever():
with open("vectorstore.pkl", "rb") as f:
vectorstore = pickle.load(f)
retriever = VectorStoreRetriever(vectorstore=vectorstore)
return retriever
def get_basic_qa_chain():
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
retriever = load_retriever()
memory = ConversationBufferMemory(
memory_key="chat_history", return_messages=True)
model = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory)
return model
def get_custom_prompt_qa_chain():
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
retriever = load_retriever()
memory = ConversationBufferMemory(
memory_key="chat_history", return_messages=True)
# see: https://github.com/langchain-ai/langchain/issues/6635
# see: https://github.com/langchain-ai/langchain/issues/1497
model = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory,
combine_docs_chain_kwargs={"prompt": QA_PROMPT})
return model
def get_condense_prompt_qa_chain():
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
retriever = load_retriever()
memory = ConversationBufferMemory(
memory_key="chat_history", return_messages=True)
# see: https://github.com/langchain-ai/langchain/issues/5890
model = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory,
condense_question_prompt=CONDENSE_QUESTION_PROMPT,
combine_docs_chain_kwargs={"prompt": QA_PROMPT})
return model
def get_qa_with_sources_chain():
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
retriever = load_retriever()
history = []
model = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
return_source_documents=True)
def model_func(question):
# bug: this doesn't work with the built-in memory
# hacking around it for the tutorial
# see: https://github.com/langchain-ai/langchain/issues/5630
new_input = {"question": question['question'], "chat_history": history}
result = model(new_input)
history.append((question['question'], result['answer']))
return result
return model_func
chain_options = {
"basic": get_basic_qa_chain,
"with_sources": get_qa_with_sources_chain,
"custom_prompt": get_custom_prompt_qa_chain,
"condense_prompt": get_condense_prompt_qa_chain
}