From 9bd55056fd8ed1fff3fc2a8a987bfd5645ba8c81 Mon Sep 17 00:00:00 2001 From: Hanxi Guo Date: Thu, 26 Aug 2021 16:16:14 +0800 Subject: [PATCH] Fix errors after rebasing upstream master --- modules/dnn/src/layers/batch_norm_layer.cpp | 20 ----------- modules/dnn/src/layers/concat_layer.cpp | 14 -------- .../dnn/src/layers/fully_connected_layer.cpp | 35 ------------------- modules/dnn/src/layers/softmax_layer.cpp | 12 ------- 4 files changed, 81 deletions(-) diff --git a/modules/dnn/src/layers/batch_norm_layer.cpp b/modules/dnn/src/layers/batch_norm_layer.cpp index d3fa4f6e337b..062f26f8e545 100644 --- a/modules/dnn/src/layers/batch_norm_layer.cpp +++ b/modules/dnn/src/layers/batch_norm_layer.cpp @@ -411,26 +411,6 @@ class BatchNormLayerImpl CV_FINAL : public BatchNormLayer } #endif // HAVE_DNN_NGRAPH -#ifdef HAVE_WEBNN - virtual Ptr initWebnn(const std::vector >& inputs, const std::vector >& nodes) CV_OVERRIDE - { - Ptr node = nodes[0].dynamicCast(); - auto& webnnInpOperand = node->operand; - auto& webnnGraphBuilder = node->net->builder; - std::vector weights_shape = webnn::getShape(weights_); - ml::Operand weights = webnn::BuildConstant(webnnGraphBuilder, weights_shape, weights_.data, weights_.total()*weights_.elemSize(), ml::OperandType::Float32); - std::vector shape(dims, 1); - shape[1] = weights_shape[1]; - ml::Operand weights_reshaped = webnnGraphBuilder.Reshape(weights, shape.data(), shape.size()); - ml::Operand mul_res = webnnGraphBuilder.Mul(webnnInpOperand, weights_reshaped); - std::vector bias_shape = webnn::getShape(bias_); - ml::Operand bias = webnn::BuildConstant(webnnGraphBuilder, bias_shape, bias_.data, bias_.total()*bias_.elemSize(), ml::OperandType::Float32); - shape[1] = bias_shape[1]; - ml::Operand bias_reshaped = webnnGraphBuilder.Reshape(bias, shape.data(), shape.size()); - ml::Operand add_res = webnnGraphBuilder.Add(mul_res, bias_reshaped); - return Ptr(new WebnnBackendNode(add_res)); - } -#endif virtual bool tryQuantize(const std::vector > &scales, const std::vector > &zeropoints, LayerParams& params) CV_OVERRIDE diff --git a/modules/dnn/src/layers/concat_layer.cpp b/modules/dnn/src/layers/concat_layer.cpp index 6fdb9af1c416..bfdc7efe613a 100644 --- a/modules/dnn/src/layers/concat_layer.cpp +++ b/modules/dnn/src/layers/concat_layer.cpp @@ -403,20 +403,6 @@ class ConcatLayerImpl CV_FINAL : public ConcatLayer } #endif // HAVE_DNN_NGRAPH -#ifdef HAVE_WEBNN - virtual Ptr initWebnn(const std::vector >& inputs, const std::vector >& nodes) CV_OVERRIDE - { - Ptr node = nodes[0].dynamicCast(); - auto& webnnGraphBuilder = node->net->builder; - std::vector inputsOperand; - for (int i = 0; i < nodes.size(); i++) - { - inputsOperand.push_back(nodes[i].dynamicCast()->operand); - } - auto operand = webnnGraphBuilder.Concat(inputsOperand.size(), inputsOperand.data(), axis); - return Ptr(new WebnnBackendNode(operand)); - } -#endif virtual bool tryQuantize(const std::vector > &scales, const std::vector > &zeropoints, LayerParams& params) CV_OVERRIDE diff --git a/modules/dnn/src/layers/fully_connected_layer.cpp b/modules/dnn/src/layers/fully_connected_layer.cpp index aa61b17200b5..cf5f7135c22f 100644 --- a/modules/dnn/src/layers/fully_connected_layer.cpp +++ b/modules/dnn/src/layers/fully_connected_layer.cpp @@ -620,41 +620,6 @@ class FullyConnectedLayerImpl CV_FINAL : public InnerProductLayer } #endif // HAVE_DNN_NGRAPH -#ifdef HAVE_WEBNN - virtual Ptr initWebnn(const std::vector >& inputs, const std::vector >& nodes) CV_OVERRIDE - { - Ptr node = nodes[0].dynamicCast(); - auto& webnnInpOperand = node->operand; - auto& webnnGraphBuilder = node->net->builder; - ml::GemmOptions gemmOptions = {}; - if (bias) - { - std::vector biasDims = {(int32_t)blobs[1].size[1]}; - ml::Operand bias = webnn::BuildConstant(webnnGraphBuilder, biasDims, blobs[1].data, blobs[1].total()*blobs[1].elemSize(), ml::OperandType::Float32); - gemmOptions.c = bias; - } - ml::Operand result = nullptr; - if (nodes.size() == 2) - { - auto& inp2 = nodes[1].dynamicCast()->operand; - result = webnnGraphBuilder.Gemm(webnnInpOperand, inp2, &gemmOptions); - } - else - { - std::vector input_shape(2, -1); - input_shape[1] = blobs[0].size[1]; - // std::cout<<"input size: "< weight_shape = {(int32_t)blobs[0].size[0], (int32_t)blobs[0].size[1]}; - // std::cout<<"weight size: "<(new WebnnBackendNode(result)); - } -#endif // HAVE_WEBNN - virtual bool tryQuantize(const std::vector > &scales, const std::vector > &zeropoints, LayerParams& params) CV_OVERRIDE { diff --git a/modules/dnn/src/layers/softmax_layer.cpp b/modules/dnn/src/layers/softmax_layer.cpp index 7fabff479917..db2951808ffd 100644 --- a/modules/dnn/src/layers/softmax_layer.cpp +++ b/modules/dnn/src/layers/softmax_layer.cpp @@ -386,18 +386,6 @@ class SoftMaxLayerImpl CV_FINAL : public SoftmaxLayer } #endif // HAVE_DNN_NGRAPH -#ifdef HAVE_WEBNN - virtual Ptr initWebnn(const std::vector >& inputs, const std::vector >& nodes) CV_OVERRIDE - { - Ptr node = nodes[0].dynamicCast(); - auto& webnnInpOperand = node->operand; - auto& webnnGraphBuilder = node->net->builder; - auto operand = webnnGraphBuilder.Softmax(webnnInpOperand); - return Ptr(new WebnnBackendNode(operand)); - } - -#endif - virtual bool tryQuantize(const std::vector > &scales, const std::vector > &zeropoints, LayerParams& params) CV_OVERRIDE {