From 719912c3a128c363167206f0c6496736783be4e2 Mon Sep 17 00:00:00 2001 From: Ross Wightman Date: Fri, 23 Aug 2024 10:14:06 -0700 Subject: [PATCH] Initial mambaout work --- timm/models/__init__.py | 1 + timm/models/mambaout.py | 480 ++++++++++++++++++++++++++++++++++++++++ 2 files changed, 481 insertions(+) create mode 100644 timm/models/mambaout.py diff --git a/timm/models/__init__.py b/timm/models/__init__.py index 5e723724cc..627a23e317 100644 --- a/timm/models/__init__.py +++ b/timm/models/__init__.py @@ -35,6 +35,7 @@ from .inception_v4 import * from .levit import * from .maxxvit import * +from .mambaout import * from .metaformer import * from .mlp_mixer import * from .mobilenetv3 import * diff --git a/timm/models/mambaout.py b/timm/models/mambaout.py new file mode 100644 index 0000000000..3acd1d6f4c --- /dev/null +++ b/timm/models/mambaout.py @@ -0,0 +1,480 @@ +""" +MambaOut models for image classification. +Some implementations are modified from: +timm (https://github.com/rwightman/pytorch-image-models), +MetaFormer (https://github.com/sail-sg/metaformer), +InceptionNeXt (https://github.com/sail-sg/inceptionnext) +""" +from functools import partial +from typing import Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.models.layers import trunc_normal_, DropPath, LayerNorm +from .vision_transformer import LayerScale +from ._manipulate import checkpoint_seq +from timm.models.registry import register_model +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD + + +class Stem(nn.Module): + r""" Code modified from InternImage: + https://github.com/OpenGVLab/InternImage + """ + + def __init__( + self, + in_chs=3, + out_chs=96, + mid_norm: bool = True, + act_layer=nn.GELU, + norm_layer=LayerNorm, + ): + super().__init__() + self.conv1 = nn.Conv2d( + in_chs, + out_chs // 2, + kernel_size=3, + stride=2, + padding=1 + ) + self.norm1 = norm_layer(out_chs // 2) if mid_norm else None + self.act = act_layer() + self.conv2 = nn.Conv2d( + out_chs // 2, + out_chs, + kernel_size=3, + stride=2, + padding=1 + ) + self.norm2 = norm_layer(out_chs) + + def forward(self, x): + x = self.conv1(x) + if self.norm1 is not None: + x = x.permute(0, 2, 3, 1) + x = self.norm1(x) + x = x.permute(0, 3, 1, 2) + x = self.act(x) + x = self.conv2(x) + x = x.permute(0, 2, 3, 1) + x = self.norm2(x) + return x + + +class DownsampleNormFirst(nn.Module): + + def __init__( + self, + in_chs=96, + out_chs=198, + norm_layer=LayerNorm, + ): + super().__init__() + self.norm = norm_layer(in_chs) + self.conv = nn.Conv2d( + in_chs, + out_chs, + kernel_size=3, + stride=2, + padding=1 + ) + + def forward(self, x): + x = self.norm(x) + x = x.permute(0, 3, 1, 2) + x = self.conv(x) + x = x.permute(0, 2, 3, 1) + return x + + +class Downsample(nn.Module): + + def __init__( + self, + in_chs=96, + out_chs=198, + norm_layer=LayerNorm, + ): + super().__init__() + self.conv = nn.Conv2d( + in_chs, + out_chs, + kernel_size=3, + stride=2, + padding=1 + ) + self.norm = norm_layer(out_chs) + + def forward(self, x): + x = x.permute(0, 3, 1, 2) + x = self.conv(x) + x = x.permute(0, 2, 3, 1) + x = self.norm(x) + return x + + +class MlpHead(nn.Module): + """ MLP classification head + """ + + def __init__( + self, + dim, + num_classes=1000, + act_layer=nn.GELU, + mlp_ratio=4, + norm_layer=LayerNorm, + drop_rate=0., + bias=True, + ): + super().__init__() + hidden_features = int(mlp_ratio * dim) + self.fc1 = nn.Linear(dim, hidden_features, bias=bias) + self.act = act_layer() + self.norm = norm_layer(hidden_features) + self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias) + self.head_dropout = nn.Dropout(drop_rate) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.norm(x) + x = self.head_dropout(x) + x = self.fc2(x) + return x + + +class GatedConvBlock(nn.Module): + r""" Our implementation of Gated CNN Block: https://arxiv.org/pdf/1612.08083 + Args: + conv_ratio: control the number of channels to conduct depthwise convolution. + Conduct convolution on partial channels can improve paraitcal efficiency. + The idea of partial channels is from ShuffleNet V2 (https://arxiv.org/abs/1807.11164) and + also used by InceptionNeXt (https://arxiv.org/abs/2303.16900) and FasterNet (https://arxiv.org/abs/2303.03667) + """ + + def __init__( + self, + dim, + expansion_ratio=8 / 3, + kernel_size=7, + conv_ratio=1.0, + ls_init_value=None, + norm_layer=LayerNorm, + act_layer=nn.GELU, + drop_path=0., + **kwargs + ): + super().__init__() + self.norm = norm_layer(dim) + hidden = int(expansion_ratio * dim) + self.fc1 = nn.Linear(dim, hidden * 2) + self.act = act_layer() + conv_channels = int(conv_ratio * dim) + self.split_indices = (hidden, hidden - conv_channels, conv_channels) + self.conv = nn.Conv2d( + conv_channels, + conv_channels, + kernel_size=kernel_size, + padding=kernel_size // 2, + groups=conv_channels + ) + self.fc2 = nn.Linear(hidden, dim) + self.ls = LayerScale(dim) if ls_init_value is not None else nn.Identity() + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + shortcut = x # [B, H, W, C] + x = self.norm(x) + x = self.fc1(x) + g, i, c = torch.split(x, self.split_indices, dim=-1) + c = c.permute(0, 3, 1, 2) # [B, H, W, C] -> [B, C, H, W] + c = self.conv(c) + c = c.permute(0, 2, 3, 1) # [B, C, H, W] -> [B, H, W, C] + x = self.fc2(self.act(g) * torch.cat((i, c), dim=-1)) + x = self.ls(x) + x = self.drop_path(x) + return x + shortcut + + +class MambaOutStage(nn.Module): + + def __init__( + self, + dim, + dim_out: Optional[int] = None, + depth: int = 4, + expansion_ratio=8 / 3, + kernel_size=7, + conv_ratio=1.0, + downsample: bool = False, + ls_init_value: Optional[float] = None, + norm_layer=LayerNorm, + act_layer=nn.GELU, + drop_path=0., + ): + super().__init__() + dim_out = dim_out or dim + self.grad_checkpointing = False + + if downsample: + self.downsample = Downsample(dim, dim_out, norm_layer=norm_layer) + else: + assert dim == dim_out + self.downsample = nn.Identity() + + self.blocks = nn.Sequential(*[ + GatedConvBlock( + dim=dim_out, + expansion_ratio=expansion_ratio, + kernel_size=kernel_size, + conv_ratio=conv_ratio, + ls_init_value=ls_init_value, + norm_layer=norm_layer, + act_layer=act_layer, + drop_path=drop_path[j] if isinstance(drop_path, (list, tuple)) else drop_path, + ) + for j in range(depth) + ]) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class MambaOut(nn.Module): + r""" MetaFormer + A PyTorch impl of : `MetaFormer Baselines for Vision` - + https://arxiv.org/abs/2210.13452 + + Args: + in_chans (int): Number of input image channels. Default: 3. + num_classes (int): Number of classes for classification head. Default: 1000. + depths (list or tuple): Number of blocks at each stage. Default: [3, 3, 9, 3]. + dims (int): Feature dimension at each stage. Default: [96, 192, 384, 576]. + downsample_layers: (list or tuple): Downsampling layers before each stage. + drop_path_rate (float): Stochastic depth rate. Default: 0. + output_norm: norm before classifier head. Default: partial(nn.LayerNorm, eps=1e-6). + head_fn: classification head. Default: nn.Linear. + head_dropout (float): dropout for MLP classifier. Default: 0. + """ + + def __init__( + self, + in_chans=3, + num_classes=1000, + depths=(3, 3, 9, 3), + dims=(96, 192, 384, 576), + norm_layer=LayerNorm, + act_layer=nn.GELU, + conv_ratio=1.0, + kernel_size=7, + ls_init_value=None, + drop_path_rate=0., + drop_rate=0., + output_norm=LayerNorm, + head_fn=MlpHead, + **kwargs, + ): + super().__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + if not isinstance(depths, (list, tuple)): + depths = [depths] # it means the model has only one stage + if not isinstance(dims, (list, tuple)): + dims = [dims] + + num_stage = len(depths) + self.num_stage = num_stage + + self.stem = Stem(in_chans, dims[0], act_layer=act_layer, norm_layer=norm_layer) + prev_dim = dims[0] + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + self.stages = nn.ModuleList() + cur = 0 + for i in range(num_stage): + dim = dims[i] + stage = MambaOutStage( + dim=prev_dim, + dim_out=dim, + depth=depths[i], + kernel_size=kernel_size, + conv_ratio=conv_ratio, + downsample=i > 0, + ls_init_value=ls_init_value, + norm_layer=norm_layer, + act_layer=act_layer, + drop_path=dp_rates[i], + ) + self.stages.append(stage) + prev_dim = dim + cur += depths[i] + + self.norm = output_norm(prev_dim) + + self.head = head_fn(prev_dim, num_classes, drop_rate=drop_rate) + + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, (nn.Conv2d, nn.Linear)): + trunc_normal_(m.weight, std=.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'norm'} + + def forward_features(self, x): + x = self.stem(x) + for s in self.stages: + x = s(x) + return x + + def forward_head(self, x): + x = x.mean((1, 2)) + x = self.norm(x) + x = self.head(x) + return x + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': 1.0, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head', + **kwargs + } + + +default_cfgs = { + 'mambaout_femto': _cfg( + url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_femto.pth'), + 'mambaout_kobe': _cfg( + url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_kobe.pth'), + 'mambaout_tiny': _cfg( + url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_tiny.pth'), + 'mambaout_small': _cfg( + url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_small.pth'), + 'mambaout_base': _cfg( + url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_base.pth'), + 'mambaout_small_rw': _cfg(), + 'mambaout_base_rw': _cfg(), +} + + +# a series of MambaOut models +@register_model +def mambaout_femto(pretrained=False, **kwargs): + model = MambaOut( + depths=[3, 3, 9, 3], + dims=[48, 96, 192, 288], + **kwargs) + model.default_cfg = default_cfgs['mambaout_femto'] + if pretrained: + state_dict = torch.hub.load_state_dict_from_url( + url=model.default_cfg['url'], map_location="cpu", check_hash=True) + model.load_state_dict(state_dict) + return model + + +# Kobe Memorial Version with 24 Gated CNN blocks +@register_model +def mambaout_kobe(pretrained=False, **kwargs): + model = MambaOut( + depths=[3, 3, 15, 3], + dims=[48, 96, 192, 288], + **kwargs) + model.default_cfg = default_cfgs['mambaout_kobe'] + if pretrained: + state_dict = torch.hub.load_state_dict_from_url( + url=model.default_cfg['url'], map_location="cpu", check_hash=True) + model.load_state_dict(state_dict) + return model + + +@register_model +def mambaout_tiny(pretrained=False, **kwargs): + model = MambaOut( + depths=[3, 3, 9, 3], + dims=[96, 192, 384, 576], + **kwargs) + model.default_cfg = default_cfgs['mambaout_tiny'] + if pretrained: + state_dict = torch.hub.load_state_dict_from_url( + url=model.default_cfg['url'], map_location="cpu", check_hash=True) + model.load_state_dict(state_dict) + return model + + +@register_model +def mambaout_small(pretrained=False, **kwargs): + model = MambaOut( + depths=[3, 4, 27, 3], + dims=[96, 192, 384, 576], + **kwargs) + model.default_cfg = default_cfgs['mambaout_small'] + if pretrained: + state_dict = torch.hub.load_state_dict_from_url( + url=model.default_cfg['url'], map_location="cpu", check_hash=True) + model.load_state_dict(state_dict) + return model + + +@register_model +def mambaout_base(pretrained=False, **kwargs): + model = MambaOut( + depths=[3, 4, 27, 3], + dims=[128, 256, 512, 768], + **kwargs) + model.default_cfg = default_cfgs['mambaout_base'] + if pretrained: + state_dict = torch.hub.load_state_dict_from_url( + url=model.default_cfg['url'], map_location="cpu", check_hash=True) + model.load_state_dict(state_dict) + return model + + +@register_model +def mambaout_small_rw(pretrained=False, **kwargs): + model = MambaOut( + depths=[3, 4, 27, 3], + dims=[96, 192, 384, 576], + ls_init_value=1e-6, + **kwargs, + ) + model.default_cfg = default_cfgs['mambaout_small'] + if pretrained: + state_dict = torch.hub.load_state_dict_from_url( + url=model.default_cfg['url'], map_location="cpu", check_hash=True) + model.load_state_dict(state_dict) + return model + + +@register_model +def mambaout_base_rw(pretrained=False, **kwargs): + model = MambaOut( + depths=(3, 4, 27, 3), + dims=(128, 256, 512, 768), + ls_init_value=1e-6, + **kwargs + ) + model.default_cfg = default_cfgs['mambaout_base'] + if pretrained: + state_dict = torch.hub.load_state_dict_from_url( + url=model.default_cfg['url'], map_location="cpu", check_hash=True) + model.load_state_dict(state_dict) + return model