diff --git a/optimum/exporters/openvino/__main__.py b/optimum/exporters/openvino/__main__.py index 3ac831488..0f6869163 100644 --- a/optimum/exporters/openvino/__main__.py +++ b/optimum/exporters/openvino/__main__.py @@ -29,7 +29,6 @@ from optimum.exporters import TasksManager from optimum.exporters.onnx.base import OnnxConfig from optimum.exporters.onnx.constants import SDPA_ARCHS_ONNX_EXPORT_NOT_SUPPORTED -from optimum.exporters.openvino.convert import export_from_model from optimum.intel.utils.import_utils import ( is_nncf_available, is_openvino_tokenizers_available, @@ -185,6 +184,7 @@ def main_export( >>> main_export("gpt2", output="gpt2_ov/") ``` """ + from optimum.exporters.openvino.convert import export_from_model if use_auth_token is not None: warnings.warn( diff --git a/optimum/exporters/openvino/convert.py b/optimum/exporters/openvino/convert.py index e4ece9801..69bb52c11 100644 --- a/optimum/exporters/openvino/convert.py +++ b/optimum/exporters/openvino/convert.py @@ -19,8 +19,6 @@ import os from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union - -import onnx from transformers.generation import GenerationMixin from transformers.utils import is_tf_available, is_torch_available @@ -28,10 +26,6 @@ from openvino.runtime.exceptions import OVTypeError from openvino.tools.ovc import convert_model from optimum.exporters import TasksManager -from optimum.exporters.onnx.base import OnnxConfig -from optimum.exporters.onnx.convert import check_dummy_inputs_are_allowed -from optimum.exporters.onnx.convert import export_pytorch as export_pytorch_to_onnx -from optimum.exporters.onnx.convert import export_tensorflow as export_tensorflow_onnx from optimum.exporters.utils import ( _get_submodels_and_export_configs as _default_get_submodels_and_export_configs, ) @@ -90,6 +84,7 @@ if TYPE_CHECKING: from optimum.intel.openvino.configuration import OVConfig + from optimum.exporters.onnx.base import OnnxConfig def _set_runtime_options( @@ -111,7 +106,7 @@ def _save_model( path: str, ov_config: Optional["OVConfig"] = None, library_name: Optional[str] = None, - config: OnnxConfig = None, + config: "OnnxConfig" = None, ): compress_to_fp16 = ov_config is not None and ov_config.dtype == "fp16" model = _add_version_info_to_model(model, library_name) @@ -125,7 +120,7 @@ def _save_model( def export( model: Union["PreTrainedModel", "TFPreTrainedModel", "ModelMixin", "DiffusionPipeline"], - config: OnnxConfig, + config: "OnnxConfig", output: Path, opset: Optional[int] = None, device: str = "cpu", @@ -208,7 +203,7 @@ def export( def export_tensorflow( model: Union["PreTrainedModel", "ModelMixin"], - config: OnnxConfig, + config: "OnnxConfig", opset: int, output: Path, ov_config: Optional["OVConfig"] = None, @@ -228,6 +223,8 @@ def export_tensorflow( output_names: list of output names from ONNX configuration bool: True if the model was exported successfully. """ + from optimum.exporters.onnx.convert import export_tensorflow as export_tensorflow_onnx + onnx_path = Path(output).with_suffix(".onnx") input_names, output_names = export_tensorflow_onnx(model, config, opset, onnx_path) ov_model = convert_model(str(onnx_path)) @@ -248,7 +245,7 @@ def export_tensorflow( def export_pytorch_via_onnx( model: Union["PreTrainedModel", "ModelMixin"], - config: OnnxConfig, + config: "OnnxConfig", opset: int, output: Path, device: str = "cpu", @@ -284,6 +281,7 @@ def export_pytorch_via_onnx( the ONNX configuration and boolean flag - was legacy ONNX path were applied to model or not. """ import torch + from optimum.exporters.onnx.convert import export_pytorch as export_pytorch_to_onnx output = Path(output) orig_torch_onnx_export = torch.onnx.export @@ -313,7 +311,7 @@ def export_pytorch_via_onnx( def export_pytorch( model: Union["PreTrainedModel", "ModelMixin"], - config: OnnxConfig, + config: "OnnxConfig", opset: int, output: Path, device: str = "cpu", @@ -354,6 +352,7 @@ def export_pytorch( """ import torch from torch.utils._pytree import tree_map + from optimum.exporters.onnx.convert import check_dummy_inputs_are_allowed logger.info(f"Using framework PyTorch: {torch.__version__}") output = Path(output) @@ -869,6 +868,8 @@ def _add_version_info_to_model(model: Model, library_name: Optional[str] = None) model.set_rt_info(_nncf_version, ["optimum", "nncf_version"]) input_model = rt_info["conversion_parameters"].get("input_model", None) if input_model is not None and "onnx" in input_model.value: + import onnx + model.set_rt_info(onnx.__version__, ["optimum", "onnx_version"]) except Exception: