diff --git a/tests/models/test_modeling_common.py b/tests/models/test_modeling_common.py index d8a93d40c8bf..d9e70c6dd784 100644 --- a/tests/models/test_modeling_common.py +++ b/tests/models/test_modeling_common.py @@ -691,6 +691,9 @@ def test_deprecated_kwargs(self): def test_cpu_offload(self): config, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**config).eval() + if model._no_split_modules is None: + return + model = model.to(torch_device) torch.manual_seed(0) @@ -718,6 +721,9 @@ def test_cpu_offload(self): def test_disk_offload_without_safetensors(self): config, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**config).eval() + if model._no_split_modules is None: + return + model = model.to(torch_device) torch.manual_seed(0) @@ -728,12 +734,12 @@ def test_disk_offload_without_safetensors(self): model.cpu().save_pretrained(tmp_dir, safe_serialization=False) with self.assertRaises(ValueError): - max_size = int(self.model_split_percents[1] * model_size) + max_size = int(self.model_split_percents[0] * model_size) max_memory = {0: max_size, "cpu": max_size} # This errors out because it's missing an offload folder new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) - max_size = int(self.model_split_percents[1] * model_size) + max_size = int(self.model_split_percents[0] * model_size) max_memory = {0: max_size, "cpu": max_size} new_model = self.model_class.from_pretrained( tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir @@ -749,6 +755,9 @@ def test_disk_offload_without_safetensors(self): def test_disk_offload_with_safetensors(self): config, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**config).eval() + if model._no_split_modules is None: + return + model = model.to(torch_device) torch.manual_seed(0) @@ -758,7 +767,7 @@ def test_disk_offload_with_safetensors(self): with tempfile.TemporaryDirectory() as tmp_dir: model.cpu().save_pretrained(tmp_dir) - max_size = int(self.model_split_percents[1] * model_size) + max_size = int(self.model_split_percents[0] * model_size) max_memory = {0: max_size, "cpu": max_size} new_model = self.model_class.from_pretrained( tmp_dir, device_map="auto", offload_folder=tmp_dir, max_memory=max_memory @@ -774,6 +783,9 @@ def test_disk_offload_with_safetensors(self): def test_model_parallelism(self): config, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**config).eval() + if model._no_split_modules is None: + return + model = model.to(torch_device) torch.manual_seed(0)