From 123510a3aa73f62328aacca67e8c5d3b5578b427 Mon Sep 17 00:00:00 2001 From: Zach Mueller Date: Wed, 11 Oct 2023 18:31:32 +0000 Subject: [PATCH] Test --- .../scripts/external_deps/test_metrics.py | 73 ++++++++++++------- 1 file changed, 45 insertions(+), 28 deletions(-) diff --git a/src/accelerate/test_utils/scripts/external_deps/test_metrics.py b/src/accelerate/test_utils/scripts/external_deps/test_metrics.py index cc02f969878..7d7d93d6bf7 100755 --- a/src/accelerate/test_utils/scripts/external_deps/test_metrics.py +++ b/src/accelerate/test_utils/scripts/external_deps/test_metrics.py @@ -28,7 +28,7 @@ from accelerate import Accelerator from accelerate.data_loader import DataLoaderDispatcher from accelerate.test_utils import RegressionDataset, RegressionModel -from accelerate.utils import is_tpu_available, set_seed +from accelerate.utils import set_seed os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true" @@ -219,6 +219,20 @@ def __iter__(self): logger.removeHandler(list_handler) +def test_gather_for_metrics_drop_last(): + accelerator = Accelerator() + dataloader = DataLoader(range((10 * accelerator.num_processes) + 1), batch_size=5, drop_last=True) + dataloader = accelerator.prepare(dataloader) + + iterator = iter(dataloader) + next(iterator) # Skip first batch tensor([0, 1, 2, 3, 4], device='cuda:0') + batch = next(iterator) + gathered_items = accelerator.gather_for_metrics(batch) + assert gathered_items.size(0) == ( + 5 * accelerator.num_processes + ), f"Expected number of items: {(5*accelerator.num_processes)}, Actual: {gathered_items.size(0)}" + + def main(): accelerator = Accelerator(split_batches=False, dispatch_batches=False) if accelerator.is_local_main_process: @@ -227,34 +241,37 @@ def main(): else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() - # These are a bit slower so they should only be ran on the GPU or TPU - if torch.cuda.is_available() or is_tpu_available(): - if accelerator.is_local_main_process: - print("**Testing gather_for_metrics**") - for split_batches in [True, False]: - for dispatch_batches in [True, False]: - if accelerator.is_local_main_process: - print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`") - test_mrpc(dispatch_batches, split_batches) - accelerator.state._reset_state() - print("test_gather_for_metrics_with_iterable_dataset") - test_gather_for_metrics_with_iterable_dataset() - print("test gather_for_metrics_with_non_tensor_objects_iterable_dataset") - test_gather_for_metrics_with_non_tensor_objects_iterable_dataset() - if accelerator.is_local_main_process: - print("**Test torch metrics**") - for split_batches in [True, False]: - for dispatch_batches in [True, False]: - accelerator = Accelerator(split_batches=split_batches, dispatch_batches=dispatch_batches) - if accelerator.is_local_main_process: - print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99") - test_torch_metrics(accelerator, 99) - accelerator.state._reset_state() - if accelerator.is_local_main_process: - print("**Test last batch is not dropped when perfectly divisible**") + # # These are a bit slower so they should only be ran on the GPU or TPU + # if torch.cuda.is_available() or is_tpu_available(): + # if accelerator.is_local_main_process: + # print("**Testing gather_for_metrics**") + # for split_batches in [True, False]: + # for dispatch_batches in [True, False]: + # if accelerator.is_local_main_process: + # print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`") + # test_mrpc(dispatch_batches, split_batches) + # accelerator.state._reset_state() + # print("test_gather_for_metrics_with_iterable_dataset") + # test_gather_for_metrics_with_iterable_dataset() + # print("test gather_for_metrics_with_non_tensor_objects_iterable_dataset") + # test_gather_for_metrics_with_non_tensor_objects_iterable_dataset() + # if accelerator.is_local_main_process: + # print("**Test torch metrics**") + # for split_batches in [True, False]: + # for dispatch_batches in [True, False]: + # accelerator = Accelerator(split_batches=split_batches, dispatch_batches=dispatch_batches) + # if accelerator.is_local_main_process: + # print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99") + # test_torch_metrics(accelerator, 99) + # accelerator.state._reset_state() + # if accelerator.is_local_main_process: + # print("**Test last batch is not dropped when perfectly divisible**") accelerator = Accelerator() - test_torch_metrics(accelerator, 512) - accelerator.state._reset_state() + # test_torch_metrics(accelerator, 512) + # accelerator.state._reset_state() + if accelerator.is_local_main_process: + print("**Test that `drop_last` is taken into account**") + test_gather_for_metrics_drop_last() def _mp_fn(index):