forked from srebuffi/residual_adapters
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
140 lines (118 loc) · 5.48 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.parameter import Parameter
import config_task
import math
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
def conv1x1_fonc(in_planes, out_planes=None, stride=1, bias=False):
if out_planes is None:
return nn.Conv2d(in_planes, in_planes, kernel_size=1, stride=stride, padding=0, bias=bias)
else:
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=bias)
class conv1x1(nn.Module):
def __init__(self, planes, out_planes=None, stride=1):
super(conv1x1, self).__init__()
if config_task.mode == 'series_adapters':
self.conv = nn.Sequential(nn.BatchNorm2d(planes), conv1x1_fonc(planes))
elif config_task.mode == 'parallel_adapters':
self.conv = conv1x1_fonc(planes, out_planes, stride)
else:
self.conv = conv1x1_fonc(planes)
def forward(self, x):
y = self.conv(x)
if config_task.mode == 'series_adapters':
y += x
return y
class conv_task(nn.Module):
def __init__(self, in_planes, planes, stride=1, nb_tasks=1, is_proj=1, second=0):
super(conv_task, self).__init__()
self.is_proj = is_proj
self.second = second
self.conv = conv3x3(in_planes, planes, stride)
if config_task.mode == 'series_adapters' and is_proj:
self.bns = nn.ModuleList([nn.Sequential(conv1x1(planes), nn.BatchNorm2d(planes)) for i in range(nb_tasks)])
elif config_task.mode == 'parallel_adapters' and is_proj:
self.parallel_conv = nn.ModuleList([conv1x1(in_planes, planes, stride) for i in range(nb_tasks)])
self.bns = nn.ModuleList([nn.BatchNorm2d(planes) for i in range(nb_tasks)])
else:
self.bns = nn.ModuleList([nn.BatchNorm2d(planes) for i in range(nb_tasks)])
def forward(self, x):
task = config_task.task
y = self.conv(x)
if self.second == 0:
if config_task.isdropout1:
x = F.dropout2d(x, p=0.5, training = self.training)
else:
if config_task.isdropout2:
x = F.dropout2d(x, p=0.5, training = self.training)
if config_task.mode == 'parallel_adapters' and self.is_proj:
y = y + self.parallel_conv[task](x)
y = self.bns[task](y)
return y
# No projection: identity shortcut
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, shortcut=0, nb_tasks=1):
super(BasicBlock, self).__init__()
self.conv1 = conv_task(in_planes, planes, stride, nb_tasks, is_proj=int(config_task.proj[0]))
self.conv2 = nn.Sequential(nn.ReLU(True), conv_task(planes, planes, 1, nb_tasks, is_proj=int(config_task.proj[1]), second=1))
self.shortcut = shortcut
if self.shortcut == 1:
self.avgpool = nn.AvgPool2d(2)
def forward(self, x):
residual = x
y = self.conv1(x)
y = self.conv2(y)
if self.shortcut == 1:
residual = self.avgpool(x)
residual = torch.cat((residual, residual*0),1)
y += residual
y = F.relu(y)
return y
class ResNet(nn.Module):
def __init__(self, block, nblocks, num_classes=[10]):
super(ResNet, self).__init__()
nb_tasks = len(num_classes)
blocks = [block, block, block]
factor = config_task.factor
self.in_planes = int(32*factor)
self.pre_layers_conv = conv_task(3,int(32*factor), 1, nb_tasks)
self.layer1 = self._make_layer(blocks[0], int(64*factor), nblocks[0], stride=2, nb_tasks=nb_tasks)
self.layer2 = self._make_layer(blocks[1], int(128*factor), nblocks[1], stride=2, nb_tasks=nb_tasks)
self.layer3 = self._make_layer(blocks[2], int(256*factor), nblocks[2], stride=2, nb_tasks=nb_tasks)
self.end_bns = nn.ModuleList([nn.Sequential(nn.BatchNorm2d(int(256*factor)),nn.ReLU(True)) for i in range(nb_tasks)])
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.linears = nn.ModuleList([nn.Linear(int(256*factor), num_classes[i]) for i in range(nb_tasks)])
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, nblocks, stride=1, nb_tasks=1):
shortcut = 0
if stride != 1 or self.in_planes != planes * block.expansion:
shortcut = 1
layers = []
layers.append(block(self.in_planes, planes, stride, shortcut, nb_tasks=nb_tasks))
self.in_planes = planes * block.expansion
for i in range(1, nblocks):
layers.append(block(self.in_planes, planes, nb_tasks=nb_tasks))
return nn.Sequential(*layers)
def forward(self, x):
x = self.pre_layers_conv(x)
task = config_task.task
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.end_bns[task](x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.linears[task](x)
return x
def resnet26(num_classes=10, blocks=BasicBlock):
return ResNet(blocks, [4,4,4],num_classes)