-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotter.py
128 lines (117 loc) · 4.21 KB
/
plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from scipy.stats import norm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
from matplotlib import cm
import numpy as np
from numpy import polyfit
from scipy.optimize import curve_fit
from scipy import stats
from scipy.stats import gaussian_kde as kde
import inspect
from matplotlib import colors
from matplotlib.colors import Normalize
import pylab
import sys
from scipy.odr import *
import math
from matplotlib.backends.backend_pdf import PdfPages
import header
##################################
# Read in some data file.
# Save everything into arrays.
# Make plots.
# Success. See pdf.
##################################
# Input data file:
header.dataToArray("data/inputFile2.txt")
# Output pdf plots:
#with PdfPages(r'C:\Users\hszumila\Desktop\Charts.pdf') as export_pdf:
with PdfPages(r'Charts.pdf') as export_pdf:
###########################################################################
# Linear fit to data with x,y errors (uses orthogonal distance regression)
###########################################################################
# This plots the points
plt.errorbar(header.val_x, header.val_y, xerr=header.err_x, yerr=header.err_y, fmt='b^', markersize=5,alpha=0.25)
plt.xlabel('x$_{value}$')
plt.ylabel('y$_{value}$')
plt.title('basic plot with x,y errors')
# This defines the fit function
xx = header.val_x
def f(B, xx):
return B[0]*xx+B[1]
linear = Model(f)
mydata = RealData(xx, header.val_y, sx=header.err_x, sy=header.err_y)
myodr = ODR(mydata, linear, beta0=[1., 0.])
myoutput = myodr.run()
myoutput.pprint()
# Here we get the values from the fit function so we can plot it
x1=[]
y1=[]
for ii in header.val_x:
x1.append(ii)
y1.append(myoutput.beta[1] + myoutput.beta[0] * ii)
plt.plot(x1, y1, 'r--', linewidth=2)
plt.text(10,40, 'y$_{value}$ = %.3f x$_{value}$ + %.3f' %(myoutput.beta[0],myoutput.beta[1]),color='red')
plt.text(15,35, 'R$^{2}$ = %.3f' %(myoutput.res_var),color='red')
plt.axis([0, 150, 0, 55])
export_pdf.savefig()
plt.close()
######################################################################
# Linear fit to data with y errors only
######################################################################
plt.errorbar(header.val_x, header.val_y, xerr=0, yerr=header.err_y, fmt='b^',markersize=5,alpha=0.25)
p,V = np.polyfit(header.val_x, header.val_y, deg=1, w=header.err_y, cov=True, full=False)
x=[]
y=[]
x_extra = []
y_extra = []
weights = []
ll=0
for ii in header.val_x:
x.append(ii)
y.append(p[1] + p[0] * ii)
weights.append(1.0/header.err_y[ll])
ll+=1
plt.plot(x, y, 'r-')
x_extra = x + x[-1:]
y_extra = header.val_y + header.val_y[-1:]
weights.append(sys.float_info.epsilon)
fit_extra, cov_extra = np.polyfit(x_extra, y_extra, 1, w=weights, cov=True)
plt.text(10,40, 'y$_{value}$ = A x$_{value}$ + B',color='red')
plt.text(15,35, 'A, slope: %.3f +/- %.3f' %(fit_extra[0],np.sqrt(cov_extra[0][0])),color='red')
plt.text(15,30, 'B, intercept: %.3f +/- %.3f' %(fit_extra[1],np.sqrt(cov_extra[1][1])),color='red')
plt.xlabel('x$_{value}$')
plt.ylabel('y$_{value}$')
plt.title('basic plot with y errors')
plt.axis([0, 150, 0, 55])
export_pdf.savefig()
plt.close()
######################################################################
# 1D Histogram data with Gaussian fit
######################################################################
# Best fit of the data
(mu, sigma) = norm.fit(header.distr)
# Histogram the data
n, bins, patches = plt.hist(header.distr, 30, density=1, facecolor='blue', alpha=0.75)
# Add best fit
y = norm.pdf(bins, mu, sigma)
l = plt.plot(bins, y, 'r--', linewidth=2)
# Plot it all
plt.xlabel('data')
plt.title('Histogram fit: $\mu=%.3f, \sigma=%.3f$' %(mu,sigma))
plt.grid(True)
export_pdf.savefig()
plt.close()
######################################################################
# 2D Histogram data
######################################################################
data2d=[header.distr,header.distr2]
densObj = kde(data2d)
colours = header.makeColours(densObj.evaluate(data2d))
plt.scatter( data2d[0], data2d[1], color=colours )
plt.xlabel('distribution 1')
plt.ylabel('distribution 2')
#plt.show()
export_pdf.savefig()
plt.close()