-
Notifications
You must be signed in to change notification settings - Fork 4.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'remotes/ColossalAI/feature/pipeline' in…
…to merge_pp
- Loading branch information
Showing
103 changed files
with
14,985 additions
and
1,071 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
from typing import Dict, List | ||
|
||
import torch | ||
from torch import Tensor | ||
from torch.nn import Parameter | ||
from torch.optim import Optimizer | ||
|
||
from colossalai.interface import OptimizerWrapper | ||
|
||
from .mixed_precision_mixin import BF16MixedPrecisionMixin, FP16MixedPrecisionMixin | ||
|
||
|
||
class NaiveFP16MixedPrecisionMixin(FP16MixedPrecisionMixin): | ||
|
||
def __init__(self, | ||
working_params: List[Parameter], | ||
initial_scale: float = 2**16, | ||
min_scale: float = 1, | ||
growth_factor: float = 2, | ||
backoff_factor: float = 0.5, | ||
growth_interval: int = 1000, | ||
hysteresis: int = 2, | ||
max_scale: float = 2**32) -> None: | ||
super().__init__(initial_scale, min_scale, growth_factor, backoff_factor, growth_interval, hysteresis, | ||
max_scale) | ||
self.params = working_params | ||
|
||
def check_local_overflow(self) -> bool: | ||
for p in self.params: | ||
if p.grad is not None and not torch.isfinite(p.grad).all(): | ||
return True | ||
return False | ||
|
||
|
||
class MixedPrecisionOptimizer(OptimizerWrapper): | ||
|
||
def __init__(self, | ||
optim: Optimizer, | ||
precision: str = 'fp16', | ||
initial_scale: float = 2**16, | ||
min_scale: float = 1, | ||
growth_factor: float = 2, | ||
backoff_factor: float = 0.5, | ||
growth_interval: int = 1000, | ||
hysteresis: int = 2, | ||
max_scale: float = 2**32, | ||
max_norm: float = 0.0): | ||
super().__init__(optim) | ||
if precision == 'fp16': | ||
working_params = [] | ||
for group in self.optim.param_groups: | ||
for p in group['params']: | ||
working_params.append(p) | ||
self.mixed_precision = NaiveFP16MixedPrecisionMixin(working_params, | ||
initial_scale=initial_scale, | ||
min_scale=min_scale, | ||
growth_factor=growth_factor, | ||
backoff_factor=backoff_factor, | ||
growth_interval=growth_interval, | ||
hysteresis=hysteresis, | ||
max_scale=max_scale) | ||
elif precision == 'bf16': | ||
self.mixed_precision = BF16MixedPrecisionMixin() | ||
else: | ||
raise ValueError(f'Unsupported precision: {precision}') | ||
if max_norm > 0.0: | ||
raise NotImplementedError('max_norm is not supported yet.') | ||
self.max_norm = max_norm | ||
self.working_to_master_map: Dict[Parameter, Tensor] = {} | ||
self.master_to_working_map: Dict[Tensor, Parameter] = {} | ||
|
||
# create master weights | ||
for group in self.optim.param_groups: | ||
master_params = [] | ||
for p in group['params']: | ||
if p.requires_grad: | ||
master_p = p | ||
if p.dtype != torch.float: | ||
master_p = p.detach().float() | ||
self.working_to_master_map[p] = master_p | ||
self.master_to_working_map[master_p] = p | ||
master_params.append(master_p) | ||
group['params'] = master_params | ||
|
||
def backward(self, loss: Tensor, *args, **kwargs): | ||
loss = self.mixed_precision.pre_backward(loss) | ||
loss.backward(*args, **kwargs) | ||
|
||
def backward_by_grad(self, tensor: Tensor, grad: Tensor): | ||
grad = self.mixed_precision.pre_backward_by_grad(tensor, grad) | ||
tensor.backward(grad) | ||
|
||
def zero_grad(self, *args, **kwargs): | ||
for p in self.working_to_master_map.keys(): | ||
p.grad = None | ||
self.mixed_precision.pre_zero_grad() | ||
return super().zero_grad(*args, **kwargs) | ||
|
||
def _unscale_and_clip_grads(self, total_norm: float) -> None: | ||
div_scale = 1.0 | ||
if self.mixed_precision is not None: | ||
div_scale = self.mixed_precision.get_grad_div_scale() | ||
|
||
if self.max_norm > 0.: | ||
# norm is in fact norm*scale | ||
clip = ((total_norm / div_scale) + 1e-6) / self.max_norm | ||
if clip > 1: | ||
div_scale = clip * div_scale | ||
|
||
for group in self.param_groups: | ||
for p in group['params']: | ||
if p.grad is None: | ||
continue | ||
p.grad.data.mul_(1. / div_scale) | ||
|
||
def _compute_grad_norm(self) -> float: | ||
if self.max_norm <= 0.: | ||
return 0. | ||
grads = [p.grad for group in self.param_groups for p in group['params'] if p.grad is not None] | ||
if len(grads) == 0: | ||
return 0. | ||
device = grads[0].device | ||
# TODO(ver217): support tp | ||
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), 2).to(device) for g in grads]), 2) | ||
return total_norm.item() | ||
|
||
def step(self, *args, **kwargs): | ||
if self.mixed_precision.should_skip_step(): | ||
self.zero_grad() | ||
return | ||
# prepare grads | ||
for group in self.optim.param_groups: | ||
for p in group['params']: | ||
working_param = self.master_to_working_map[p] | ||
if p is working_param: | ||
continue | ||
if working_param.grad is not None: | ||
p.grad = working_param.grad.data.float() | ||
working_param.grad = None | ||
total_norm = self._compute_grad_norm() | ||
self._unscale_and_clip_grads(total_norm) | ||
self.optim.step(*args, **kwargs) | ||
# update working params | ||
for group in self.optim.param_groups: | ||
for p in group['params']: | ||
working_param = self.master_to_working_map[p] | ||
if p is working_param: | ||
continue | ||
working_param.data.copy_(p.data) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.