-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathang_distr_from_torsionals.py
executable file
·86 lines (74 loc) · 2.71 KB
/
ang_distr_from_torsionals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/env python3
"""
Give the filename of data file to plot a curve of the angular distribution of the data.
This is generated from a histogram, from which the number of bins can be passed as an optional argument.
Author: Henrique Musseli Cezar
Date: OCT/2016
"""
import argparse
import os
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import UnivariateSpline
from distutils.spawn import find_executable
def get_pdf(data, nbins):
p, x = np.histogram(data, density = True, bins = nbins)
x = x[:-1] + (x[1] - x[0])/2 # convert bin edges to centers
f = UnivariateSpline(x, p, s=0)
return x, f
def shift_angle(tetha,shift):
tetha = float(tetha)
if shift:
if tetha < 0.0:
return tetha+360.0
elif tetha >= 360.0:
return tetha-360.0
else:
return tetha
else:
return tetha
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Receives raw data, bin it and plot the angular distribution.")
parser.add_argument("filename", help="the filename containing the data with each entry in a line")
parser.add_argument("nbins", nargs='?', help="the number of bins used by the histogram - if no number is given, the default (100) is used", default=100)
parser.add_argument("--shiftangles", help="shift the angles to [0,360)", action="store_true")
args = parser.parse_args()
# put the data in a list
# data = np.loadtxt(args.filename,converters={0: shift_angle})
data = []
with open(args.filename, 'r') as f:
for line in f:
data.append(shift_angle(float(line),args.shiftangles))
# make a name to the pdf file
basename = os.path.splitext(args.filename)[0]
if not os.path.exists(basename+".pdf"):
pdfname = basename+".pdf"
else:
n = 2
while os.path.exists(basename+"_%02d.pdf"%n):
n += 1
pdfname = basename+"_%02d.pdf"%n
# calculate the pdf (from a histogram and interpolating)
x, pdf = get_pdf(data, int(args.nbins))
# write data to file for further use
with open('pdf.dat','w') as f:
for i, v in enumerate(x):
f.write("%f\t%f\n" % (v, pdf(v)))
# plot
if find_executable('latex') and find_executable('dvipng'):
mpl.rcParams.update({'font.size':18, 'text.usetex':True, 'font.family':'serif', 'ytick.major.pad':4})
else:
mpl.rcParams.update({'font.size':18, 'font.family':'serif', 'ytick.major.pad':4})
plt.plot(x,pdf(x))
if args.shiftangles:
plt.xlim([0.0,360.0])
plt.xticks([0,60,120,180,240,300,360])
else:
plt.xlim([-180.0,180.0])
plt.xticks([-180,-120,-60,0,60,120,180])
plt.ylim([0.0,0.06])
plt.xlabel(r"$\phi$ ($^\circ$)")
plt.ylabel(r"Probability density function")
plt.savefig(pdfname, bbox_inches='tight')