-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathinspose_r50_8x4_3x_coco.py
134 lines (134 loc) · 4.44 KB
/
inspose_r50_8x4_3x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
_base_ = [
'../_base_/default_runtime.py'
]
model = dict(
type='opera.InsPose',
backbone=dict(
type='mmdet.ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_eval=False,
style='pytorch',
init_cfg=dict(type='Pretrained',
checkpoint='torchvision://resnet50')),
neck=dict(
type='mmdet.FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_output',
num_outs=5,
relu_before_extra_convs=True),
bbox_head=dict(
type='opera.InsPoseHead',
num_classes=1, # (only person)
in_channels=256,
stacked_convs=4,
feat_channels=256,
stacked_convs_kpt=4,
feat_channels_kpt=512,
stacked_convs_hm=3,
feat_channels_hm=512,
strides=[8, 16, 32, 64, 128],
center_sampling=True,
center_sample_radius=1.5,
centerness_on_reg=True,
regression_normalize=True,
with_hm_loss=True,
min_overlap_hm=0.9,
min_hm_radius=0,
max_hm_radius=3,
min_overlap_kp=0.9,
min_offset_radius=0,
max_offset_radius=3,
loss_cls=dict(
type='mmdet.VarifocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.75,
iou_weighted=True,
loss_weight=1.0),
loss_bbox=dict(type='mmdet.GIoULoss', loss_weight=1.0),
loss_centerness=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_hm=dict(type='opera.CenterFocalLoss', loss_weight=1.0),
loss_weight_offset=1.0,
unvisible_weight=0.1),
test_cfg=dict(
nms_pre=1000,
score_thr=0.05,
nms=dict(type='soft_nms', iou_threshold=0.3),
mask_thresh=0.5,
max_per_img=100))
# dataset settings
dataset_type = 'opera.CocoPoseDataset'
data_root = '/dataset/public/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='mmdet.LoadImageFromFile', to_float32=True),
dict(type='opera.LoadAnnotations',
with_bbox=True,
with_mask=True,
with_keypoint=True),
dict(type='opera.Resize',
img_scale=[(1333, 800), (1333, 768), (1333, 736),
(1333, 704), (1333, 672), (1333, 640)],
multiscale_mode='value',
keep_ratio=True),
dict(type='opera.RandomFlip', flip_ratio=0.5),
dict(type='mmdet.Normalize', **img_norm_cfg),
dict(type='mmdet.Pad', size_divisor=32),
dict(type='opera.DefaultFormatBundle', extra_keys=['gt_keypoints']),
dict(type='mmdet.Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_keypoints']),
]
test_pipeline = [
dict(type='mmdet.LoadImageFromFile'),
dict(
type='mmdet.MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='mmdet.Resize', keep_ratio=True),
dict(type='mmdet.RandomFlip'),
dict(type='mmdet.Normalize', **img_norm_cfg),
dict(type='mmdet.Pad', size_divisor=32),
dict(type='mmdet.ImageToTensor', keys=['img']),
dict(type='mmdet.Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file='/data/configs/inspose/person_keypoints_train2017_pseudobox.json',
img_prefix=data_root + 'images/train2017/',
pipeline=train_pipeline,
skip_invaild_pose=False),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/person_keypoints_val2017.json',
img_prefix=data_root + 'images/val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/person_keypoints_val2017.json',
img_prefix=data_root + 'images/val2017/',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='keypoints')
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=2000,
warmup_ratio=0.001,
step=[27, 33])
runner = dict(type='EpochBasedRunner', max_epochs=36)
checkpoint_config = dict(interval=1, max_keep_ckpts=3)