Skip to content

Latest commit

 

History

History
693 lines (623 loc) · 20.6 KB

File metadata and controls

693 lines (623 loc) · 20.6 KB

Binary Search - Aditya Verma

0. Time Complexity

BS2 TC

image

2. BS on Ascending Order sorted array :-

private static int binarySearch(int[] arr, int key) {
        int s = 0;
        int e = arr.length - 1;

        while (s <= e) {
            int mid = s + (e-s)/2;

            if (key > arr[mid])
                s = mid + 1;
            else if (key < arr[mid])
                e = mid - 1;
            else
                return mid; // key found
        }
        return -1;
}

2. BS on Descending Order sorted array :-

private static int binarySearch(int[] arr, int key) {
        int s = 0;
        int e = arr.length - 1;

        while (start <= end) {
            int mid = s + (e-s)/2;

            if (key < arr[mid])
                s = mid + 1;
            else if (key > arr[mid])
                e = mid - 1;
            else
                return mid; // key found
        }
        return -1;
}

3. Order Agnostic Binary Search (when you don't know in which order the array is sorted):

private static int AgnosticbinarySearch(int[] arr, int key) {
        int s = 0;
        int e = arr.length - 1;
        boolean isAsc= arr[s] < a[e];
        while (s <= e) {
            int mid = s + (e-s)/2;

            if (key > arr[mid])
                if(isAsc) s = mid + 1; else e = mid - 1;
            else if (key < arr[mid])
                if(isAsc) e = mid - 1; else s = mid + 1;
            else
                return mid;
        }
        return -1;
}
class Solution {
    public int[] searchRange(int[] nums, int target) {
        return new int[]{fnl(nums,target, true), fnl(nums, target, false)};
    }

    private int fnl(int arr[], int x, boolean isF){
        int s = 0;
        int e = arr.length-1;

        int ans = -1;
        while(s<=e){
            int mid = s+(e-s)/2;

            if(arr[mid] == x){
                ans = mid;
                if(isF) e = mid - 1;
                else s = mid + 1;
            }
            else if(x > arr[mid]) s = mid+1;
            else e = mid - 1;
        }
        return ans;
    }
}

Intution :-

  • lastOccurence - FirstOccurence + 1;
class Solution {
    int count(int[] arr, int n, int x) {
        // code here
        int lo = fnl(arr, x, false);
        if(lo == -1) return 0;
        return lo - fnl(arr, x, true) + 1;
        
    }
    private int fnl(int arr[], int x, boolean isF){
        int s = 0;
        int e = arr.length-1;

        int ans = -1;
        while(s<=e){
            int mid = s+(e-s)/2;

            if(arr[mid] == x){
                ans = mid;
                if(isF) e = mid - 1;
                else s = mid + 1;
            }
            else if(x > arr[mid]) s = mid+1;
            else e = mid - 1;
        }
        return ans;
    }
}

6. Floor in a sorted array

- Floor of X is a GE from Es which are <= X

- [2, 4, 7, 9, 10, 13, 18, 23] x = 12, Floor of X = 10(index 4)

Approach 1 :- Whenever you find valid candidates, store it index as answer and search for greater valid index.

int floor(int arr[], int x){
    int s = 0;
    int e = arr.length - 1;
    int ans = -1;
    while(s<=e){
        int mid = s+(e-s)/2;
        if(arr[mid] == x) return mid;
        if(arr[mid] < x){
            ans = mid;
            s = mid+1;
        }
        else e = mid - 1;
    }
    return ans;
}

Approach 2 :- Do normal BS, if ele is not found then end will point to floor.


7. Ceil in a sorted array.(Lower Bound)

- Ceil of X is a SE from Es which are >= X

- [2, 4, 7, 9, 10, 13, 18, 23] x = 12, Floor of X = 13(index 5)

Approach 1 :- Whenever you find valid candidates, store it index as answer and search for smaller valid index.

int ceil(int arr[], int x){
    int s = 0;
    int e = arr.length - 1;
    int ans = n;
    while(s<=e){
        int mid = s + (e-s)/2;

        if(arr[mid] == x) return mid;
        if(arr[mid] > x){
            ans = mid;
            e = mid-1;
        }
        else s = mid+1;
    }
    return ans;
}

Approach 2 :- Do normal BS, if ele is not found then start will point to ceil.


8. Upper Bound :- UB of X is a SE from Es which are > X

- [2, 4, 7, 9, 10, 13, 18, 23] x = 13, Floor of X = 18(index 6)

Approach 1 :- Whenever you find valid candidates, store it index as answer and search for smaller valid index.

int ub(int arr[], int x){
    int s = 0;
    int e = arr.length - 1;
    int ans = n;
    while(s<=e){
        int mid = s + (e-s)/2;
        if(arr[mid] > x){
            ans = mid;
            e = mid-1;
        }
        else s = mid+1;
    }
    return ans;
}

image

int findKRotation(int arr[], int n) {
        // code here
        int s = 0;
        int e = n-1;
        if(arr[s] <= arr[e]) return 0;
        while(s<=e){
            int mid = s+(e-s)/2;
            
            // answer returning situation
            if(arr[mid+1] < arr[mid]) return mid+1;
            if(arr[mid] < arr[mid-1]) return mid;
            
            // move to unsorted part
            else if(arr[s] > arr[mid]) e = mid-1;
            else if(arr[mid] > arr[e]) s = mid+1;
        }
        return 87456;
    }

Intution :- Whenever mid stand it will give : either leftPartSorted or RightPartSorted so we check for the existence of target in sorted part, if not found then we again continue our search in unsorted part.

class Solution {
    public int search(int[] nums, int x) {
        int n = nums.length;
        int s = 0;
        int e = n-1;

        while(s<=e){
            int mid = s+(e-s)/2;
            
            if(nums[mid] == x) return mid;
            // identify the sorted part
            // if LPS
            if(nums[s] <= nums[mid]){
                // check if x lies in LSP
                if(x >= nums[s] && x < nums[mid]) e = mid-1;
                else s = mid+1;
            }
            // if RPS
            else if(nums[mid] <= nums[e]){
                if(x > nums[mid] && x <= nums[e]) s = mid+1;
                else e = mid-1; 
            }
        }
        return -1;
    }
}
  • Q is same as 10 but here it may have duplicate values. image
class Solution {
    public boolean search(int[] arr, int target) {
        int n = arr.length;
        int s = 0;
        int e = n-1;

        while(s<=e){
            int mid = s + (e-s)/2;

            if(arr[mid] == target) return true;
            // sorted part identification fails
            if((arr[mid] == arr[s]) && (arr[mid] == arr[e])){
                s++; e--; continue;
            }

            // if right part sorted
            if(arr[mid] <= arr[e]){
                if(target >= arr[mid] && target <= arr[e]){
                    s = mid+1;
                }
                else{
                    e = mid-1;
                }
            }
            // if left part sorted
            else if(arr[s] <= arr[mid]){
                if(target >= arr[s] && target <= arr[mid]){
                    e = mid-1;
                }
                else{
                    s = mid+1;
                }
            }
        }
        return false;
    }
}

image

class Solution {
    public int findPeakElement(int[] arr) {
        int n = arr.length;
        if(n==1) return 0;
        if(arr[0] > arr[1]) return 0; // descending sorted
        if(arr[n-1] > arr[n-2]) return n-1; // ascending sorteed

        // reducing our SearchSpace 
        int s = 1;
        int e = n-2;

        while(s <= e){
            int mid = (s + e)/2;

            if(isPeak(arr,mid)) return mid;

            // asc part ?
            else if(arr[mid+1] > arr[mid]) s = mid+1;
            // des part?
            else if(arr[mid] > arr[mid+1]) e = mid-1;
        }
        return -1;
    }

    private boolean isPeak(int arr[], int mid){
        return (arr[mid] > arr[mid+1] && arr[mid] > arr[mid-1]);
    }
}

13. Search in an infinite sorted array [3, 5, 6, 8, 9, 10, 12, 15...♾️]

Approach

  • Don't think about infinity, for performing BS you just need searchSpace i.e., range where your target can lie between start and end so just figure out start and end and perform normal BS in that range. We are Increasing our search space by 2 in each itteration.

int searchInfiniteSortedArray(int arr[], int x){
    int s = 0;
    int e = 1;
    // find the range
    while(x > arr[e]){
        s = e+1;
        e = e + (e-s+1)*2;
    }
    return bs(arr, s, e, x);
}

14. You will be given a value X and a sorted array, you need to find minimum absolute difference you can get with X and eles in an array.

Approach :- Do a normal BS if found then return 0 else return MINIMUM(abs(x-ceil), abs(x-floor));

Edge cases to handle before hand:-

  • [2, 4, 6, 8] X = 1

    • floor ❌ so end = -1
    • ceil ✔️ so start = 0
  • [2, 4, 6, 8] X = 10

    • floor ✔️ so end = 3
    • ceil ❌ so start = 4
static int getminAbsDiff(int arr[], int x){
    int n = arr.length;
    // handling edge cases
    if(x < arr[0] || x > arr[n-1]){
        return Math.min(Math.abs(x-arr[0]), Math.abs(x-arr[n-1]));
    }

    int s = 0;
    int e = n-1;
    while(s<=e){
        int mid = s + (e-s)/2;

        if(arr[mid] == x) return 0;
        else if(x > arr[mid]) s = mid+1;
        else e = mid-1;
    }
    return Math.min(Math.abs(x-arr[s]), Math.abs(x-arr[e]));
}

You are given a sorted array consisting of only integers where every element appears exactly twice, except for one element which appears exactly once. Return the single element that appears only once.

image

class Solution {
    public int singleNonDuplicate(int[] arr) {
        int n = arr.length;
        if(n==1) return arr[0];
        if(arr[0]!=arr[1]) return  arr[0];
        if(arr[n-1]!=arr[n-2]) return arr[n-1];
        // here we are reducing our search space for preventing indexOutOfBound while updating start and end.
        int s = 2;
        int e = n-3;

        while(s<=e){
            int mid = s + (e-s)/2;

            if(isSingle(arr,mid)) return arr[mid];

            if(isRightOfSingle(arr,mid)){
                if(arr[mid] == arr[mid-1]) e = mid-2;
                else e = mid - 1;
            }
            else if(isLeftOfSingle(arr,mid)){
                if(arr[mid] == arr[mid+1]) s = mid+2;
                else s = mid + 1;
            }
        }
        return 7798;
    }

    // order is (o,e)
    private boolean isRightOfSingle(int arr[], int mid){
        if(mid%2 != 0 && arr[mid]==arr[mid+1]) return true;
        if(mid%2 == 0 && arr[mid]==arr[mid-1]) return true;
        return false;
    }

    // order is (e,o)
    private boolean isLeftOfSingle(int arr[], int mid){
        if(mid%2 == 0 && arr[mid]==arr[mid+1]) return true;
        if(mid%2 != 0 && arr[mid]==arr[mid-1]) return true;
        return false;
    }

    private boolean isSingle(int arr[], int mid){
        return arr[mid]!=arr[mid+1] && arr[mid]!=arr[mid-1];
    }
}
int BinarySearchModi(int arr[], int fromIndex, int toIndex, int key){
    int start=fromIndex,end=toIndex-1;
    while(start<=end){
        int mid = start + (end-start)/2;
        if(key==arr[mid]) return mid;
        if(mid > start && key==arr[mid-1]) return mid-1;
        if(mid < end && key==arr[mid+1]) return mid+1;
        else if(key>mid) start = mid+2;
        else if(key<mid) end = mid-2;
    }
    return -1;
}
class Solution {
    public char nextGreatestLetter(char[] arr, char target) {
        return bs(arr,0,arr.length,target);
    }
    public char bs(char arr[], int fromIndex, int toIndex, char key){
        int start=fromIndex; int end= toIndex-1;
        char ans='.';
        if(key>=arr[end]) return arr[start];
        while(start<=end){
            int mid= start + (end-start)/2;
            if(arr[mid]>key){
                ans=arr[mid];
                end=mid-1;
            }
            else if(arr[mid]<=key)
                start=(mid+1) % toIndex;             
        }
        return ans;
    }
}

We are Increasing our search space by 2 in each itteration.

static int findPos(int arr[],int key){
		int s = 0, e = 1;
		while (key > arr[e]){
		    int currSize = e-s+1;
          	s=e+1;
          	e= e + currSize*2;
		}
		return binarySearch(arr, s, e+1, key);
}
static int findPos(int arr[],int key){
		int s = 0, e = 1;
		while (key > arr[e]){
		    int currSize = e-s+1;
          	s=e+1;
          	e= e + currSize*2;
		}
		return binarySearchFL(arr,s,e+1,1,true);
}
static int minimumDiff(long arr[], int n, long x){
     return binarySearch(arr,0,n,x);
}
    private static int binarySearch(long[] a, int fromIndex, int toIndex, long key) {
        int start = fromIndex;
        int end = toIndex - 1;
        while (start <= end) {
            int mid = start + (end-start)/2;
            long midVal = a[mid];

            if (midVal<key){
                start = mid + 1;
            }
                
            else if (midVal>key)
                end = mid - 1;
            else
                return 0; // key found
        }
        if(end<0) return Math.abs(arr[start]-key); // [2,4,6,8] key = 1 S-->0 E-->-1
        if(start>toIndex-1) return Math.abs(arr[end]-key); // [2,4,6,8] key = 10 S-->N E-->N-1
        return Math.min(Math.abs(arr[start]-key),Math.abs(arr[end]-key)); 
    }
}

Approach 1 :

class Solution {
    public int peakIndexInMountainArray(int[] arr) {
        return peakIndexMountain(arr,0,arr.length);
    }
    int peakIndexMountain(int arr[], int fromIndex, int toIndex){
        int start =0,end=toIndex-1;
        while(start<=end){
            int mid=start+(end-start)/2;
            if(arr[mid]>arr[mid+1] && arr[mid]>arr[mid-1]) return mid;
            else if(arr[mid]<arr[mid+1]) start=mid+1; // you are in increasing part
            else if(arr[mid]<arr[mid-1]) end=mid-1; // you are in decreasing part
        }
        return -1;
    }
}

Approach 2 : Video Reference

class Solution {
    public int peakIndexInMountainArray(int[] arr) {
        return peakIndexMountain(arr,0,arr.length);
    }
    int peakIndexMountain(int arr[], int fromIndex, int toIndex){
        int start = 0;
        int end = toIndex-1;
        while(start < end) {
            int mid = start + (end - start)/2;
            if(arr[mid+1]>arr[mid]){
                // we are in ascending part so there may be more bigE further
                start=mid+1;
            }
            else if(arr[mid]>arr[mid+1]){
                // we are in descending part so our ans can be where we r standing only when there is no bigE further from behind
                end=mid;
            }
        }
        // in the end start == end point to the peak of the mountain
        return start; // return start or end since both are same
    
    }
}
  • First find the peak index in the mountain array.
  • Search in the first half (asc order) and if not found then second half.
  • Use Order Agnostic Binary Search to search the target.
class Solution {
    public int findInMountainArray(int target, MountainArray arr) {
        int pki=peakOfMountainArray(arr);
        int ans1=AgnosticbinarySearch(arr,0,pki+1,target);
        if(ans1>-1) return ans1;
        else return AgnosticbinarySearch(arr,pki+1,arr.length(),target);
    }
    
    
    private static int AgnosticbinarySearch(MountainArray a, int fromIndex, int toIndex, int key) {
        int start = fromIndex;
        int end = toIndex - 1;
        boolean isAsc= a.get(start) < a.get(end);
        while (start <= end) {
            int mid = start + (end-start)/2;
            int midVal = a.get(mid);

            if (key > midVal)
                if(isAsc) start = mid + 1; else end = mid - 1;
            else if (key < midVal)
                if(isAsc) end = mid - 1; else start = mid + 1;
            else
                return mid; // key found
        }
        return -1;  // if key not found then -(thisVal+1) will give insertion point.
    }
    
    int peakOfMountainArray(MountainArray A) {
		int start = 0;
		int end = A.length() - 1;
		while (start < end) {
			int mid = start + (end - start) / 2;

			if (A.get(mid) > A.get(mid + 1)) {
				end = mid;
			} else {
				start = mid + 1;
			}
		}
		return start;
	}
}
class Solution 
{
    //Function to find minimum number of pages.
    public static int findPages(int[]arr,int n,int s)
    {
        //Your code here
        if(s>n) return -1;
        int low=0;int high=0; int ans=0;
        for(int i=0;i<n;i++){ low=Math.max(arr[i],low); high+=arr[i]; }
        while(low<=high){
            int mid=(low+high)/2;
            if(isAllocationPossible(arr,mid,s)){
                ans=mid;
                high=mid-1;
            }
            else low=mid+1;
        }
        return ans;
    }
    public static boolean isAllocationPossible(int arr[], int barrier,int s){
        int studentAlc=1; int pages=0;
        for(int i=0;i<arr.length;i++){
            if(arr[i]>barrier) return false;
            if(arr[i]+pages > barrier){
               studentAlc+=1;
               pages=0;
               pages+=arr[i];
            }
            else pages+=arr[i];
        }
        if(studentAlc>s) return false; else return true;
    }
    
};
class Solution {
    public int splitArray(int[] arr, int s) {
        int n=arr.length;
        if(s>n) return -1;
        int low=0;int high=0; int ans=0;
        for(int i=0;i<n;i++){ low=Math.max(arr[i],low); high+=arr[i]; }
        
        while(low<=high){
            int mid=(low+high)/2;
            if(isansValid(arr,mid,s)){
                ans=mid;
                high=mid-1;
            }
            else low=mid+1;
        }
        return ans;
    }
    boolean isansValid(int arr[], int barrier, int s){
        int studentAlc=1,pages=0;
        for(int i=0;i<arr.length;i++){
            if(arr[i]>barrier) return false;
            if(arr[i]+pages>barrier){
               studentAlc+=1;
                pages=0;
                pages+=arr[i];
            }
            else pages+=arr[i];
        }
        if(studentAlc>s) return false; return true;
    }
}